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Abstract: - In this paper we develop mathematical models for 3-D, 2-D and one-dimensional hyperbolic heat
equations (wave equation or telegraph equation) and construct their analytical solutions for the determination of
the initial heat flux for rectangular samples. In some cases we give expression of wave energy. Some solutions
of time inverse problems are obtained in the form of first kind Fredholm integral equation, but others has been
obtained in closed analytical form. Finally, writes in one dimension intensive steel quenching model numerical
results. We viewed both direct and inverse problems at the time. Are given some of the wave energy results.
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1 Introduction

The conventional steel quenching is usually
performed in environmentally unfriendly oil or
water/polymer solutions. Contrary to traditional
method the intensive quenching process uses
environmentally friendly highly agitated water or
low concentration of water/mineral salt solutions
[1]-[5]. Traditionally for the mathematical
description of the intensive quenching process,
classical heat conduction equation is used. We have
proposed to use hyperbolic heat equation [6]-[12],
[21]-[23] for more realistic description of the
intensive quenching (1Q) process (especially for the
initial stage of the process).

Complete bibliography (till 1989) for hyperbolic
heat equation is published in review articles [13],
[14]. Models of systematic hyperbolic heat equation,
their mathematical research and solutions are
discussed in monograph [15]. In our previous papers
we have constructed various one and two
dimensional analytical exact and approximate [6]-
[8] solutions for 1Q processes. Here are both -
approximate (on the basis of conservative averaging
method, see [18]-[20] and exact (on the basis of
Green function method, see [6], [10]-[12], [21]-
[27]).

The idea of the usage of hyperbolic heat equation
can be easily transferred to completely different
sector of application - to the generation of electricity
in sea or ocean by usage of wave energy [16]. It is
important to note, that Ekergard and his co-authors
[16] examine the development of the system in time,
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describing the equipment with ordinary differential
equation. Here we describe the equipment in
development of both - in time as well as in spatial
arrangement of equipment using the three-
dimensional hyperbolic heat equation. Wave power
plant has to work for long time period in moving
environment — waves, see [17]. Therefore it is
important to examine not only the development of
equipment in time, but also the movement of its
different components [32]-[34]. Wave energy
generator models can be viewed both Cartesian
coordinate and cylindrical co-ordinates. Generators
of cylindrical form [33], [34] we will investigate in
separate paper. In this article we investigate the
rectangular model. For this purpose we dedicate our
paper.

We consider three-dimensional, two-dimensional
and one-dimensional  statements for non-
homogeneous equation with non-homogeneous
boundary conditions. Such statements allow
constructing mathematical models for wave power
plants in connection with other equipment, for
example, with wind power. Boundary conditions
could be different types, thus they allow us to use
Green function method. This topic is similar to our
paper [9], but the content differs greatly.

In recent years, we have been able to generalize the
Green's function method to areas, which consist of
several canonical connected sub-areas, and thus we
have obtained the exact solutions for the L-, T- and
II-type areas [10], [11], [21], [24], [25]; an area
consisting of two cylinders [22], two-layer sphere
[12], [23] and layered system [26].
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2 Mathematical Formulation of 3-D

Problem for IQP or Wave Power
Already in the introduction we noted that Professor
M. Leijon, see [16] examined the development of
system in time. Here we offer to consider the
description of system in time and space. For this
purpose instead of the ordinary differential equation,
we consider the following partial differential
equation:

ANV v 2[azv oV azvj

+—= +—+
o ooy o
—-DV +®(x,Y,2,t),a :L, (1)
co

xe(0,1),y €(0,b),ze (0,w),t (0, T].
Here c is specific heat capacity, k- heat
conductivity coefficient, p - density, z,- relaxation

time. The source term ®(X,y,z,t)can be from

different parts of the same device or outer source, for
example, wind source. As the first step we use well
known substitution:

V(XY 2,t) = exp(—i

r
After transformation (2) equation (1) can be written
in the following form:

J—CU+

o*U (60U oU oU
7 =a, > T2 T2
ot OX oy 0z
2
F(x,y,z,t),C:[D—iji,af:a—, (3)
4z, )7, T,

