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Abstract: - This work describes the thermochemical non-equilibrium simulations of reactive flow in two-

dimensions. The Van Leer and Liou and Steffen Jr. schemes, in their first- and second-order versions, are 

implemented to accomplish the numerical simulations. The Euler and Navier-Stokes equations, on a finite 

volume context and employing structured and unstructured spatial discretizations, are applied to solve the “hot 

gas” hypersonic flows around a blunt body, around a double ellipse, and around a reentry capsule in two-

dimensions. The second-order version of the Van Leer and Liou and Steffen Jr. schemes are obtained from a 

“MUSCL” extrapolation procedure  in a context of structured spatial discretization. In the unstructured context, 

only first-order solutions are presented. The convergence process is accelerated to the steady state condition 

through a spatially variable time step procedure, which has proved effective gains in terms of computational 

acceleration (Maciel). The reactive simulations involve a Earth atmosphere chemical model of eleven species: 

N, O, N2, O2, NO, N
+
, O

+
,  


2N , 

2O , NO
+
 and e

-
, based on the works of Dunn and Kang and of Park. Thirty-

two, to the former, and fourth-three, to the latter, chemical reactions, involving dissociation, recombination and 

ionization, are simulated by the proposed models. The Arrhenius formula is employed to determine the reaction 

rates and the law of mass action is used to determine the source terms of each gas species equation. The results 

have indicated the Van Leer scheme as the most accurate one, both inviscid and viscous cases. 

 

Key-Words: - Thermochemical non-equilibrium, Earth reentry, Eleven species model, Hypersonic “hot gas” 

flow, Finite volume, Euler and Navier-Stokes equations, Two-dimensions. 

 

1 Introduction 
A hypersonic flight vehicle has many applications 

for both military and civilian purposes including 

reentry vehicles such as the Space Shuttle and the 

Automated Transfer Vehicle (ATV) of the European 

Space Agency (ESA). The extreme environment of 

a hypersonic flow has a major impact on the design 

and analysis of the aerodynamic and thermal 

loading of a reentry or hypersonic cruise vehicle. 

During a hypersonic flight, the species of the flow 

field are vibrationally excited, dissociated, and 

ionized because of the very strong shock wave 

which is created around a vehicle. Because of these 

phenomena, it is necessary to consider the flow to 

be in thermal and chemical non-equilibrium. 

 In high speed flows, any adjustment of chemical 

composition or thermodynamic equilibrium to a 

change in local environment requires certain time. 

This is because the redistribution of chemical 

species and internal energies require certain number 

of molecular collisions, and hence a certain 

characteristic time. Chemical non-equilibrium 

occurs when the characteristic time for the chemical 

reactions to reach local equilibrium is of the same 

order as the characteristic time of the fluid flow. 

Similarly, thermal non-equilibrium occurs when the 

characteristic time for translation and various 

internal energy modes to reach local equilibrium is 

of the same order as the characteristic time of the 

fluid flow. Since chemical and thermal changes are 

the results of collisions between the constituent 

particles, non-equilibrium effects prevail in high-

speed flows in low-density air. 

 In chemical non-equilibrium flows the mass 

conservation equation is applied to each of the 

constituent species in the gas mixture. Therefore, 

the overall mass conservation equation is replaced 

by as many species conservation equations as the 

number of chemical species considered. The 

assumption of thermal non-equilibrium introduces 

additional energy conservation equations – one for 

every additional energy mode. Thus, the number of 

governing equations for non-equilibrium flow is 

much bigger compared to those for perfect gas flow. 

A complete set of governing equations for non-

equilibrium flow may be found in [1-2]. 

 Analysis of non-equilibrium flow is rather 

complex because (1) the number of equations to be 
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solved is much larger than the Navier-Stokes 

equations, and (2) there are additional terms like the 

species production, mass diffusion, and vibrational 

energy relaxation, etc., that appear in the governing 

equations. In a typical flight of the NASP (National 

AeroSpace Plane) flying at Mach 15, ionization is 

not expected to occur, and a 5-species air is 

adequate for the analysis (see [3]). Since the 

rotational characteristic temperatures for the 

constituent species (namely N, O, N2, O2 and NO) 

are small, the translational and rotational energy 

modes are assumed to be in equilibrium, whereas 

the vibrational energy mode is assumed to be in 

non-equilibrium. [4] has simplified the 

thermodynamic model by assuming a harmonic 

oscillator to describe the vibrational energy. Ionic 

species and electrons are not considered. This 

simplifies the set of governing equations by 

eliminating the equation governing electron and 

electronic excitation energy. [4] has taken the 

complete set of governing equations from [1], and 

simplified them for a five-species two-temperature 

air model. 

 The problems of chemical non-equilibrium in the 

shock layers over vehicles flying at high speeds and 

high altitudes in the Earth’s atmosphere have been 

discussed by several investigators ([5-8]). Most of 

the existing computer codes for calculating the non-

equilibrium reacting flow use the one-temperature 

model, which assumes that all of the internal energy 

modes of the gaseous species are in equilibrium 

with the translational mode ([7-8]). It has been 

pointed out that such a one-temperature description 

of the flow leads to a substantial overestimation of 

the rate of equilibrium because of the elevated 

vibrational temperature [6]. A three-temperature 

chemical-kinetic model has been proposed by [9] to 

describe the relaxation phenomena correctly in such 

a flight regime. However, the model is quite 

complex and requires many chemical rate 

parameters which are not yet known. As a 

compromise between the three-temperature and the 

conventional one-temperature model, a two-

temperature chemical-kinetic model has been 

developed ([10-11]), which is designated herein as 

the TTv model. The TTv model uses one temperature 

T to characterize both the translational energy of the 

atoms and molecules and the rotational energy of 

the molecules, and another temperature Tv to 

characterize the vibrational energy of the molecules, 

translational energy of the electrons, and electronic 

excitation energy of atoms and molecules. The 

model has been applied to compute the 

thermodynamic properties behind a normal shock 

wave in a flow through a constant-area duct ([10-

11]). Radiation emission from the non-equilibrium 

flow has been calculated using the Non-equilibrium 

Air Radiation (NEQAIR) program ([12-13]). The 

flow and the radiation computations have been 

packaged into a single computer program, the 

Shock-Tube Radiation Program (STRAP) ([11]). 

 A first-step assessment of the TTv model was 

made in [11] where it was used in computing the 

flow properties and radiation emission from the 

flow in a shock tube for pure nitrogen undergoing 

dissociation and weak ionization (ionization fraction 

less than 0.1%). Generally good agreement was 

found between the calculated radiation emission and 

those obtained experimentally in shock tubes ([14-

16]). The only exception involved the vibrational 

temperature. The theoretical treatment of the 

vibrational temperature could not be validated 

because the existing data on the vibrational 

temperature behind a normal shock wave ([16]) are 

those for an electronically excited state of the 

molecular nitrogen ion 
2N  instead of the ground 

electronic state of the neutral nitrogen molecule N2 

which is calculated in the theoretical model. The 

measured vibrational temperature of 
2N  was much 

smaller than the calculated vibrational temperature 

for N2. 

 In 2012, [17-18] started to research the high 

temperature gas effects in the Earth atmosphere. 

They have presented a numerical tool implemented 

to simulate inviscid and viscous flows employing 

the reactive gas formulation of thermal and 

chemical non-equilibrium. The Euler and Navier-

Stokes equations, employing a finite volume 

formulation, on the context of structured and 

unstructured spatial discretizations, were solved. 

These variants have allowed an effective 

comparison between the two types of spatial 

discretization aiming verify their potentialities: 

solution quality, convergence speed, computational 

cost, etc. The aerospace problem involving the 

hypersonic flow around a blunt body, in two-

dimensions, was simulated. The reactive simulations 

have involved an air chemical model of five species: 

N, O, N2, O2 and NO. Seventeen chemical reactions, 

involving dissociation and recombination, were 

simulated by the proposed model, suggested by 

[19]. The Arrhenius formula was employed to 

determine the reaction rates and the law of mass 

action was used to obtain the source terms of each 

gas species equation. Good results were obtained. 

 In 2012 yet, [20-21] have presented a numerical 

tool implemented to simulate inviscid and viscous 

flows employing the reactive gas formulation of 

thermochemical non-equilibrium using a seven 
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species chemical model. The Euler and Navier-

Stokes equations, employing a finite volume 

formulation, on the context of structured and 

unstructured spatial discretizations, were solved. 

The aerospace problem involving the hypersonic 

flow around a blunt body, in two-dimensions, was 

simulated. The reactive simulations have involved 

an air chemical model of seven species: N, O, N2, 

O2, NO, NO
+
 and e

-
. Eighteen chemical reactions, 

involving dissociation, recombination and 

ionization, were simulated by the proposed model. 

This model was suggested by [22]. The Arrhenius 

formula was employed to determine the reaction 

rates and the law of mass action was used to 

determine the source terms of each gas species 

equation. Good results were obtained. 

