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Abstract: - In the present work, an effective algorithm for a numerical solution to the equations system   
modelling turbulent flow of a gas mix under a high pressure through the long offshore gas pipelines is 
presented. We pay particular attention to the heat exchange problem of the gas flow with the ambient through 
the multilayer wall of pipeline with accounting for the growing and melting processes of sea ice.  Developed 
model allows taking into account the seasonal changes of sea temperature. 
. 
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1 Introduction 
Design of offshore gas pipelines, monitoring of 
operated ones, investigation of safety matters and 
influence of the ecological situation in the water 
area require the development of an adequate 
pipeline gas flow model. The research of the gas 
flow in pipelines begun in the classical works of C. 
F. Colebrook, I. Nikuradze, A. J. Reynolds, T. 
Karman, S. K. Godunov, L. G. Loitsyanskii, I. A. 
Charnyi, G. Schlichting and many other scientists. 
This problem is still greatly relevant to date. A 
notable contribution to modelling gas flow in 
pipelines has been made by M. Chaczykowski [1], 
A. J. Osiadacz [2], O. F. Vasilev, Ye. A. Bondarev, 
A. F. Voyevodin, and M. A. Kanibolotskii [3], J. F. 
Helgaker [4], V. I. Zubov, V. N. Koterov, V. M. 
Krivtsov and A. V. Shipilin [5], L. M. C. Gato and 
J. C. C. Henriques [6]. Despite the amount of 
literature concerned with this problem, modelling 
the gas flow through offshore pipelines is far from 
completion. Northern seas modelling is complicated 
by the necessity to take into account a possibility of 
outer surface pipeline glaciation. The present work 
investigates making effective algorithms for the gas 
flow characteristics calculated in the offshore gas 
pipelines, and for possible pipeline glaciations in 
northern seas. 
 
 

2 Model Formulation 
A quasi-one-dimensional model of the nonstationary 
nonisothermal flow of a real gas mix through an 
offshore gas pipeline operating under conditions 
with the possibility of pipeline glaciation can be 
written as:  
continuity equation 
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relation between energy and internal energy 
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the Redlich-Kwong equation of state 

( )

2

,
1 1
h T cp

T
ρ ρ
ρδ ρδ

= −
− +

              (5) 
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the initial conditions for   ,ρ ,u  T,  y,                  (8) 
 the boundary conditions for ,ρ ,u T, u.                (9) 

 In model (1)˗(9) the processes in gas flow are 
described in terms of cross-sectional averaged  pres-
sure, in the velocity, in the temperature and etc. We 
use the following designations: ,u ,ρ  p, T, e, ε   are  
the flow velocity, the density, the pressure, the  tem-
perature of a gas mixture, the mass densities of 
energy and internal energy  correspondingly,  which 
are functions of time t and coordinate z coinciding 
with the gas pipeline axis; R is the inner radius of 
the gas pipeline; g is the gravity acceleration; 

( )zϕ ϕ=   is the angle between the gravity vector and 
z-axis. Calculation of heat flux vector q (7) is 
performed by using the  nonstationary heat transfer 
model given below; 1,δ 2δ  are the thicknesses of the 
layers comprising the coat of the gas-pipeline; T ∗  is 
the ambient temperature;  y(t) is the ice thickness  in 
z-th cross-sections; β  is the  total heat transfer 
coefficient; λ  is the hydraulic resistance coefficient; 
h, c, δ  are  constants in  the Redlich˗Kwong 
equation of state (5) determined  by a  given 
chemical composition  of a gas mixture [7]; vc   in 
equation  (6) is the specific heat of an ideal gas 
(including ideal gas mixtures).   

One of the stationary variant of this model was 
successfully used in simulating the gas flow in   the 
gas pipeline “North European Gas Pipeline” (Nord 
Stream), running from Portovaya Bay near Vyborg 
in the Russian Federation   to Lubmin in Germany. 
This model was detailed in the book ''Models of sea 
gas-pipelines'' [8]. 

 
3 Heat Exchange  Model 
In the northern seas pipeline glaciation is possible 
[9]. An ice layer affects the heat transfer processes 
between the gas flow and the environment as well as 
the pipeline buoyancy. 