F(x,y,z,t) =exp [LJLCD(X, Yy, Z,1).
2t, )7,

It is natural to assumption that
planes x =0,y =0,z =0 are symmetry surfaces of
the sample for the case of intensive steel quenching.
In the case of wave energy we can assume different
non-homogeneous boundary conditions:

ouU h

oJ _ L] 4

8x aluszo 0.(y.z.t), ¢ . (4)

oU

E_azu :gz(X,Z,t), (5)
y=0

oU :

E_acau :gS(X1y,t), |:l,2,3- (6)
z=0
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Here h, is heat exchange coefficient. On all the other

sides of device we have heat exchange with
environment. For generalizing we assume following
non-homogeneous third type boundary conditions
(Robin conditions) on all the three outer sides:

ouU h,

Eijxl =0.(%.2.0).f = k' 7

ouU

—+ 2U = X’Z’t ! 8
B . 95 (x,z,t) (8)

aG_LZJ-’_,33U :gs(x,y,t),i=1,2,3. ©)

In fact it is possible to look at other types of
boundary conditions: first (Dirichlet) and second
(Neumann) type. The initial conditions for the

function V (x,y,z,t) are assumed in following

form:

V], =Vo(x,Y,2), (10)
oV

— =W,(x,Y,2). (11)

From the practical point of view in the steel
guenching the condition (11) can be unrealistic. The
initial heat flux must be determined theoretically. As
additional condition we assume that either the

temperature  distribution or the heat fluxes
distribution at the end of process is given (known):
V], =V (xy,2), (12)
oV

— =W;(X,Y,2). 13
3 F (X, Y,2) (13)

After the transformation (2) then the differential
equation (1) transforms into partial differential
equation (3) without first time derivative. The initial
conditions (10), (11) take the form:

U], =Vo(x,Y,2), (14)

ouU

— =Vi(x.y,2),

A o (15)
Vo (X, Y, Z).

V(X y,2) =W, (X, y,2)+

.
Additional conditions (12), (13) transform as
follows:

T
U |t=T =exp (Z_Z'r

jVT (xy,2)=U; (xy,2), (16)
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ot =Ur (xy,2),Ur (xy,2)=
t:TT ( ) (17)
- TX’y’Z

exp(zrr {WT(X'V'Z) 2z, }

3 Solution of 3-D Problem
Firstly we assume that we have non-homogeneous

Klein-Gordon equation-with source term: ¢ >0.
The solution in three-dimensional problem is in
following form:

Uy, zt)=H(xy,zt)+

[defdsVi(gme)6(x y, 2,8 m,6,0dn+ (18)

| w b
Ja[ds[Vo(é.6) =6 (x.v,2.6,.6.0d7,

Here
H(xy,zt)=
-a’|dz|dg|g,(n.6,7)G(XY,2,0,n,6,t—7)dn

+
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RN
o
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=
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=
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I w b
jdfjdng(fyﬂyg,T)G(Xa ylz,g,ﬂaglt—f)dﬂ-

The Green function [27] - [29] for initial-boundary
problem for Klein-Gordon equation is known; see
[30]:

G(x,y,z,&,n,4,t) =8x
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= & Sin (A, X+ &, )sin( 4,y +€,)sin (v iz + &)
2.2.2 e [ —
mnk mnk

xSin(A,& + &, )sin(u,n +&,)sin (v, & +&,)x
i _ ﬂ’m _ H,
sm(t o ) &, =arctg (I—j &, =arctg (FJ

Po = (2 + 417+ ) +C,
g, = arctg (VW“) E.x =

I N (alﬁl +ﬂr§)(a1 +:B1) o

() (B )

_b+ (azﬂz +,u§)(052 +5,) y

(3 + 47 ) (B2 + 443

(asﬂs + sz)(as + :33)
(asz +Vk2)(/332 +vk2) -

The eigenvalues A, ,,v, are positive roots of the

transcendental equations:

2 2
A0 (12), = %P g (b,

o+ p a, 2

(19)

W+

2
Vi—ashy g (wv).

as+f;

There is an interesting situation, if both additional
conditions (16), (17) are known. In this case we
introduce new time argument by formula
t=T-t (20)
The formulation for new time variable is following:

2 2 2 2
o°U z(au+au+au]_cu

V=

x|\ oy: oz’

+F(x,y,2,T -1),

oU .
ouU -
6_+IB1UJ :g4(y’Z:T_t)! (21)
X x=I

@—aZU =0,(xzT-f),
& »

ouU -
—+,82UJ =0, (x,2,T-1),
oy y=b
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(au “3“]
0z
ou
[E*ﬂs“)

Ul

= 93(X, y,T _f)1

z=0

= ge(xv y!T _f)1

=W

oU
=U; (X, ¥,2),— =-U7(xV,2).

ot =0
Similar to (18) the solution of inverse problem looks
like:

U(x,y,zf)=H(xy,zf)-

fdffdng% (&7.6)G(x,y,2,&,17,¢,E)dn
oo -
Idg_l.UT (§1T71G)%G(X, Y, Z,f,n,g,f)dn.