 This work, first of this study, describes a 

numerical tool to perform thermochemical non-

equilibrium simulations of reactive flow in two-

dimensions, using an eleven species chemical 

model. The [23-24] schemes, in their first- and 

second-order versions, are implemented to 

accomplish the numerical simulations. The Euler 

and Navier-Stokes equations, on a finite volume 

context and employing structured and unstructured 

spatial discretizations, are applied to solve the “hot 

gas” hypersonic flows around a blunt body, around 

a double ellipse, and around a reentry capsule in 

two-dimensions. The second-order versions of the 

[23-24] schemes are obtained from a “MUSCL” 

extrapolation procedure in a context of structured 

spatial discretization. In terms of unstructured 

spatial discretization, only first-order solutions are 

presented. The convergence process is accelerated 

to the steady state condition through a spatially 

variable time step procedure, which has proved 

effective gains in terms of computational 

acceleration (see [25-26]). In this paper, the 

structured and unstructured formulations are shown, 

whereas the results are presented in part two. 

 The reactive simulations involve an air chemical 

model of eleven species: N, O, N2, O2, NO, N
+
, O

+
,  


2N , 

2O , NO
+
 and e

-
. Thirty-two (32) or Fourth-

three (43) chemical reactions, involving 

dissociation, recombination and ionization, are 

simulated by the proposed models of [27-28], 

respectively. The Arrhenius formula is employed to 

determine the reaction rates and the law of mass 

action is used to determine the source terms of each 

gas species equation. 

 

2 Navier-Stokes Equations 
The reactive Navier-Stokes equations in thermal and 

chemical non-equilibrium can be implemented on a 

finite volume context, in the two-dimensional space. 

In this case, these equations in integral and 

conservative forms can be expressed by: 
 

  




V V

CV

S

dVSdSnFQdV
t


, with 

                       jFFiEEF veve


 ,            (1) 

 

where: Q is the vector of conserved variables, V is 

the volume of a computational cell, F


 is the 

complete flux vector, n


 is the unity vector normal 

to the flux face, S is the flux area, SCV is the 

chemical and vibrational source term, Ee and Fe are 

the convective flux vectors or the Euler flux vectors 

in the x and y directions, respectively, Ev and Fv are 

the viscous flux vectors in the x and y directions, 

respectively. The i


 and j


 unity vectors define the 

Cartesian coordinate system. Fifteen (15) 

conservation equations are solved: one of general 

mass conservation, two of linear momentum 

conservation, one of total energy, ten of species 

mass conservation and one of the vibrational 

internal energy of the molecules. Therefore, one of 

the species is absent of the iterative process. To the 

present study, in which is chosen a chemical model 

to the air composed of eleven (11) chemical species 

(N, O, N2, O2, NO, N
+
, O

+
,  


2N , 

2O , NO
+
 and e

-
), 

thirty-two (32) chemical reactions, due to the [27] 

model, or fourth-three (43) chemical reactions, due 

to the [28] model, this species can be either the N2 

or the O2. To this work, it was chosen the N2. The 

vectors Q, Ee, Fe, Ev, Fv and SCV can, hence, be 

defined as follows ([4]): 
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in which:  is the mixture density; u and v are 

Cartesian components of the velocity vector in the x 

and y directions, respectively; p is the fluid static 

pressure; e is the fluid total energy; 1, 2, 4, 5, 6, 

7, 8, 9, 10, 11 are densities of the N, O, O2, NO, 

N
+
, O

+
, 


2N , 

2O , NO
+
 and e

-
, respectively; H is the 

mixture total enthalpy; eV is the sum of the 

vibrational energy of the molecules; the ’s are the 

components of the viscous stress tensor; qf,x and qf,y 

are the frozen components of the Fourier-heat-flux 

vector in the x and y directions, respectively; qv,x 

and qv,y are the components of the Fourier-heat-flux 

vector calculated with the vibrational thermal 

conductivity and vibrational temperature; svsx and 

svsy represent the species diffusion flux, defined by 

the Fick law; 
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x and y are the terms of mixture diffusion; v,x and 

v,y are the terms of molecular diffusion calculated 

at the vibrational temperature; 
s  is the chemical 

source term of each species equation, defined by the 

law of mass action; *
ve  is the molecular-vibrational-

internal energy calculated with the 

translational/rotational temperature; and s is the 

translational-vibrational characteristic relaxation 

time of each molecule. 

 The frozen components of the Fourier-heat-flux 

vector, which considers only thermal conduction, 

are defined by: 

   
x

T
kq TR,fx,f




    and   

y

T
kq TR,fy,f




 ,  (6) 

where kf,TR is the mixture frozen translational / 

rotational thermal conductivity, calculated conform 

presented in section 4.4. The vibrational 

components of the Fourier-heat-flux vector are 

calculated as follows: 

 
x

T
kq v

VE,fx,v



    and   

y

T
kq v

VE,fy,v



 , (7) 

 

in which kf,VE is the mixture frozen 

vibrational/electronic thermal conductivity and Tv is 

the vibrational temperature, what characterizes this 

model as of two temperatures: translational / 

rotational and vibrational. The calculation of kf,VE is 

also presented in section 4.4. 

 The terms of species diffusion, defined by the 

Fick law, to a condition of thermal non-equilibrium, 

are determined by ([4]): 
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x

Y
Dv

s,MF

ssxs



   and  

y

Y
Dv

s,MF

ssys



 , 

(8) 

with “s” referent to a given species, YMF,s being the 

molar fraction of the species, defined as: 

                       









ns

1k

kk

ss

s,MF

M

M
Y                       (9) 

 

and Ds is the species-effective-diffusion coefficient. 

 The diffusion terms x and y which appear in 

the energy equation are defined by ([19]): 

 

     



ns

1s

ssxsx hv   and  



ns

1s

ssysy hv ,   (10) 

being hs the specific enthalpy (sensible) of the 

chemical species “s”. The molecular diffusion terms 

calculated at the vibrational temperature, v,x and 

v,y, which appear in the vibrational-internal-energy 

equation are defined by ([4]): 

   



mols

s,vsxsx,v hv  and 



mols

s,vsysy,v hv ,   (11) 

 

with hv,s being the specific enthalpy (sensible) of the 

chemical species “s” calculated at the vibrational 

temperature Tv. The sum of Eq. (11), as also those 

present in Eq. (5), considers only the molecules of 

the system, namely: N2, O2, NO, 

2N , 

2O , and NO
+
. 

 

3 Thermodynamics Properties 

3.1. Definition of general parameters 
 

 


ns
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ss
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1s

ss
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1s

ss McMRTMRTp  

                           

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ns

1s

ss Mc ,                         (12) 

in which:  is the mixture number in kg-mol/kg and 

cs is the mass fraction (non-dimensional), defined by 

 ssc . 

sss

ns

1s

s Mc 


; 

           



ns

1s

ssmixtmixt Mc1M1M ;   (13a) 

                       )TT(ee vs,v

*

s,v  ,                     (13b) 

with: s being the number of kg-mol/kg of species 

“s” and Mmixt is the mixture molecular mass, in 

kg/kg-mol. 

3.2. Thermodynamic model 

(a) Mixture translational internal energy: 

s

ns

1s

0
T

0
s,T,v

ns

1s

ss,TT h'dT)'T(Cee 




   



, 

(14) 

 

where: eT,s is the translational internal energy per 

kg-mol of species “s”, in J/kg-mol. The specific heat 

at constant volume per kg-mol of species “s” due to 

translation, in J/(kg-mol.K), is defined by: 

 

                           R5.1)T(C s,T,v  .                    (15) 

 

Hence, 

 



ns

1s

0

sT

0

s,T hRT5.1)T(ehRT5.1)T(e , 

(16) 

 

with: eT being the translational internal energy per 

unity of the gaseous mixture mass, in J/kg, and h
0
 

being the formation enthalpy of the species “s” per 

kg-mol of species, J/kg-mol. It is important to note 

that: 

 

  









 



ns

1s s

0

s

s

ns

1s

0

sT
M

h
T

M

R
5.1chRT5.1)T(e  

   



ns

1s

0

sssT

ns

1s

0

sss hTR5.1c)T(ehTR5.1c , 

(17) 

 

with: Rs being the gas constant of species “s” and 
0

sh  being the formation enthalpy of species “s” in 

J/kg. The species formation enthalpy per g-mol of 

species is specified in Tab. 1. As can be noted, 

dividing each above term by the species molecular 

mass and multiplying by 10
3
, it is possible to obtain 

the formation enthalpy in J/kg. The species 

molecular weights in g/g-mol are obtained from [3] 

and are presented in Tab. 2. 
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Table 1. Species formation enthalpy. 

 

Species h
0 

(J/g-mol) 

N 472,586.98 

O 249,132.10 

N2 0.0 

O2 0.0 

NO 90,378.17 

N
+
 1,881,582.46 

O
+
 1,568,443.53 

 1,526,905.61 

 1,172,398.22 

NO
+
 992,963.20 

e
-
 0.0 

Table 2. Molecular weight of the chemical 

species. 