 We studied [10] the heat transfer processes 
between the gas and the pipeline surroundings, 
taking into account the ice layer growing (in 
northern seas). We developed a selection procedure 
of the thermophysical characteristics of growing ice 
in sea water and the Stefan condition modification, 
which reflects the features of glaciation in sea water. 
The obtained results were quite coherent with the 
experimental data. The mathematical model of 
unsteady heat transfer through the multilayer wall of 
pipeline, involving the modified Stefan condition, is 
given by: 

1 1 1
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Model equations (13), (17), (20) are the heat 
equations in the pipeline wall layers and in the 
growing ice layer, respectively; (23) is the modified 
Stefan condition. Condition (22) expresses the 
invariableness temperature on a glaciation front. 
Here r  is the radial  coordinate in cylindrical 
coordinate system ( ), ,r zϕ ; while ,kρ ,kλ kc   and 

( , )k kT T r t=  is the density, the coefficient of thermal 
conductivity,   the specific heat  and the temperature 
distribution  in    k-th  layer; indices  1,4k =  
correspond to  steel and concrete layers of pipeline  
wall,  the  thermal boundary layer of water and  the 
ice layer respectively;  γ  is the latent heat (of 
fusion) of ice. α  is an effective parameter, 
accounting in particular angle averaging, as one-
dimensional problem supposes the axial-symmetric 
of processes - besides, the parameter α  allows 
accounting for dissimilarity between glaciation 
processes in salty and fresh water; 0α  is the heat 
transfer coefficient  between the gas and the inner 
wall. T(z,t) is the gas temperature. 0y   is the ice 
thickness at the initial time; 3q  is the radial 
component of the heat flux vector from seawater to 
glaciation front  with coordinate r = R + y(t); 

1 1,R R δ= +  2 1 2 ,R R δ= +  T∗   is the  seawater-ice 
transition temperature;  t∗   is  the time moment at 
which in this section the ice layer occurs.  For 
glaciation beginning two conditions must hold 
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 For modelling heat transfer for *t t<  we use 
model (13)˗(18), which is supplemented by  the    
heat equation in the thermal boundary layer of water 
with the thickness *δ : 

3 3 3
3 3 ,T Tc r

t r r r
λ

ρ
∂ ∂∂  =  ∂ ∂ ∂ 

  ( )2 2 *, ,r R R δ∈ +     (26) 

0 ,t t=   0
3 3( ) ( ),T r T r=                                 (27) 

2 :r R=  2 3 ,T T=  32
2 3 ,TT

r r
λ λ

∂∂
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∂ ∂
             (28) 

2 ,r R δ∗= +   *
3 ( ).T T t=                              (29) 

The thickness of the thermal boundary layer of 
water can be expressed through the total heat 
transfer coefficient β as follows: 

3 1 2
* 2

1 2 1

1 1exp 1 ln ln 1 .R RR R
R R R
λ

δ β
β λ λ

    
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The total heat transfer coefficient  β  and the 
hydraulic resistance coefficient λ  are determined 
using the identification procedure [11]. 

From solution to the system (13)˗(18), (26)˗(29) 
the values *t , 3q  are found.  The functions in model 
(13)˗(23) parametric depend on z and t via T 
and ( )*

3 ( , )q T z t . If the ambient temperature *( , )T z t  
increases over time, the formed ice begins to melt. 
Model (13)˗(23) allows taking into account as a 
grow of an ice layer as well as one's melting. Under 
melting conditions the value α  in (23) is equal to 0. 

 
3.1 Numerical Algorithm   
For the numerical solution to the model equations 
(13)˗(23)  we use the grid method with explicit 
separation of the moving phase-change surface, (the 
front-racking method) [12], [13]. In this approach 
the time step size [ 1]nτ +  is variable and at a 
( )1n + -th temporal level it is defined so that the ice 
layer thickness increases (or decreases) on a 
constant value h during this time step [ 1]nτ + . Here 
h is a step of grid on spatial variable r. The value of 
the time step size [ ]1nτ +  and the temperature 
distribution 1[ ]n

iT j+   in pipeline wall and in the ice 
layer are calculated by an iterative procedure at the 
every temporal level. The values [ ]n

iT j  and [ ]nτ  
are assumed known. We use a uniform spatial grid 
[ ] 1 ,i ir j R jh−= + 0,1,..., ,ij N= 1,2,4i = . We denote 

1[ ],n
iT j+  1,i = 2,4 the temperature at j-th grid node 

at ( )1n + -th temporal level and [ ],s
iT j  1,i = 2,4 as 

temperature at j-th grid node at ( )1n + -th temporal 
level on s-th iteration. Let  sτ  is the time step size at 
the ( )1n + -th temporal level on the s-th iteration. 
After the end of the iteration process the required 
value [ ]1nτ +  is assigned the value  1sτ +  of the last 
iteration. The overall process time is 

1 0 [1] [2] ... [ 1].nt t nτ τ τ+ = + + + + +  The ice layer 
thickness at the moment 1nt t +=  is equal to 