There is no problem to transform the expression
for H(x,y,2,f) infollowing form:

H(xy zt)=

T w b
_aT2 J.~dTJ.dg'|.gl(77,g,T)G(x, Y,2,0,n,¢, T —7)dn

T
+a’ j dz‘jdgjg4(77,g,r)G(x, y,z,1,n,¢c,T —7)dn

T-1 0 0

T w |
-a; J. dTIdGJQZ(f’glf)G(X’ y,2,£,0,6,T —7)d&

T-1 0 0

T w |
+al [ defdg[g,(5.6.7)G(x Y, 2,606, T ~0)ds

A
- I dffdﬂfgs(é‘,ﬂ,r)G(x, y,2,£,1,0,T —7)d&

T-1 0 0

|

b

+a’ J.~dfjd77J- 9 (&m.7)G(X, Y, 2,E,m,W,T —7)d&

0 0

;
+Idr><

| w b

[de[ds[F(&m.6.7)G(x Y, 2.8 m.6.T —7)dn.
0 0 0

For the heat flux in time we have the expression:

%U(x, y,z,f) :%H (xy,2,f)-
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[de[de[U} € me) Z60y.2.6me. D +
| w b 2
e[ ds[Us (€)= 6(x, y.2. &m0

From last expression at f =T and equality (15) we
have solution for the time inverse problem:

Wo(X,y,2) = - % (xyzt)_T_
'!dgx
IdGIU &m, g)—G(x y,2,E,1,¢,0) iy d +
'!dgx
vadng (.m.6) ~ZG(X y.2.&.1, g,t) - dn.

If onIy one additional condition (16) is glven from
the solution (22) we obtain 1% kind Fredholm
integral equation for the determination of unknown
initial heat flux:

[de[de[Wy(&n,)G(x,y,2,&m,6,T)dn =
U; (% y,2)—Hy (X, y,z,T)—ngx

dn.

t=T

jdfjv &, g)—e(x Y,2.€,11,6.1)

Ho(x,y,2,t)=H (X Yy, z,t)+

jdgjd j 0(577 Yole:) Gy v, 2,£,,¢.t)dln.

On the other hand, if only one additional condition
(17) is given again we obtain the 1st kind Fredholm
integral equation'

jdé‘IdQIW &, g)—G(x ya.&met| dy
:U%(x,y,z)——tHl(x,y,z,t) -
fdéffngV &, g) G(X y.2.& .60 dn,
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H, (X, y,z,t)=H(x,y,2,t)+

| w b
Jacfoe] %%G(X’ y.2.E.m,6.8)d7

4 Solutions of Two Dimensional

Problems

Here we will obtain the solution for two-dimensional
problem as it was done for three-dimensional
statement. The mathematical formulation for thin
in z—direction parallelepiped (two-dimensional

mathematical model) means:
w<<l,w<<h. Firstly, in accordance  with
conservative averaging method [18]-[20] we

introduce following integral averaged value (two
space-dimensional functions):

U(x,y,t)= W_1J.U (x,y,z,t)dz,
0

f(x, y,t):w‘l_[F(x, y,z,t)dz.
0

Secondly, in similar way we obtain following 2-D
differential equation:

27 2T 21

8L2J 8L;+8U _U+g(xyt)

ot ox> oy’ (23)

xe(0,1),ye(0,b),te(0,T].