 

Species Molecular Weight 

(g/g-mol) 

N 14.0 

O 16.0 

N2 28.0 

O2 32.0 

NO 30.0 

N
+
 14.0 

O
+
 16.0 

 28.0 

 32.0 

NO
+
 30.0 

e
-
 0.0005486 

(b) Mixture rotational internal energy: 

 






  

 mols

s

T

o
s,R,v

ns

1s

ss,RR 'dT)'T(Cee  

                      



mols

T

o
s,R,vs 'dT)'T(C ,                (18) 

 

where: eR,s is the rotational internal energy per kg-

mol of species “s”, in J/kg-mol. The specific heat at 

constant volume per kg-mol of species “s” due to 

rotation, in J/(kg-mol.K), is defined by: 

 





mols

sRs,Rs,R,v RT)T(eRT)T(eRC

 

                   or 



mols

ssR TRc)T(e ,                     (19) 

with eR being the rotational internal energy per unity 

of gaseous mixture mass, in J/kg. 

(c) Mixture vibrational internal energy: 

 

'dT)'T(Cee
mols

T

o
s,V,vs

mols

ss,vV

V

 


 ;   with 

  

 

2

v

s,v

2T

T

vs,V,vs,V,v
T1e

e
R)T(CC

Vs,V

Vs,V










 








,   (20) 

in which: eV is the vibrational internal energy per 

unity of gaseous mixture mass, in J/kg; ev,s is the 

vibrational internal energy per kg-mol of species 

“s”, in J/kg-mol; Cv,V,s is the specific heat at constant 

volume per kg-mol of species “s” due to vibration, 

in J/(kg-mol.K); v,s is the characteristic vibrational 

temperature of species “s”, in K; and Tv is the 

vibrational temperature, in K. The characteristic 

vibrational temperature to each molecule is 

specified in Tab. 3, obtained from [28]. It is 

important to note that eV is also directly obtained 

from the vector of conserved variables.  

Table 3. Characteristic vibrational temperature 

of the molecular species. 

 

Species v,s (K) 

N2 3,390.0 

O2 2,270.0 

NO 2,740.0 

 3,390.0 

 2,270.0 

NO
+
 2,740.0 

 It is important to note that the modes of 

translational and rotational internal energy are 

assumed completely excited and, hence, the specific 

heats at constant volume to these modes are 

temperature independent. The vibrational-internal-

energy mode is admitted not be completely excited, 

and, hence, the vibrational specific heat at constant 

volume is function of the vibrational temperature. 

The expression above to Cv,V,s is due to [29] and is 

the result of the hypothesis that the molecules can 

be considered as harmonic oscillators. Note that 

when the mode of vibrational internal energy is 

completely excited, i.e., when svvT , , Cv,V,s = 

R. 

 

(d) Species characteristic electronic temperatures 

and degeneracies: 

 

The complete eleven species model uses an 

approximation to consider electronic contribution. 

The degeneracies of the microstates that form the 
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most probable macrostate are considered, together 

with the characteristic electronic temperatures 

associated with. 

 Table 4 presents the degeneracies and the 

characteristic electronic temperatures. This is a form 

to consider electronic contribution in the present 

two-temperature formulation; or better, one 

considers two-temperature formulation as composed 

of translational / rotational contribution and 

vibrational / electronic contribution. In despite of 

not considering a third temperature, electronic 

temperature, one considers the traditional two-

temperature model and, in the transport properties 

calculation, evaluates the electronic contribution. 

Moreover, in the calculation of the vibrational 

temperature the consideration of the electronic mode 

is also taken into account, allowing a better 

approximation of the electronic state. In the 

determination of the boundary conditions, the total 

energy is calculated based on the sums of the 

vibrational and electronic energies. These 

procedures try to simulate the electronic 

contributions, as emphasized above. 

Table 4. Degeneracies and characteristic 

electronic temperature of the species. 

 

Species Level g s,i (K) 

 0 4 0.0 

N 1 10 2.766469645581980 x 10
4
 

 2 6 4.149309313560210 x 10
4
 

 0 5 0.0 

 1 3 2.277077570280000 x 10
2
 

O 2 1 3.265688785704000 x 10
2
 

 3 5 2.283028632262240 x 10
4
 

 4 1 4.861993036434160 x 10
4
 

 0 0 0.0 

 1 1 0.0 

 2 3 7.223156514095200 x 10
4
 

 3 6 8.577862640384000 x 10
4
 

 4 6 8.605026716160000 x 10
4
 

 5 3 9.535118627874400 x 10
4
 

 6 1 9.805635702203200 x 10
4
 

N2 7 2 9.968267656935200 x 10
4
 

 8 2 1.048976467715200 x 10
5
 

 9 5 1.116489555200000 x 10
5
 

 10 1 1.225836470400000 x 10
5
 

 11 6 1.248856873600000 x 10
5
 

 12 6 1.282476158188320 x 10
5
 

 13 10 1.33806093600000 x 10
5
 

 14 6 1.404296391107200 x 10
5
 

 15 6 1.504958859200000 x 10
5
 

Table 4. Degeneracies and characteristic electronic 

temperature of the species. (Continuation) 
 

Species Level g s,i (K) 

 0 3 0.0 

 1 2 1.139156019700800 x 10
4
 

 2 1 1.898473947826400 x 10
4
 

O2 3 1 4.755973576639200 x 10
4
 

 4 6 4.991242097343200 x 10
4
 

 5 3 5.092268575561600 x 10
4
 

 6 3 7.189863255967200 x 10
4
 

 0 4 0.0 

 1 8 5.467345760000000 x 10
4
 

 2 2 6.317139627802400 x 10
4
 

 3 4 6.599450342445600 x 10
4
 

 4 4 6.906120960000000 x 10
4
 

 5 4 7.049998480000000 x 10
4
 

 6 4 7.491055017560000 x 10
4
 

NO 7 2 7.628875293968000 x 10
4
 

 8 4 8.676188537552000 x 10
4
 

 9 2 8.714431182368000 x 10
4
 

 10 4 8.886077063728000 x 10
4
 

 11 4 8.981755614528000 x 10
4
 

 12 2 8.988445919208000 x 10
4
 

 13 2 9.042702132000000 x 10
4
 

 14 2 9.064283760000000 x 10
4
 

 15 4 9.111763341600000 x 10
4
 

 0 1 0.0 

 1 3 7.006835224000000 x 10
1
 

 2 5 1.881917961600000 x 10
2
 

N
+
 3 5 2.203656871824000 x 10

4
 

 4 1 4.703183475776000 x 10
4
 

 5 5 6.731252222192000 x 10
4
 

 6 15 1.327190797527310 x 10
5
 

 0 4 0.0 

O
+
 1 10 3.858334678336000 x 10

4
 

 2 6 5.822349152848000 x 10
4
 

 0 2 0.0 

 1 4 1.318997164600000 x 10
4
 

 2 2 3.663323087728000 x 10
4
 

 3 4 3.668876760000000 x 10
4
 

 4 8 5.985304832000000 x 10
4
 

 5 8 6.618365920000000 x 10
4
 

 6 4 7.598991933064000 x 10
4
 

 7 4 7.625508560000000 x 10
4
 

 8 4 8.201018640000000 x 10
4
 

 9 4 8.416834920000000 x 10
4
 

 10 8 8.632651200000000 x 10
4
 

 11 8 8.920406240000000 x 10
4
 

 12 4 9.208161280000000 x 10
4
 

 13 4 9.222549032000000 x 10
4
 

 14 2 9.293768404400000 x 10
4
 

 15 2 9.639793840000000 x 10
4
 

 16 4 1.035918144000000 x 10
5
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Table 4. Degeneracies and characteristic 

electronic temperature of the species. 

(Continuation) 

 

Species Level g s,i (K) 

 0 4 0.0 

 1 8 4.735440815760000 x 10
4
 

 2 4 5.837398741440000 x 10
4
 

 3 6 5.841427312000000 x 10
4
 

 4 4 6.229896616000000 x 10
4
 

 5 2 6.733467936000000 x 10
4
 

 6 4 7.121937240000000 x 10
4
 

 7 4 7.654284064000000 x 10
4
 

 8 4 8.819691976000000 x 10
4
 

 9 4 8.891630736000000 x 10
4
 

 10 8 9.423977560000000 x 10
4
 

 11 4 9.495916320000000 x 10
4
 

 12 2 9.592026503360000 x 10
4
 

 13 2 9.985099888000000 x 10
4
 

 14 4 1.035918144000000 x 10
5
 

 0 1 0.0 

 1 3 7.508967768000000 x 10
4
 

 2 6 8.525462447640000 x 10
4
 

NO
+
 3 6 8.903572570160000 x 10

4
 

 4 3 9.746982592400000 x 10
4
 

 5 1 1.000553049584000 x 10
5
 

 6 2 1.028033655904000 x 10
5
 

 7 2 1.057138639424800 x 10
5
 

(e) Mixture internal energy: 

                          
VRT eeee int

,                 (21) 

which is the internal energy per unity of mixture 

mass, in J/kg. 