( )0 1 .y y n h= + +  
Let on the s-th iteration the time step size sτ  is 

set.  Problem for the heat equations (13), (17), (20) 
with boundary conditions (15), (16), (19), (22) is 
solved by an implicit finite-difference scheme.  
Thus, the temperature in pipeline wall [ ],s

iT j   
1,2i =   and in the ice layer 4 [ ]sT j   is calculated. The 

value of step size on next iteration 1sτ +  is determined 
by following algorithm. Using the found sequence 
of the ice temperature 4 [ ],sT j  41,...,j N=   the heat 
fluxes are computed:  

( )1 4 4 4[1] [0] ,s sq T T hλ= −                    (30) 

( )2 4 4 4 4 4[ ] [ 1] ,s sq T N T N hλ= − −   4 4 *[ ] .sT N T=    (31) 
Then the thickness of the ice layer is obtained as: 

 ( )*
2 3 ( ) .s sh q q T Qτ= ± −                         (32) 

The value of the step size on next iteration is 
defined as: 

  ( ) ( )1 *
1 3 ( ) .s s sQ h h q q Tτ τ+ = ± − −        (33)             

The iterative process is terminated if the inequality 
1s sτ τ ε+ − ≤  holds, where the value of ε   is set in 

advance. In the case of the ice layer growing, if the 
glaciation conditions  (24), (25) are fulfilled, in the 
right hand side of the equations (32), (33) we use 
the plus sign and the quantity 4 .Q γρ α= +   In the 
case of the ice melting  in the right hand side of the 
equations (32), (33) we use the negative sign and the 
quantity 4.Q γρ=   

The first time step size in the zeroth 
approximation can be found, for example, using the 
known analytical Stefan problem solution [14]. For 
the following steps at the ( )1n + -th temporal level 
as a zeroth approximation   can choose the previous 
step size 0 [ ].nτ τ=  
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3.2 The Admissibility Conditions of a Quasi-
Stationary Heat Exchange Model   
The admissibility conditions of a quasi-stationary 
heat exchange model for the considered regimes 
were specified. The characteristic rate xW  of 
growing ice of thickness xy  is equal to:  

                   4 ,x
x

aW
y

=    ( )4 *
4

4

.
T T

a
λ

γρ
−

=  

The characteristic rate 4u  of  setting  quasi-
stationary  temperature  distribution in the  ice of 
thickness xy  is equal to:  

                     4
4 ,

x

ku
y

=     4
4

4 4

.k
c
λ
ρ

=   

The Stefan number ( )4 *Ste c T T γ= −  can present 
as relation xW  to 4.u  For the multilayer areas, the 
smallness condition of only the Stefan number is not 
sufficient. For considered regimes the following 
inequality holds 

,x mW u    ( )1 2 4min , , ,mu u u u=  1 1 1 ,u k δ=  

2 2 2 ,u k δ=   4 4 ,xu k y=  
 where ( )j j j jk cλ ρ= is the temperature conduc-

tivity coefficient of j-th layer, jδ  is the thickness of 
j-th layer. In other words the smallness of all 
dimensionless groups ,j x jB W u= 1,2,4j =  is 
necessary. From this inequality follows 
admissibility of a quasi-stationary approximation, 
this significantly simplifies computations of solution 
(1)-(23).                              

 
4 Boundary and Initial Conditions 
We consider the unsteady problem of gas 
transportation, in which nonstationarity is due to the 
gas consumption variations and the ice formation 
processes. 
 
 
4.1 Initial Conditions                                     
For model (1)˗(9) the initial conditions (8) are   flow 
characteristics of steady regime: 

0 :t =   2const ,Wu
R

ρ
π

= =  

0( ) ( ),z zρ ρ=   0( ) ( ),T z T z=   0( ) ( ).y z y z=  
The functions 0 ( ),zρ  0 ( ),T z 0 ( )y z   are calculated 
using the steady variant of this model presented in 
the book [8]. W is the mass flow rate, which is 
constant for the steady regime. 