Now here:

E=C+a ﬁ3,g(x y.t)=f(xy.t)+ 95 =95
W

We have the followmg boundary conditions for 2-D
problem:

(24)
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gg(x,t)=w*fgz(x,z,t)dz,
= g4 (X’t)’

[Q + ﬁZJ]
oy yb

G, (xt)=w" [ g;(x,2,t)dz
0

The initial conditions for the differential equation
(23) we assume in the form:

UL:O = Jo (X, Y), (25)
ou —

=V0(X' y). (26)
ot |_,
We have introduced in (25), (26) following
notations:

U,(x,y) = w’l_[vo(x, y,2)dz,
0

V,(X,y) = Wlf(wo(x, Y, 2) +Mj dz
0 er

The solution of 2-D problem for T>0 has a form
similar to formula (22):

U(x,y.t) = [d&[Vo(£mG(x.y.&.m.t)d7

| b
— 0

+£ df! Ua(&:m -G y.¢.n,0dn (27)
+H (X, y,1)
Here
ﬁ(x, y.t)=

t b
- fjd Ig(n r)G(X y,0,n,t—7)dn+

0 0

t b
+a’[dz[g, (n.7)G(x y,,n.t-7)dn -

(28)

|
dr[G,(£,7)G(x,y,&,0,t-7)dé+

0,(&,7)G(x Y, & b t—7)dé +

o'—.

fdfjdffg(fiﬂ,f)G(x, y, &, t=7)d7.

The two-dimensional Green function in the formula
(27) has the form [30]:
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G(X’ y’ g’ 771t) =
= = 0,09, () (V) () sin o, )
D)) e ,
n=1 m=1 nm @nm
=a’ (,urf +v;)+5.
The eigenvalues A, 1, are positive roots of the
transcendental equations:

1/81 _Vz_azﬁz
A tg(l,u),v _—052 B, tg(bv).

The elgenfunctlons in (29) are given by expressions:
o, (X)=sin(u,x+¢,).¢,(y)=sin(v,y+o,),

g, =arctan (%) o, =arctan (%mj

E - |+(a1ﬂ1+ﬂrf)(a1+ﬂ1) y
(af +2)(BE+12)
[b+

(azﬂz +Vn )(a2 + 5, )}
The additional conditions (16) and (17) at the end of

(29)

,U—

(a2 +2) (5 +2)

process regarding the two-dimensional
function U (x, y,t) are following:
Ul =U;(xy),
- T |_
U; (X, y) =exp (?j V; (X, Y), (30)
V(% Y) =W V; (x,y,2)dz.
0
Respectively
ou -
— =Ur(xy), (31)
t=T

y)

+W (X, y)} ,

— T ) V. (x
Ul 1 — o T Il
O P e

W (X, Y) = W’leT (x,y,2)dz.

Here we consider only the statement with both given
additional conditions (30), (31) and again we

introduce time f by formula (20). Then the new
initial conditions are:

— ou —
, =Y (x, Y)vﬁ =-Ur (x,Y).

=0

Ul
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Solution of two-dimensional direct problem
regarding the argument t (but again, this problem is
time reverse regarding the argument t 1) is given by
formula:

Uxy,f)=H(xyf)+

4]0, (€. S0y, £m.E)dn-

| b
_J-dgj‘u-i(f,ﬂ)G(X, ylgaﬂaf)dﬂ

0 0
Then the representation for initial heat flux is:
— 0 — -
Vo(x,y):—NH(x,y,t)
| b
[defa, fm
0 0

d&|Us 0 G f d
+J sj U (€ m) =G0y, D) din.

0 0
So we have obtained explicit expression for the
initial heat flux in closed analytical form.

If only one additional condition (30) is given we
obtain the 1st kind Fredholm integral equation

[d&[Vo & mK ey, & m)dn =F(xy),

£=T

G(nynt)I d7 (32

F(x,y)=Ur (%, y)-H(xy.T)-
| b

- 0
[de[ &m=Gxy.&n| dn,
0 0 ot t=T
KXy, &m) =G(Xy,&,m.T).
On the other hand, if only one additional condition

(31) is given again we obtain again the 1st kind
Fredholm integral equation:

iLT(x, y,t) =§ﬁ(x, y,t)+

jdfju (&, n) G(Xycfnt)dn

+£dé£\7o(5,n)ae(x, y.£7,007.

The 1st kind Fredholm integral equation is in the
form:

[de[Vo (& mK (kY. € mdn = F(x,y).

Here
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F(xy)=Uz (x, y)——ﬁ(x, y,t)-
[defTyce, 77)

Kl(X! y168,77) :gG(X’ y,f,ﬂ,t)

G(X y,&,m,t)dn,
t=T

5 Simplifications for Homogeneous

Initial Conditions

We would like to finish the two dimensional
solution with a simplification for constant initial
conditions:

— (33)
=V,,V, = const.
t=0
Solutions of time direct problem is these, see (27):

U(x,y,t) =V, [d&[G(x,y,&,m)dn
0 0 (34)

I b .
+Uold§£§G(x, y,.&,n.0dn+H(x y.t).