(f) Frozen speed of sound: 

 

 
 

 









ns

1s

ns

1s

ss,TR,vsTR,v
eandatomsR5.1

moleculesR5.2
CC ; 

           TR,vCR      p1a f .      (22) 

The frozen speed of sound, in a thermochemical 

non-equilibrium model, should be employed in the 

calculation of the convective flux of the [23-24] 

schemes. Cv,TR,s is the specific heat at constant 

volume due to translation and rotation; in other 

words, Cv,TR,s is the sum of Cv,T,s with Cv,R,s. 

(g) Determination of the translational/rotational 

temperature: 

  
 




ns

1s

22
el

ns

1s

v
0
sss,TR,vs vu

2

1
eehcTCc

e
, 

(23) 

 

to the two-dimensional case. Hence, noting that T is 

constant at the right hand side of Eq. (23), it is 

possible to write: 

 

 










 
 



22
ns

1s

elv
0
ssns

1s

s,TR,vs

vu
2

1
eehc

e

Cc

1
T ,  (24) 

to the two-dimensional case; 

(h) Determination of the vibrational temperature: 

The vibrational temperature is calculated through an 

interactive process employing the Newton-Raphson 

method. 

(i) Species pressure: 

Applying the equation of a thermally perfect gas to 

each species: 

 

                                TRp sss  ,                          (25) 

 

where:  ss c  is the density of species “s”, Rs is 

the gas constant to species “s” and T is the 

translational/rotational temperature. 

 

4 Transport Properties 

4.1. Collision integrals to species i and j 

In Table 5 are presented values of  )1,1(
j,i10Log   and 

 )2,2(
j,i10Log   to temperature values of 2,000 K and 

4,000 K. The indexes i and j indicate, in the present 

case, the collision partners; in other words, the pair 

formed by one atom and one atom, one atom and 

one molecule, etc. These data were obtained from 

[3]. 

 The data aforementioned define a linear 

interpolation to values of  )k,k(
j,i10Log   as function 

of Ln(T), with k = 1, 2, through the linear equation: 

 

     )K000,2T(Log)T(Log
)k,k(

j,i10
)k,k(

j,i10  

                                    000,2TLnslope ,     (26) 

 

in which: 
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       )K000,4T(Logslope )k,k(
j,i10  

                     2Ln)K000,2T(Log )k,k(
j,i10  .  (27) 

 

Table 5. Collision integrals to eleven chemical 

species: N, O, N2, O2, NO, N
+
, O

+
, 


2N , 

2O , 

NO
+
 and e

-
. 

 

Pairs  )1,1(

j,i10Log    )2,2(

j,i10Log   

i j 2,000 K 4,000 K 2,000 K 4,000 K 

N N -14.08 -14.11 -14.74 -14.82 

N O -14.76 -14.86 -14.69 -14.80 

N N2 -14.67 -14.75 -14.59 -14.66 

N O2 -14.66 -14.74 -14.59 -14.66 

N NO -14.66 -14.75 -14.67 -14.66 

N N
+
 -14.08 -14.11 -14.37 -14.49 

N O
+
 -14.34 -14.46 -14.38 -14.50 

N  -14.34 -12.19 -14.38 -14.50 

N  -14.34 -12.19 -14.38 -14.50 

N NO
+
 -14.34 -14.46 -14.38 -14.50 

N e
-
 -15.30 -15.30 -15.30 -15.30 

O N -14.76 -14.86 -14.69 -14.80 

O O -14.11 -14.14 -14.71 -14.79 

O N2 -14.63 -14.72 -14.55 -14.64 

O O2 -14.69 -14.76 -14.62 -14.69 

O NO -14.66 -14.74 -14.59 -14.66 

O N
+
 -14.34 -14.46 -14.38 -14.50 

O O
+
 -14.11 -14.14 -14.50 -14.58 

O  -14.34 -14.46 -14.38 -14.50 

O  -14.34 -14.46 -14.38 -14.50 

O NO
+
 -14.34 -14.46 -14.38 -14.50 

O e
-
 -15.94 -15.82 -15.94 -15.82 

N2 N -14.67 -14.75 -14.59 -14.66 

N2 O -14.63 -14.72 -14.55 -14.64 

N2 N2 -14.56 -14.65 -14.50 -14.58 

N2 O2 -14.58 -14.63 -14.51 -14.54 

N2 NO -14.57 -14.64 -14.51 -14.56 

N2 N
+
 -14.34 -14.46 -14.38 -14.50 

N2 O
+
 -14.34 -14.46 -14.38 -14.50 

N2  -14.34 -14.46 -14.38 -14.50 

N2  -14.34 -14.46 -14.38 -14.50 

N2 NO
+
 -14.34 -14.46 -14.38 -14.50 

N2 e
-
 -15.11 -15.02 -15.11 -15.02 

The value of 
)k,k(

j,i  is obtained from: 

     10Ln000,2TLnslope)K000,2T(Log)k,k(
j,i

)k,k(
j,i10e)T(


 ,  (28) 

with the value of 
)k,k(

j,i  in m
2
. 

 

 

 

 

Table 5. Collision integrals to eleven chemical 

species: N, O, N2, O2, NO, N
+
, O

+
, , , 

NO
+
 and e

-
. (Continuation) 

 

Pairs  )1,1(

j,i10Log    )2,2(

j,i10Log   

i j 2,000 K 4,000 K 2,000 K 4,000 K 

O2 N -14.66 -14.74 -14.59 -14.66 

O2 O -14.69 -14.76 -14.62 -14.69 

O2 N2 -14.58 -14.63 -14.51 -14.54 

O2 O2 -14.60 -14.64 -14.54 -14.57 

O2 NO -14.59 -14.63 -14.52 -14.56 

O2 N
+
 -14.34 -14.46 -14.38 -14.50 

O2 O
+
 -14.34 -14.46 -14.38 -14.50 

O2  -14.34 -14.46 -14.38 -14.50 

O2  -14.34 -14.46 -14.38 -14.50 

O2 NO
+
 -14.34 -14.46 -14.38 -14.50 

O2 e
-
 -15.52 -15.39 -15.52 -15.39 

NO N -14.66 -14.75 -14.67 -14.66 

NO O -14.66 -14.74 -14.59 -14.66 

NO N2 -14.57 -14.64 -14.51 -14.56 

NO O2 -14.59 -14.63 -14.52 -14.56 

NO NO -14.58 -14.64 -14.52 -14.56 

NO N
+
 -14.34 -14.46 -14.38 -14.50 

NO O
+
 -14.34 -14.46 -14.38 -14.50 

NO  -14.34 -14.46 -14.38 -14.50 

NO  -14.34 -14.46 -14.38 -14.50 

NO NO
+
 -14.18 -14.22 -14.38 -14.50 

NO e
-
 -15.30 -15.08 -15.30 -15.08 

N
+
 N -14.08 -14.11 -14.37 -14.49 

N
+
 O -14.34 -14.46 -14.38 -14.50 

N
+
 N2 -14.34 -14.46 -14.38 -14.50 

N
+
 O2 -14.34 -14.46 -14.38 -14.50 

N
+
 NO -14.34 -14.46 -14.38 -14.50 

N
+
 N

+
 -11.70 -12.19 -11.49 -11.98 

N
+
 O

+
 -11.70 -12.19 -11.49 -11.98 

N
+
  -11.70 -12.19 -11.49 -11.98 

N
+
  -11.70 -12.19 -11.49 -11.98 

N
+
 NO

+
 -11.70 -12.19 -11.49 -11.98 

N
+
 e

-
 -11.70 -12.19 -11.49 -11.98 
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Table 5. Collision integrals to eleven chemical 

species: N, O, N2, O2, NO, N
+
, O

+
, , , 

NO
+
 and e

-
. (Continuation) 

 

Pairs  )1,1(

j,i10Log    )2,2(

j,i10Log   

i j 2,000 K 4,000 K 2,000 K 4,000 K 

O
+
 N -14.34 -14.46 -14.38 -14.50 

O
+
 O -14.11 -14.14 -14.45 -14.58 

O
+
 N2 -14.34 -14.46 -14.38 -14.50 

O
+
 O2 -14.34 -14.46 -14.38 -14.50 

O
+
 NO -14.34 -14.46 -14.38 -14.50 

O
+
 N

+
 -11.70 -12.19 -11.49 -11.98 

O
+
 O

+
 -11.70 -12.19 -11.49 -11.98 

O
+
  -11.70 -12.19 -11.49 -11.98 

O
+
  -11.70 -12.19 -11.49 -11.98 

O
+
 NO

+
 -11.70 -12.19 -11.49 -11.98 

O
+
 e

-
 -11.70 -12.19 -11.49 -11.98 

 N -14.34 -12.19 -14.38 -14.50 

 O -14.34 -14.46 -14.38 -14.50 

 N2 -14.34 -14.46 -14.38 -14.50 

 O2 -14.34 -14.46 -14.38 -14.50 

 NO -14.34 -14.46 -14.38 -14.50 

 N
+
 -11.70 -12.19 -11.49 -11.98 

 O
+
 -11.70 -12.19 -11.49 -11.98 

  -11.70 -12.19 -11.49 -11.98 

  -11.70 -12.19 -11.49 -11.98 

 NO
+
 -11.70 -12.19 -11.49 -11.98 

 e
-
 -11.70 -12.19 -11.49 -11.98 

 N -14.34 -12.19 -14.38 -14.50 

 O -14.34 -14.46 -14.38 -14.50 

 N2 -14.34 -14.46 -14.38 -14.50 

 O2 -14.34 -14.46 -14.38 -14.50 

 NO -14.34 -14.46 -14.38 -14.50 

 N
+
 -11.70 -12.19 -11.49 -11.98 

 O
+
 -11.70 -12.19 -11.49 -11.98 

  -11.70 -12.19 -11.49 -11.98 

  -11.70 -12.19 -11.49 -11.98 

 NO
+
 -11.70 -12.19 -11.49 -11.98 

 e
-
 -11.70 -12.19 -11.49 -11.98 

 