 
4.2 Boundary Conditions  
  The gas flow in the pipeline is subsonic. In the 
considered problem, unchanged over time, the inlet 
pressure and the inlet gas temperature are given. 
Using these values, the density and the internal 
energy are determined from the caloric equation and 
the equation of state. At outlet, the law of variation 
of the specific flow rate *( )w t  is given. 
Thus, the boundary conditions (9) are written this 
way: 

0 :z =  0(0, ) ,p t p=   0(0, ) ,T t T=  
:z L=  *( , ) ,y L t w=  

 L is the length of gas pipeline.    
Calculations were carried out for following 

parameters: 
1570 kg s ,W −=   * 272.15 K,T =  * 271.24 K,T =   

3330048.81 kJ m ,α −=   450 km,L =  0.5 m,R =  

1 0.54 m,R = 2 0.66 m,R = 1303000 J kg ,γ −=
11712.25 J(kg K) ,vc −=     1

1 24 W(m K) ,λ −=  
1

2 1.7 W(m K) ,λ −=     1
3 0.56 W(m K) ,λ −=   

1
4 2.15 W(m K) ,λ −=   1

1 450 J(kg K) ,c −=  
1

2 924 J(kg K) ,c −=      1
3 4200 J(kg K) ,c −=  

1
4 2100 J(kg K) ,c −=     3

1 10000 kg m ,ρ −=  
3

2 2300 kg m ,ρ −=        3
3 1005 kg m ,ρ −=  

3
4 931 kg m ,ρ −=           2 1

0 500 W  m K ,α − −=  
(0, ) 17.2 MPa,p t =        (0, ) 303.15 K.T t =  

 
 
5 Numerical Simulations  
Different approaches to a numerical solution of the 
general model equation system (1)-(23) were 
considered. An overview and comparison of 
different numerical techniques for the gas flow 
computation in pipelines can be found in number 
articles, for instance [15], [16].  Numerical solution 
to model (1)˗(23) has been performed by using 
modified Lax˗Wendroff scheme  [17], which 
appeared to be preferable for the considered 
problems due to the count rate and the simplicity of 
implementation. 

In conservative dimensionless form the model of 
gas transportation can be written as 

 .U F
t z

∂ ∂
+ = Ψ

∂ ∂
  

The vectors ,U  ,F  Ψ   are given by  
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Where w is the flow rate ;w uρ=  1 5m m−  are the 
dimensionless complexes, which expressed through 
the physical parameters and the characteristic values 
by the formulas 

 1 2 ,x

x x

pm
uρ

=    2 ,
4

xlm
R

λ
=    

2

3 ,
2

x

x

um
ε

=  

4 ,x

x x

pm
ρ ε

=    5
2 .x x

x x x

t Tm
Rr

λ
ρ ε

=  

Where ,xp ,xρ ,xu ,xT xε  are the characteristic pres-
sure, density, velocity, temperature and internal 
energy of a real gas mix respectively; ,xl xt  are the 
characteristic length and time. 

The algorithm consists of two steps. At every 
step the desired values of the density ,ρ  the flow 
rate w  and the internal energy  ε  are determined 
explicitly:        
stage 1  

       
( )1 2

1 2 1 1
1 2

0.5
,

0.5

n n n n n
k k k nk k

k

U U U F F
τ

+
+ + +

+

− + −
+ = Ψ

∆
 

stage 2  

       
1 2 1 21

1 2 1 2 1 2.
n nn n

k k nk k
k

F FU U
τ

+ ++
+ − +−−

+ = Ψ
∆

 

Where n, τ  are a number and a time step size; ,∆  k 
are a number and a space grid step size.  In this 
scheme calculation of heat flux vector 1 2n

kq +   is 
performed by using the   heat transfer model (13)-
(23).   As an illustration in Fig. 1 shows the ice 
growing dynamic on the outer surface of an offshore 
gas pipeline during five days, obtained from the 
numerical solution of model (1)-(23).  
 

6 Results and Conclusions  
Conducted research allowed the development of 
computational models of gas mix transportation 
through a long offshore gas pipeline in the northern 
seas. 

 
Figure 1. The ice growing dynamic on the outer 

surface of an offshore gas pipeline during five days. 
 

This model spans a wide variety of the practical 
problems. Based on numerical modelling, this 
research led to numerous practical suggestions for 
selecting the transportation regime, together with 
the gas pipeline construction and selection of the gas 
pipeline route relief. These include: 
1. A pipeline route with a sharp rise and a gentle 

slope conforming to the requirements of the 
technological constraints) is hydraulically 
preferable to a route of the same length, but with 
a long sloping rise and an abrupt slope. 

2. The computational model provides a way to 
compute an admitted gas pressure and 
temperature region at inlet, at which the flow 
velocity will not achieve a specified rate limit. 
As known, beginning from this critical velocity 
the pipeline vibration occurs.   

3. The computational model includes accounting 
for influence of the ambient temperature, the 
seawater salinity, and the transition temperature 
on the dynamic of the ice grow. It is adequate to 
calculate a thickness of the ice layer upon the 
outer surface of the gas pipeline, and important 
to assess the pipeline buoyancy. 
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