Intensive steel quenching process with initial
conditions (33) is very natural [8]-[12], [21]-[24].
We have homogeneous equation (23) and
homogeneous boundary conditions:

217 27 27
ot ox® oy

Q—algj =0,

OX

y=0

=0.

ou .~
—+ /U }
o).

It means that we have:

H(xy,t)=
Solution (34) can be simplified:
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U(x, 1) =V, [d&[G(x,y,&,m)dn

| b
- 0
+U, | dE|=GC(x,y, & n,)dnp=1,+1.
Joel € o
We can integrate both integrals. For |, :

L (06.(¥)
IO=4VOZZ¢E\/_)/3|n(tF)
Xf¢n(§)dff¢m(n)dﬂ=

LONIE Ly%sm(tf)

n=1 m=1
x C0S ( £, X+ &,)COS (VY + 0y ).
Similarly we can integrate second integral |, :

|1:4goii¢n(x)¢ n(Y) d dtsm(t )

(0

nm

j (ﬂn(i)dff ¢ () =

4UOZZ @, (X )¢ (y) COS(t\/_)

n=1 m=1

j (pn(é)dfj ¢ () =

o0 0

4U022¢’n( )8 () cos(t\/_)

n=1 m=1 nm/’ln m
cos(u,X+¢,)cos(v,y+o,).

The solution we have in the form of two double
series:

U(x,y,t)=

2, (¢ ()
YA ;;Emﬂnvm\/_sm(t\/i)
cos(u,X+¢,)cos(v,y+o, )+

4UOZZ @, (X)8, () cos(t\/_)

n=1 m=1 nmﬂn m
cos(u,X+¢,)cos(v,y+o,).
For the heat flux we have an expression:

0 —
—U(x,y,t)=
p (X, y,t)

(35)
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Uoldé‘!at—G(X y,&,m,0d7y

| b
— 0
W [de[ =Gk y.&mtdy =1, +1,,
0 0

ot
1, =0, [dé[-256(x y,£nt)dn,
u=4%ii¢%fMJ_
n=1 m=1 mAnYm

sin (t
Finally for the time derivative we have:

o — _
EU(X, y,t) =4V, x

Oy )cos(ynx+gn)cos(vmy+am).

55 B0 o

a)nm X
nmlun m )
cos(u,x+¢,)sin(v,y+o,)-
4602.01 OO ¢n(x)¢m(y)\/a)nm x
n=1l m=1 Enm:unvm
sin(t conm)cos(ynx+gn)cos(vmy+am).

For example we have the temperature derivative at
endpoint:

Us (X, y) =4V, x

n=1l m=1

0

zi(ﬂn( )8, (Y) cos(T wnm)

n=1 m=1 nm /un m

xCos( X +¢,)sin(v,y+o, )-

R AN

n=1 m=1 Enm:unvm

(T )cos X+ E, )X
cos(v,y+o,).

(36)

6 Solution of One Dimensional
Problem for IQP

We will start with a formulation of the mathematical
model of the steel plate which is relatively thin in 'y
and z directions: w<<l,b<<l. They show that
rectangle is thin and narrow. In accordance with the
conservative averaging method ([7], [18]-[20]), we
introduce the following integral averaged value (one
space-dimensional function):
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u(x,t) = (bw)ﬁl _Tdyfu (x,y,z,t)dz,
Ob 0 (37)
f(x,t) = (bw)" _[ dyj F(x,Y,z,t)dz.