 

 

Table 5. Collision integrals to eleven chemical 

species: N, O, N2, O2, NO, N
+
, O

+
, , , 

NO
+
 and e

-
. (Continuation) 

 

Pairs  )1,1(

j,i10Log    )2,2(

j,i10Log   

i j 2,000 K 4,000 K 2,000 K 4,000 K 

NO+ N -14.34 -14.46 -14.38 -14.50 
NO+ O -14.34 -14.46 -14.38 -14.50 
NO+ N2 -14.34 -14.46 -14.38 -14.50 
NO+ O2 -14.34 -14.46 -14.38 -14.50 
NO+ NO -14.18 -14.22 -14.38 -14.50 
NO+ N

+
 -11.70 -12.19 -11.49 -11.98 

NO+ O
+
 -11.70 -12.19 -11.49 -11.98 

NO+ 
 -11.70 -12.19 -11.49 -11.98 

NO+ 
 -11.70 -12.19 -11.49 -11.98 

NO+ NO
+
 -11.70 -12.19 -11.49 -11.98 

NO+ e
-
 -11.70 -12.19 -11.49 -11.98 

e
-
 N -15.30 -15.30 -15.30 -15.30 

e
-
 O -15.94 -15.82 -15.94 -15.82 

e
-
 N2 -15.11 -15.02 -15.11 -15.02 

e
-
 O2 -15.52 -15.39 -15.52 -15.39 

e
-
 NO -15.30 -15.08 -15.30 -15.08 

e
-
 N

+
 -11.70 -12.19 -11.49 -11.98 

e
-
 O

+
 -11.70 -12.19 -11.49 -11.98 

e
-
  -11.70 -12.19 -11.49 -11.98 

e
-
  -11.70 -12.19 -11.49 -11.98 

e
-
 NO

+
 -11.70 -12.19 -11.49 -11.98 

e
-
 e

-
 -11.70 -12.19 -11.49 -11.98 

4.2. Modified collision integrals to the species 

i and j 

[3-4] define the modified collision integrals to the 

species i and j as: 

)1,1(
j,i

j,i)1(
j,i

RT

m2

3

8
)T( 


   and  )2,2(

j,i

j,i)2(
j,i

RT

m2

5

16
)T( 


 , 

(29) 

with: 

  jijij,i MMMMm  ,                                  (30) 

being the reduced molecular mass. These integrals 

are given in m.s. With the definition of the modified 

collision integrals to species i and j, it is possible to 

define the mixture transport properties (viscosity 

and thermal conductivities) and the species diffusion 

property (diffusion coefficient). 
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4.3. Mixture molecular viscosity 

[4] defines the mixture molecular viscosity as: 

                  









ns

1i
ns

1j

)2(

j,ij

ii
mixt

)T(

m
,                 (31) 

where: 

 

 
AVii NMm  ,                                            (32) 

 

being the mass of a species particle under study; 

      NAV = 6.022045x10
23

 particles/g-mol, Avogadro 

number. This mixture molecular viscosity is given 

in kg/(m.s). 

4.4. Translational, rotational, vibrational / 

electronic, and electron thermal 

conductivities 
 

All thermal conductivities are expressed in 

J/(m.s.K). [4] defines the mixture vibrational, 

rotational and translational thermal conductivities, 

as also the species diffusion coefficient, as follows. 

(a) Translational thermal conductivity: 

The mode of translational internal energy is 

admitted completely excited; hence, the thermal 

conductivity of the translational internal energy is 

determined by: 

 
















1ns

1i
1ns

1j

v

)2(

e,iee,i

)2(

j,ijj,i

i

BoltzmannT

)T(a54.3)T(a

k
4

15
k , 

(33) 

in which: 

 kBoltzmann = 1,380622 x 10
-23

J/K = Boltzmann 

constant; 

 
  

 2ji

jiji

j,i
MM1

MM54.245.0)MM1(
1a




 . (34) 

 In this work is also implemented an alternate 

translational thermal conductivity, which generates 

a second version of the eleven species model. This 

second version is referred in this text as the 

“incomplete” model. The second option is defined 

as: 

     









ns

1i
ns

1j

)2(

j,ijj,i

i

BoltzmannT

)T(a

k
4

15
k .  (35)  

(b) Rotational thermal conductivity: 

The mode of rotational internal energy is also 

considered fully excited; hence, the thermal 

conductivity due to rotational internal energy is 

defined by: 












moli
1ns

1j

v

)1(

e,ie

)1(

j,ij

i
BoltzmannR

)T()T(

kk . (36) 

(c) Frozen translational / rotational thermal 

conductivity: 

                               kf,TR = kT+kR.                         (37) 

(d) Thermal conductivity due to molecular vibration 

and electronic excitation: 

 

The mode of vibrational internal energy, however, is 

assumed be partially excited. The vibrational / 

electronic thermal conductivity is calculated 

according to [1]. Firstly, one has to calculate the 

contribution of each molecule to the conductivity: 

 

            










moli
1ns

1j

v

)1(

e,ie

)1(

j,ij

i

)T()T(

S .     (38) 

 

To considerate the specific heat at constant volume 

for the electronic contribution, it is necessary to take 

into account the number of degeneracies of each 

atom and molecule, as well the electronic 

temperatures that each degeneracy is associated 

with. The complete specific heat at constant volume 

is defined as: 

 

                



ns

1s

s,E,vs,V,vsVE,v CRCcC ,      (39) 

 

with Cv,V,s obtained from Eq. (20). The Cv,E,s is 

obtained by: 

 














 
 








nd

0i

T

i,s

nd

1i

T

2

v

i,s

i,ss,E,v
vi,svi,s ege

T
gC  

(40a) 
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2
nd

0i

T

i,s

nd

0i

T

2

v

i,s

i,s

nd

1i

T
i,si,s

vi,svi,svi,s ege
T

geg 




















 














 , 

(40b) 

 

where: “s” is the species under consideration and 

“nd” is the number of degeneracies of each 

microstate. The vibrational / electronic thermal 

conductivity is determined by: 

 

                   SCkk VE,vBoltzmannVE  .           (41) 

 

To the incomplete model, one has: 

 

  
 












moli
1ns

1j

v

)1(

e,ie

)1(

j,ij

ii,V,v

BoltzmannV

)T()T(

RC
kk ,  (42) 

 

(e) Thermal conductivity due to electron: 

 

The electron conductivity is considered in the 

complete model and is given by 

         









ns

1j

v

)2(

j,ej

e
Boltzmanne

)T(

k
4

15
k .         (43) 

(f) Frozen vibrational / electronic thermal 

conductivity: 

                            kf,VE = kVE+ke.                          (44) 

To the incomplete model, 

                                kf,VE = kV.                             (44) 

4.5 Species diffusion coefficient 

The mass-diffusion-effective coefficient, Di, of the 

species “i” in the gaseous mixture is defined by: 

                 
 












1ns

ij
1j

e,iej,ij

iii

2

i

DD

M1M
D ,                  (45) 

     
)T(p

Tk
D

)1(

j,i

Boltzmann

j,i


    and   
)T(p

Tk
D

v

)1(

e,i

vBoltzmann

e,i


 ,  (46) 

 

where: Di,j is the binary diffusion coefficient to a 

pair of particles of the species “i” and “j” and is 

related with the modified collision integral conform 

described above, in Eq. (46). This coefficient is 

measured in m
2
/s. 

 To the incomplete model, one has: 

 

                         
 









ns

1j

j,ij

iii
2

i

D

M1M
D .                      (47) 

 

5 Chemical Model 
The chemical models employed to this case of 

thermochemical non-equilibrium are the eleven 

species models of [27-28], using the N, O, N2, O2, 

NO, N
+
, O

+
, 


2N , 

2O , NO
+
 and e

-
 species. These 

formulations use, in the calculation of the species 

production rates, a temperature of reaction rate 

control, introduced in the place of the translational / 

rotational temperature. This procedure aims a 

couple between vibration and dissociation. This 

temperature is defined as: vrrc TTT  , where T 

is the translational / rotational temperature and Tv is 

the vibrational temperature. This temperature Trrc 

replaces the translational / rotational temperature in 

the calculation of the species production rates, 

according to [28]. 

5.1. Law of Mass Action 
 

The symbolic representation of a given reaction in 

the present work follows the [30] formulation and is 

represented by: 

 

        



ns

1s

ssr

ns

1s

ssr AA '''
, r = 1,..., nr.          (48) 

The law of mass action applied to this system of 

chemical reactions is defined by: 

  
 













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













 










 


nr

1r

ns

1s s

s

br

ns

1s s

s

frsrsrss

srsr

M
k

M
kM

'''

''' , 

(49) 

 

where As represents the chemical symbol of species 

“s”, “ns” is the number of species of the present 

study (reactants and products) involved in the 

considered reaction; “nr” is the number of reactions 

considered in the chemical model; 
'

sr  e 
''

sr  are the 

stoichiometric coefficients to reactants and products, 

respectively; TCB

fr eATk /  and 
E

br DTk  , 

with A, B, C, D and E being constants of a specific 
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chemical reaction under study [“fr” = forward 

reaction and “br” = backward reaction]. It is 

important to note that 
erfrbr kkk  , with ker being 

the equilibrium constant which depends only of the 

thermodynamic quantities. 

  

(a) Dunn and Kang’s model: 

 

The first chemical model is due to [27]. The 

chemical reactions involve dissociation, 

recombination, exchange and ionization. 

 

 

Table 6. Chemical reactions and forward 

coefficients. 

 

 

Reaction 

Forward 

reaction rate 

coefficients, kfr, 

cm
3
/(mol.s) 

 

Third 

body 

O2+M2O+M 3.60x1018T-1.0e(-59,500/T) N, NO 

O2+O3O 9.00x1019T-1.0e(-59,500/T) - 

2O22O+ O2 
3.24x1019T-1.0e(-59,500/T) - 

O2+ N22O+ N2 
7.20x1018T-1.0e(-59,500/T) - 

N2+M2N+M 1.90x1017T-0.5e(-113,000/T) O, NO, O2 

N2+N2N+N 4.085x1022T-1.5e(-113,000/T) - 

2N22N+N2 
4.70x1017T-0.5e(-113,000/T) - 

NO+MN+O+M 3.90x1020T-1.5e(-75,500/T) O2, N2 

NO+MN+O+M 7.80x1021T-1.5e(-75,500/T) N, O, NO 

NO+OO2+N 3.20x109T1.0e(-19,700/T) - 

N2+ONO+N 7.00x1013e(-38,000/T) - 

+O O2+O
+
 2.92x1018T-1.11e(-28,000/T) - 

N2+N
+
 +N 2.02x1011T0.81e(-13,000/T) - 

NO
+
+ONO+O

+
 3.63x1015T-0.6e(-50,800/T) - 

N2+O
+
 +O 3.40x1019T-2.0e(-23,000/T) - 

NO
+
+O2NO+  1.80x1015T0.17e(-33,000/T) - 

NO
+
+NNO+N

+
 1.00x1019T-0.93e(-61,000/T) - 

N+ONO
+
+e

-
 1.40x106T1.5e(-31,900/T) - 

2O +e
-
 1.60x1017T-0.98e(-80,800/T) - 

2N +e
-
 1.40x1013e(-67,800/T) - 

O+e
-
O

+
+2e

-
 3.60x1031T-2.91e(-158,000/T) - 

N+e
-
N

+
+2e

-
 1.10x1032T-3.14e(-169,000/T) - 

O2+N2NO+NO++e- 1.38x1020T-1.84e(-141,000/T) - 

N2+NON2+NO++e- 2.20x1015T-0.35e(-108,000/T) - 

NO
+
+OO2+N

+
 1.34x1013T0.31e(-77,270/T) - 

O2+NONO++O2+e- 8.80x1016T-0.35e(-108,000/T) - 

 

 

 

Table 7. Chemical reactions and backward 

coefficients. 

 

 

Reaction 

Backward 

reaction rate 

coefficients, kbr, 

cm
3
/(mol.s) or 

cm
6
/(mol

2
.s) 

 

Third 

body 

O2+M2O+M 3.00x10
15

T
-0.5

 N, NO 

O2+O3O 7.50x10
16

T
-0.5

 - 

2O22O+ O2 2.70x10
16

T
-0.5

 - 

O2+ N22O+ N2 6.00x10
15

T
-0.5

 - 

N2+M2N+M 1.10x10
16

T
-0.5

 O, NO, O2 

N2+N2N+N 2.27x10
21

T
-1.5

 - 

2N22N+N2 2.72x10
16

T
-0.5

 - 

NO+MN+O+M 1.00x10
20

T
-1.5

 O2, N2 

NO+MN+O+M 2.00x10
21

T
-1.5

 N, O, NO 

NO+OO2+N 1.30x1010T1.0e(-3,580/T) - 

N2+ONO+N 1.56x10
13

 - 

+O O2+O
+
 7.80x10

11
T

0.5
 - 

N2+N
+
 +N 7.80x10

11
T

0.5
 - 

NO
+
+ONO+O

+
 1.50x10

13
 - 

N2+O
+
 +O 2.48x10

19
T

-2.2
 - 

NO
+
+O2NO+  1.80x10

13
T

-0.5
 - 

NO
+
+NNO+N

+
 4.80x10

14
 - 

N+ONO
+
+e

-
 6.70x10

21
T

-1.5
 - 

2O +e
-
 8.00x10

21
T

-1.5
 - 

2N +e
-
 1.50x10

22
T

-1.5
 - 

O+e
-
O

+
+2e

-
 2.20x10

40
T

-4.5
 - 

N+e
-
N

+
+2e

-
 2.20x10

40
T

-4.5
 - 

O2+N2NO+NO++e- 1.00x10
24

T
-2.5

 - 

N2+NON2+NO++e- 2.20x10
26

T
-2.5

 - 

NO
+
+OO2+N

+
 1.00x10

14
 - 

O2+NONO++O2+e- 8.80x10
26

T
-2.5

 - 

 

 In this model, thirty-two chemical reactions are 

simulated. These reactions involve dissociation, 

recombination, exchange and ionization. It 

corresponds to ns = 11 and nr = 32. Table 6 presents 

the values to A, B, C, D and E for the forward 

reaction rates of the 32 chemical reactions. Table 7 

presents the values to A, B, C, D and E for the 

backward reaction rates. 

 

(b)  Park’s model: 

 

 The second chemical model is due to [28]. The 

chemical reactions also involve dissociation, 

recombination, exchange and ionization. [28] model 

calculate the backward coefficients considering the 
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equilibrium constant concept. The equilibrium 

constant is calculated by: 

 

                   
 3

5
2

4321 ZBZBZB)Zln(BB
e ek


            (50) 

 

where: 

 

 Z = 10,000/T. 

 

The backward reaction rate coefficient is determined 

by the following equation: 

 

                                .                           (51) 

Table 8. Chemical reactions and forward 

coefficients. 

 

 

Reaction 

Forward 

reaction rate 

coefficients, kfr, 

cm
3
/(mol.s) 

 

Third 

body 

O2+M2O+M 2.90x1023T-2.0e(-59,750/T) N, O 

 

O2+M 2O+M 

 

9.68x1022T-2.0e(-59,750/T) 
N2, O2, 

NO, N+, 

O+, , 

, NO+ 

N2+N2N+N 1.60x1022T-1.6e(-113,200/T) - 

N2+O 2N+O 4.98x1022T-1.6e(-113,200/T) - 

N2+M2N+M 3.70x1021T-1.6e(-113,200/T) N2, O2 

N2+NO2N+NO 4.98x1021T-1.6e(-113,200/T) - 

N2+M2N+M 8.30x1024T-1.6e(-113,200/T) N
+
, O

+
, 

, , 

NO
+
 

 

NO+MN+O+M 

 

7.95x1023T-2.0e(-75,500/T) 

N, O, N2, 

O2, NO, N+, 

O+, , 

, NO+ 

NO+OO2+N 8.37x1012e(-19,450/T) - 

N2+ONO+N 6.44x1017T-1.0e(-38,370/T) - 

+O O2+O
+
 6.85x1013T-0.52e(-18,600/T) - 

N2+N
+
 +N 9.85x1012T-0.18e(-12,100/T) - 

NO
+
+ONO+O

+
 2.75x1013T-0.01e(-51,000/T) - 

N2+O
+
 +O 6.33x1013T-0.21e(-22,200/T) - 

NO
+
+O2NO+  1.03x1016T-0.17e(-32,400/T) - 

NO
+
+N +O 1.70x1013T-0.40e(-35,500/T) - 

N+ONO
+
+e

-
 1.53x109T0.37e(-32,000/T) - 

2O +e
-
 3.85x109T0.49e(-80,600/T) - 

2N +e
-
 1.79x109T0.77e(-67,500/T) - 

O+e
-
O

+
+2e

-
 3.90x1033T-3.78e(-158,500/T) - 

N+e
-
N

+
+2e

-
 2.50x1033T-3.82e(-168,600/T) - 

Table 8 presents the forward coefficients of the 

chemical reactions. The B1, B2, B3, B4 and B5 

constants are presented in Tab. 9 for each reaction. 

 

Table 9. Chemical reactions and equilibrium 

constant coefficients. 