Integrating the 3-D equation (3) in the directions y

and z, we obtain:
b w 2 2
ij. J‘ 8 U 8 Li N o‘U _cu ldz =
bwy "o oz’
foU oU
>t — dz.
oy: oz
The last term can be transformed as follows:

at tfou U
dy —2+—2 dZ =
bw oy° oz
2 (w y=b =W
& I Y dy |.
bw{ 5 |, -
Taking into account the heat exchange with

environment, i.e. boundary conditions (5), (6), (8),
(9), we obtain'

1(%oul
b—w[f

1 w
__W'[(ﬂzu |y:b +a2U |y:0 - g5|y:b + gz|y:0)dZ
0

6

a

T

b
o |20
o Oz

b

a5

0

1 b
__W'[ ﬁ3U |Z:W +a3U|z:0 - g‘5|z:w + g3|z:0)dy'

This allows us to use the simplest approximation —
by constant — for the function U(Xx,Y,z,t)

the y, z —directions:

U(x,y,z,t)=u(xt)
We obtain a 1-D differential equation as a result:
82 , 0°U

=a’ —cu+ f(xt),xe(0,D,
&gt f(xD.xeOD
te(0,T], (38)
c:-iz+af(a2+ﬁ2+a3+ﬂ3j,

7 b w

where the source term is as follows:
f(xt)="f(xt)+a’x

Pz(x,t)—@s(x,t)+@s(x,t)—ﬁe(x,t)}

b w
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G (x1) Z%Igi (x,z,t)dz, i =25
lff (39)
g; (xt) =EI9,- (x,y,t)dy, j=3,6.
0

Initial conditions (14), (15) for the differential
equation (20) are as follows:

u|t=0 = Uy (X)’
b (40)
U (x) = (bw) jdyfvo(x,y,z)dz,
ou
E i =VO(X),
t=0 (41)

V,(X) = (bw)_1 j. dyTVl(x, y, z)dz.

The boundary conditions (4), (7) remain in the same
form:

ou

(&—0[1Uj X:O - gl (t)1 (42)
ou

(&4'/81qu| - g4 (t)’ (43)

g,(t) = (bw) " [dy[ g, (y,z,t)dz,i =1,4.

It is important to mark that one-dimensional
approach is exact only if the solution is
approximated with a constant in other two
directions. We will return to different one-
dimensional models at the end of this section. This
one-dimensional statement is substantially more
realistic in comparison with the statement given in
our paper [9] because heat or elasticity losses from
flank sides y =[0,b] and z =[0,w] are taken into
account.

Foremost, we assume that we have a non-
homogeneous Klein-Gordon equation with a source
term ¢ > 0. Solution of this one-dimensional direct

problem (38)-(41) is well known, see, e.g. [30]:
a |
U =—[U(£)G(x, &, Dd¢
| 0 (44)
+[ Vo (E)G (X, £,)dE + H (x1),

H (X,t)=—a2_[gl(r)G(X,O,t—T)df+

T
0
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drj‘ f (5,7)G(X,§,t—r)d§+

O t—

t
+afjg4(r)e(x,|,t—r)dr.
0

The Green function has the following representation

([271-[30]): |
G(x =32 (X)e, (523ln (te)
= ||§0i ” ,ui

goi(x)=cos(/1,x)+ﬂsin(ﬂ,,x),
A (45)
0 o | af] B A +adf
ol = +— 1+ = |+ ——7——,
|| || 2/*{12 2( //{12 2212 (212+ﬂ12)

Hi =+ ;A +c.
The eigenvalues A are positive Vroots of the
transcendental equation:

2
2 =229 ancay, (46)
o+ p
It is easy to write out, so called, “wave energy” [28]:
=, sin® (ty,
Mt):Z#. (47)
i=1 i

Right now we look at case ¢<0,a’4*+¢<0.In
this case the Green function has different form:

0,090 )sinntyJal27 + ]

&= .
T Il e (48)
& 200, (©)sin (/a4 +c)
+ .
S el Jarec

Here the natural number m in the both sums is given
by inequalities:

a’A?+c<0,i=1,m,

‘A +c>0,i=m+1, 0.

In this case “wave energy” has equality:

m sinh? (t |af/%,2 +c|)
lo(t) = Z

i=1

a’Al+ c|
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= Sin’ (t«/af/l,2 +c)
+ .
2 Jaiai+c

i=m+1
As it was told earlier, initial condition (41) is
unrealizable from the experimental point of view,
and the v, (X) must be calculated theoretically. The

differentiation of the solution (44) gives:

—u(x t)= j u (5)

(49)

G(x ENAE+

+J.VO(§)aG(x,§,t)d§+§H (x.t) (50)

The additional conditions (16) and (17) at the end of
the process regarding u(x,t) are as follows:

u|t:'|' = VT (X)’

b ow 51
v, (X) = (bw)_lj‘dyjuT (x,y,2)dz, 1
and s
aat_u i =W, (X),
t=T (52)

W, (X) = (bw)_l j'dy_v[vui (x,y,2)dz.