 

Reaction B1 B2 B3 B4 B5 

O2+M2O+M 
2.885 0.988 -6.181 -0.023 -0.001 

N2+N2N+N 
1.858 -1.325 -9.856 -0.174 0.008 

N2+O 2N+O 
1.858 -1.325 -9.856 -0.174 0.008 

N2+M2N+M 
1.858 -1.325 -9.856 -0.174 0.008 

N2+NO2N+NO 
1.858 -1.325 -9.856 -0.174 0.008 

NO+MN+O+M 0.792 -0.492 -6.761 -0.091 0.004 

NO+OO2+N 
-2.063 -1.480 -0.580 -0.114 0.005 

N2+ONO+N 
1.066 -0.833 -3.095 -0.084 0.004 

+O O2+O
+
 

-0.276 0.888 -2.180 0.055 -0.003 

N2+N
+
 +N 

0.307 -1.076 -0.878 -0.004 -0.001 

NO
+
+ONO+O

+
 

0.148 -1.011 -4.121 -0.132 0.006 

N2+O
+
 +O 

2.979 0.382 -3.237 0.168 -0.009 

NO
+
+O2NO+  

0.424 -1.098 -1.941 -0.187 0.009 

NO
+
+N +O 

2.061 0.204 -4.263 0.119 -0.006 

N+ONO
+
+e

-
 

-7.053 -0.532 -4.429 0.150 -0.007 

2O +e
-
 

-8.692 -3.110 -6.950 -0.151 0.007 

2N +e
-
 

-4.992 -0.328 -8.693 0.269 -0.013 

O+e
-
O

+
+2e

-
 

-6.113 -2.035 -15.311 -0.073 0.004 

N+e
-
N

+
+2e

-
 

-3.441 -0.577 -17.671 0.099 -0.005 

 

6 Vibrational Model 
The vibrational internal energy of a molecule, in 

J/kg, is defined by: 

 

                        
1e

R
e

Vs,V T

s,vs

s,v






,                      (52) 

obtained by the integration of Eq. (20), and the 

vibrational internal energy of all molecules is given 

by: 

                          



mols

s,vsV ece .                       (53) 

 

The heat flux due to translational-vibrational 

relaxation, according to [31], is given by: 

 

           
s

vs,v

*

s,v

ss,VT

)T(e)T(e
q




 ,              (54) 

WSEAS TRANSACTIONS on HEAT and MASS TRANSFER Edisson Sávio De Góes Maciel, Amilcar Porto Pimenta

E-ISSN: 2224-3461 50 Issue 2, Volume 8, April 2013



where: 
*

s,ve  is the vibrational internal energy 

calculated at the translational temperature to the 

species “s”; and 
s  is the translational-vibrational 

relaxation time to the molecular species, in s. The 

relaxation time is the time of energy exchange 

between the translational and vibrational molecular 

modes. 

6.1. Vibrational characteristic time of 

Millikan and White 
 

According to [32], the relaxation time of molar 

average of [33] is described by: 

 

           






 
ns

1l

WM

l,sl

ns

1l

l

WM

ss ,     (55) 

with: 

 

 
WM

l,s

  is the relaxation time between species of 

[33]; 

 
WM

s

  is the vibrational characteristic time of 

[33]; 

      lAVll mNc    and   
AVll NMm  . (56) 

 

6.2. Definition of 
WM

l,s

 : 

For temperatures inferior to or equal to 8,000 K, 

[33] give the following semi-empirical correlation to 

the vibrational relaxation time due to inelastic 

collisions: 

 

           
  42.18015.0TA

l

WM

l,s

41
l,s

31
l,se

p

B 










 ,        (57) 

where: 

 

 B = 1.013x10
5
Ns/m

2
 ([34]); 

 pl is the partial pressure of species “l” in N/m
2
; 

 3/4
s,v

2/1
l,s

3
l,s 10x16.1A    ([34]);                    (58) 

 

ls

ls

l,s
MM

MM


 ,                                          (59) 

being the reduced molecular mass of the collision 

partners: kg/kg-mol; 

 T and s,v  in Kelvin. 

 

6.3. Park’s correction time 

For temperatures superiors to 8,000 K, the Eq. (57) 

gives relaxation times less than those observed in 

experiments. To temperatures above 8,000 K, [28] 

suggests the following relation to the vibrational 

relaxation time: 

 

                           
svs

P

s
n

1


 ,                          (60) 

 

where: 

 

 



TR8 s

s ,                                                (61) 

being the molecular average velocity in m/s; 

 

2

20

v
T

000,50
10 








  ,                                 (62) 

being the effective collision cross-section to 

vibrational relaxation in m
2
; and 

 
sss mn  ,                                                 (63) 

being the density of the number of collision particles 

of species “s”. 
s  in kg/m

3
 and ms in kg/particle, 

defined by Eq. (56). 

 Combining the two relations, the following 

expression to the vibrational relaxation time is 

obtained: 

 

                         
P

s

WM

ss  
.                        (64) 

[28] emphasizes that this expression [Eq. (64)] to 

the vibrational relaxation time is applicable to a 

range of temperatures much more vast. 

 

6.4. Vibrational/electronic source terms 
 

First of all, one needs to determine the electronic 

energy of atoms and molecules. This energy is taken 

into account considering the degeneracies and the 

electronic characteristic temperature. Such terms are 

described as follows: 

 

                 















nd

0i

T/
i,s

nd

1i

T/
i,si,s

ss,el

vi,s

vi,s

eg

eg

Re                (65) 

where “s” defines a molecular species. The non-

preferential mode to create or destroyer a molecular 

system is defined by: 

 

                        s,els,vss,v eeD   .                  (66) 
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The preferential mode is determined by: 

 

                  s,eld1ss,v eDĉD                    (67) 

where the molecular dissociation potential Dd 

assumes the following values: 

Table 10. Dissociation potential. 

 

Species Dd 

N2 3.36 x 10
7
 

O2 1.54 x 10
7
 

NO 2.09 x 10
7
 


2N  3.00 x 10

7
 


2O  2.01 x 10

7
 

NO
+
 3.49 x 10

7
 

 

The  parameter assumes a typical value of 0.3. 

The third source term is due to electron work, 

defined by: 

 

                    
















 

y

v

x

u
)e(prTpr                 (68) 

 The fourth term is due to electron impact 

ionization, considering the ionization reactions 

involving electrons. These equations are defined by: 

O+e
-
O

+
+2e

-
   and   N+e

-
N

+
+2e

-
. 

This term is specified considering the forward 

reaction rate coefficients of such reactions. Hence, 

 

                   )O(Inp)N(InpT 2e1eion                (69) 

with npe1 and npe2 representing the forward reaction 

rate coefficients and I(N) and I(O) are the ionization 

potentials of each species. The value of I(N) is 1.40 

x 10
9
 and of I(O) is 1.31 x 10

9
. The forward reaction 

rate coefficients are calculated with the vibrational / 

electronic temperature. The resulting source term is 

thereafter calculated by the following expression: 

 

          
 

 
mols mols

ionprs,vs,VTv TTDqS     (70) 

 

The incomplete eleven species model considers only 

the two sums in the above equation. 

 

7 Numerical Algorithms 

 

7.1 Structured algorithms 

The approximation of the integral equation (1) to a 

rectangular finite volume yields a system of 

ordinary differential equations with respect to time: 

 

                    j,ij,ij,i CdtdQV  ,                     (71) 

 

with Ci,j representing the net flux (residue) of 

conservation of mass, of linear momentum, of total 

energy, of species mass conservation, and of 

vibrational energy in the Vi,j volume. The cell 

volume is defined by: 

 

        j,1ij,i1j,1ij,i1j,1ij,1i1j,1ij,1ij,ij,i yxxyxxyxx5.0V
 

      1j,1ij,i1j,ij,i1j,i1j,1i1j,i1j,1ij,i yxxyxxyxx5.0   , 

(72) 

 

where a structured computational cell, its nodes and 

flux surfaces are defined in Fig. 1. 

 
Figure 1. Structured computational cell. 

 

 As shown in [24], the discrete convective flux 

calculated by the AUSM scheme (“Advection 

Upstream Splitting Method”) can be interpreted as a 

sum involving the arithmetical average between the 

right (R) and the left (L) states of the (i+1/2,j) cell 

face, related to cell (i,j) and its (i+1,j) neighbour, 

respectively, multiplied by the interface Mach 

number, and a scalar dissipative term. [35] have 

suggested that the flux integrals could be calculated 

defining each part, dynamic, chemical and 

vibrational,  separately. Hence, to the (i+1/2,j) 

interface, considering the dynamical part of the 

formulation: 
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 The components of the unity vector normal to the 

flux interface and the area of the flux interface “l”, 
l

xn , 
l

yn  and 
lS , are defined as: 

 

  5.02

l

2

ll

l

x yxyn  , 

  5.02

l

2

ll

l

y yxxn  , 

                         5.02

l

2

l

l yxS  .                    (74) 

Expressions to xl and yl are given in Tab. 11. The 

area components are obtained by the product of the 

respective normal vector component and the area S. 

Table 11. Values of xl and yl to the structured case. 