The solution (44) at the final moment t =T gives:

(0= U (&) S 6(x.&,

dé+
t=T

+IIVO(§)G(X,§,T)d§+ H(x,T)
or?

TKO0EN ()4 = 1,00,
I—;)ere

£, = (00 - [U5(6) = B(x.&
—H (x,T),K(x,&) =G(x,&T).

As in our paper [6], we finally have obtained the 1%
kind Fredholm integral equation for determination of
the unknown initial heat flux. We have to use
regularization method for this ill-posed problem. If
second additional condition is given from formula
(50), we obtain the following first kind Fredholm
integral equation:

[ROGEW(©)dé = gy (0),

(53)

dé-
t=T

(54)
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K(x,e:):ﬁe(x,g’,t) G5 (X) = s () -

t=T

0

—H( ju (5) G(x )| dé

at t =T t=T

There is an mterestlng situation if both additional

conditions (51) and (52) are known — we may

introduce a new time argument:

t=T-t (55)

The main differential equation (38) remains in its

form, only the source term changes:
2

6_u =a’ ¢ lj cu+ f (x,T—t),

ot? OX

xe(0,1),f (0, T].

The boundary conditions (42), (43) change similarly:

(56)

ou -
(&_aluj —g,(T-1),
x=0 (57)
ou -
[?@ujm —g,(T-9)
Both additional conditions transform to initial
conditions for the equation (56):
u|f:0 =Vr (X)’
ou (58)
—  =-w ().
Ao

The solution of the direct problem (56)-(58) is
similar to the solution (44):

U E) = [ ()26 (x, £D)d¢
o (59)

|
~[w ()G (x.&,D)dg+H (x1).
0
The last term can be written in the following form:

H(xf)=-a’ jgl )G(x,0,f -T +7)dz

]
j 7)G(x1,E-T +7)dr +

T-f

(60)

T

j Ij f(£,7)G(x&T-T +0)de.

For the heat flux we have an expression similar to
the formula (50):

o o o F
U ) =£uT () 7Gx &, D)ds

—ivT (5)%6(x,§,f)d§+%H (x,f).
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From here, a nice explicit representation of the
necessary initial heat flux immediately follows:

V(0 = [ (§) = B(x.&0)|, dé +
: (61)

P L

As we mentioned before, the 1-D statement is the
approximated model of the 3-D statement. If the
boundary conditions (5)-(8) are of the second kind

(Neumann’s)(a, = f, =, =f,=0), the 1D
problem is an exact statement of the 3-D approach. If
the conditions (4), (7) are the second type conditions

(g = p,=0), the formula (22) is valid, but the
Green function has the following form ifc>0

([27]-[30]):

G(X,& 1) :%sin(t\/z%

2 & 200 (@sin(tai +c)
23

: (62)

| = Jaia®+c
0,0 =c0s(4x), 4 ==
While ¢ <0, itis as follows:

1 .
G(x,&,t) =——sinh t\/ﬂ +
Wil

2 &, AR (E)sinh (122 +]
+— (63)

| = afﬂ,,2+c|

.. 0 (@sin(ta22? +c)

+2
i=m+1

Jaiat+c
We have two inequalities:

2
af(nl—ﬂj +c<0,i=1m,

nz )
a’| —

I
All results can be applied to the partial differential
equation with the first derivative regarding argument
X:
o'w , 0w

7=

ot OX
We use the following transform in this case:

+¢>0,i=m+1, 0.

—v@—6u+f_(x,t).
OX
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W(x,t):exp[z‘/—;Ju(x,t).

After this transformation, we have equation (38),
where new coefficients are the following:

_ v VX )+

c=C 7 f(xt) exp[ ZaE} f(xt).

We would like to finish the section with a
comparison remark about the obtained solutions of
the time inverse problem and the solution from our
paper [6]. The main distinction is between Green
functions. In the paper [6], we have used the Green
function for the classical (parabolic) heat equation,
but here — we have used the Green function for the
wave (hyperbolic) equation.

7 Simplifications for Homogeneous

Initial Conditions
We would like to finish the one dimensional
solution with a simplification for constant initial
conditions:

u|t:0 =U, (X) = u, = const,
8_U
ot o

The solution of the time direct problem is the
following (see (44)):

u(x,t) = uo_i.gG(x,éj,t)ngr

(64)
=W, (X) = w, = const.

| (65)
VOIG(X,g,t)d§+ H(x,t).

Intensive steel quenching process with initial
conditions (64) is very natural [8]-[12]. We have the
homogeneous equation (38) and the homogeneous
boundary conditions:

o’u  , o

= = aT —Z—CU,

ot OX

(a—u—aluj =0,
OX 0

(8_u+ ﬂluj =0.
OX ol

It means that we have:

H(x,t)=0.

The solution (65) can be simplified as follows:
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u(xt) :uong(x,5,t)d§+vojG(x,§,t)d§

=1 +1,.
We can integrate both integrals. For the | :

¢|(X)S|n t,UI
Ve) —————=| ¢ (5)dé
il

—y Z(DI(X)SIn(tIUI)BI, (66)
o]

&=l

B = sin(i,ﬁ)—%cos(i,f)}

£=0
Similarly, we can integrate the second integral 1, :

5 al9es(ta)y

= el 4

We can use representations (38), (39) to test our
proposed method. For IQP we have positive initial
temperature (hot steel sample) and negative heat

flux: u, >0,v, <0.The temperature field is given
by formula:

(67)

= ¢i(X) COS('[,ui )

u(x,t):uoz > B, +
= ol o
Z (0| (X)Sln tlul )
ol A4

We have the foIIowmg expression for heat flux:

—u(xt) uj _G(x,£,1)dE +

+v0j—G(x,§,t)d§= 1, +1,,

_ 152 G(x, & )dE =

O
i ,(X) 44,8in (t 21, )
2
= A
Finally we have:
_U(X 0= _uozf/’.(x)ﬂiim(tﬂi)
R
s~ (sin(ta)
loil 2
We can calculate

LuT) =v; ()

|2

) Bi'

B +

(69)

u(x,T)=u;(x)  and

by selecting
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arbitrary u, >0,v, <0. Wefind U, >0, v, <0 by

solving time reverse problem (61). Before we use the
formulas (44), (45), we can solve two different time
reverse problems. The first is the problem with initial
conditions as follows:

|
Ul o =V % =]V (£)dé
0
ou o
v :_WT’WT:J‘WT(g)dg'
at =0 0
The second problem - with “small” initial
conditions:
u(x,T) =, ()~ ¥,
0 _
au(x,T):—wT(x)+wT.
The difference between u,, v, and U,, v, will

show the accuracy of our method.

The second approximation way is to use the same
constant values as initial conditions for the time
inverse problem.

8 Numerical Results

We would like to use physically real parameters,
and that is why we choose parameters from the
intensive steel quenching process. Let us take

typical steel parameters in our model and

homogeneous initial conditions:

C, = 477L, p= 7900k—%, k =14.9L,
kg-K m m-K

I=1m, b=0.2m, w=0.1m,

h =100, 7, =1.5s,

u, =600°C, v, = —5005. (70)

S

We obtain the solution from formulas (68), (69).
The first eigenvalues of the transcendental equation
are the following:

2.44, 5.00, 7.72, 10.56, 13.49, 16.48, 19.51, 22.57,
25.64, 28.73, 31.83, 34.94, 38.05, 41.16, 44.28,
47.41, 50.53, 53.66, 56.78, 59.91, 63.04, 66.18,
69.31, 72.44, 75.58, 78.71, 81.85, 84.98, 88.12,
91.25, 94.39, 97.53.

In general, temperature and flux are x-dependent,
but calculations showed that values are almost
constant regarding space dimension. The next
figures show temperature and flux distribution in
time.
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uim kK

[==
g—
(3]
=
T
g—
(=]
=
s
=

tin s
If we take T =1 as the final time, values at this

moment are the following:
u, =u(x,T) =8,

vV, :Z—l:(x,T) =—640.

-5004

=
=)
[
=
(== ]
—

tin s
By using the time reverse problem with these values
as initial conditions:
u|f:o =Ur,
ou
ol
we return to our initial conditions (64) at the

moment t =T . Calculation errors were negligible
in our example (Au =0.2 K).

9 Conclusion

We have constructed some solutions for direct and
time inverse problems for hyperbolic heat equation.
The solutions for determination of initial heat flux
are obtained either in the form of Fredholm integral
equation of 1* kind with continuous kernel or in the
closed analytical form — in the form of series or
ordinary integrals.
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