 

Interface xl yl 

l = (i,j-1/2) 
jij1i xx ,,   jij1i yy ,,   

l = (i+1/2,j) 
j1i1j1i xx ,,    j1i1j1i yy ,,    

l = (i,j+1/2) 
1j1i1ji xx   ,,  1j1i1ji yy   ,,  

l = (i-1/2,j) 
1jiji xx  ,,  1jiji yy  ,,  

 

The “a” quantity represents the frozen speed of 

sound. Mi+1/2,j defines the advection Mach number at 

the (i+1/2,j) face of the (i,j) cell, which is calculated 

according to [24] as: 

 

                           RLl MMM ,                        (75) 

where the separated Mach numbers M
+/-

 are defined 

by the [23] formulas: 

 

  ;1

;1Mif,0

Mif,1M25.0

;1Mif,M

M
2










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



  

              ;1

.1Mif,M

Mif,1M25.0

;1Mif,0

M
2

















       (76) 

 

ML and MR represent the Mach number associated 

with the left and right states, respectively. The 

advection Mach number is defined by: 

                         aSvSuSM yx  .                  (77) 

 

 The pressure at the (i+1/2,j) face of the (i,j) cell 

is calculated by a similar way: 

 

                             RLl ppp ,              (78) 

 

with p
+/-

 denoting the pressure separation defined 

according to the [23] formulas: 

 

   













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;1Mif,0

;1Mif,M21Mp25.0

;1Mif,p

p
2

 

                 
















.1Mif,p

1Mif,M21Mp25.0

;1Mif,0

p
2

;       (79) 

 

 The definition of the dissipative term  

determines the particular formulation of the 

convective fluxes. According to [36], the choice 

below corresponds to the [23] scheme: 
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2

Lj,2/1i
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2

Rj,2/1i

j,2/1ij,2/1i

j,2/1i  

(80) 

 

and the choice below corresponds to the [24] 

scheme: 

 

                             j,2/1ij,2/1i M   ;                        (81) 

 

the discrete-chemical-convective flux, to an eleven 

species chemical model, is defined by: 
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and the discrete-vibrational-convective flux is 

determined by: 

 

    




  RvLvj,2/1ij,2/1ij,2/1i aeaeM
2

1
SR  

                       




  LvRvj,2/1i aeae
2

1
.      (83) 

 

 The time integration is performed employing the 

Runge-Kutta explicit method of five stages, second-

order accurate, to the three types of convective flux.  

To the dynamic part, this method can be represented 

in general form by: 
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to the chemical part, it can be represented in general 

form by: 
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(85) 

 

where the chemical source term SC is calculated 

with the temperature Trrc. Finally, to the vibrational 

part: 
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(86) 

 

in which: 

 

                 


 
mols

s,vs,C

mols

s,VTv eSqS ,          (87) 

 

for the incomplete model; and according to Eq. (70) 

for the complete model. The Runge-Kutta method 

uses k = 1,...,5; 1 = 1/4, 2 = 1/6, 3 = 3/8, 4 = 1/2 

and 5 = 1. This scheme is first-order accurate in 

space and second-order accurate in time. The 

second-order of spatial accuracy is obtained by the 

“MUSCL” procedure. 

 The viscous formulation follows that of [37], 

which adopt the Green theorem to calculate 

primitive variable gradients. The viscous vectors are 

obtained by arithmetical average between cell (i,j) 

and its neighbours. As was done with the convective 

terms, there is a need to separate the viscous flux in 

three parts: dynamical viscous flux, chemical 

viscous flux and vibrational viscous flux. The 

dynamical part corresponds to the first four 

equations of the Navier-Stokes ones, the chemical 

part corresponds to the following ten equations and 

the vibrational part corresponds to the last equation. 

 

7.2 Unstructured algorithms 

 

The cell volume on an unstructured context is 

defined by: 

 

   1n2n1n3n2n3n3n2n3n1n2n1ni yxxyyxyxxyyx5.0V  , 

(88) 

 

with n1, n2 and n3 being the nodes of a given 

triangular cell. The description of the computational 

cell and its nodes, flux interfaces and neighbors are 

shown in Fig. 2. 

 
Figure 2. Unstructured computational cell. 

 

 The area components at the “l” interface are 

defined by: 

 

                    ll
x

l
x SnS     and   ll

y
l
y SnS  ,             (89) 

 

where l
xn , l

yn  and S
l
 are defined as: 

 

  5.02
l

2
ll

l
x yxyn  , 

  5.02
l

2
ll

l
y yxxn  ; 

                              5.02
l

2
l

l yxS  .                  (90) 
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Table 12. Values of xl and yl. 

 

Interface xl yl 

l = 1 1n2n xx   1n2n yy   

l = 2 2n3n xx   2n3n yy   

l = 3 3n1n xx   3n1n yy   

 

Expressions to xl and yl are given in Tab. 12. 

Considering the two-dimensional and unstructured 

case, the algorithm follows that described in section 

7.1. Hence, the discrete-dynamic-convective flux is 

defined by: 
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the discrete-chemical-convective flux is defined by: 
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and the discrete-vibrational-convective flux is 

determined by: 

 

         









LvRv1RvLv111 aeae

2

1
aeaeM

2

1
SR . 

(93) 

 

 The time integration is performed employing the 

Runge-Kutta explicit method of five stages, second-

order accurate, to the three types of convective flux. 

To the dynamical part, this method can be 

represented in general form by: 

 

  
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i

QQ

VQRtQQ
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








,             (94) 

 

to the chemical part, it can be represented in general 

form by: 
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


,  (95) 

 

where the chemical source term SC is calculated 

with the temperature Trrc. Finally, to the vibrational 

part: 
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, (96) 

 

in which: 

 

             


 
mols

s,vs,C

mols

s,VTv eSqS ;          (97) 

 

for the incomplete model; and according to Eq. (70) 

for the complete model. The Runge-Kutta method 

uses k = 1,...,5; 1 = 1/4, 2 = 1/6, 3 = 3/8, 4 = 1/2 

and 5 = 1. This scheme is first-order accurate in 

space and second-order accurate in time. 

 

8 MUSCL Approach 

Second order spatial accuracy can be achieved by 

introducing more upwind points or cells in the 

schemes. It has been noted that the projection stage, 

whereby the solution is projected in each cell face 

(i-1/2,j; i+1/2,j) on piecewise constant states, is the 

cause of the first order spatial accuracy of the 

Godunov schemes ([38]). Hence, it is sufficient to 

modify the first projection stage without modifying 

the Riemann solver, in order to generate higher 

spatial approximations. The state variables at the 

interfaces are thereby obtained from an 

extrapolation between neighboring cell averages. 

This method for the generation of second order 

upwind schemes based on variable extrapolation is 

often referred to in the literature as the MUSCL 

(“Monotone Upstream-centered Schemes for 
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Conservation Laws”) approach. The use of 

nonlinear limiters in such procedure, with the 

intention of restricting the amplitude of the 

gradients appearing in the solution, avoiding thus 

the formation of new extrema, allows that first order 

upwind schemes be transformed in TVD (“Total 

Variation Diminishing”) high resolution schemes 

with the appropriate definition of such nonlinear 

limiters, assuring monotone preserving and total 

variation diminishing methods. Details of the 

present implementation of the MUSCL procedure, 

as well the incorporation of TVD properties to the 

schemes, are found in [38]. The expressions to 

calculate the fluxes following a MUSCL procedure 

and the nonlinear flux limiter definitions employed 

in this work, which incorporates TVD properties, 

are defined as follows. 

 The conserved variables at the interface (i+1/2,j) 

can be considered as resulting from a combination 

of backward and forward extrapolations. To a linear 

one-sided extrapolation at the interface between the 

averaged values at the two upstream cells (i,j) and 

(i+1,j), one has: 

 

      j,1ij,ij,i
L

j,2/1i QQ
2

QQ  


 , cell (i,j);      (98) 

 j,1ij,2ij,1i
R

j,2/1i QQ
2

QQ  


 , cell (i+1,j), (99) 

 

leading to a second order fully one-sided scheme. If 

the first order scheme is defined by the numerical 

flux 

 

                        j,1ij,ij,2/1i Q,QFF                   (100) 

 

the second order space accurate numerical flux is 

obtained from 

 

                  R
j,2/1i

L
j,2/1i

)2(
j,2/1i Q,QFF   .             (101) 

 

Higher order flux vector splitting methods, such as 

those studied in this work, are obtained from: 

 

             R
j,2/1i

L
j,2/1i

)2(
j,2/1i QFQFF 





  .        (102) 

 

All second order upwind schemes necessarily 

involve at least five mesh points or cells. 

 To reach high order solutions without 

oscillations around discontinuities, nonlinear 

limiters are employed, replacing the term  in Eqs. 

(98) and (99) by these limiters, evaluated at the left 

and at the right states of the flux interface. To define 

such limiters, it is necessary to calculate the ratio of 

consecutive variations of the conserved variables. 

These ratios are defined as follows: 

 

   j,1ij,ij,ij,1ij,2/1i QQQQr 

  , 

               j,ij,1ij1ij,2ij,2/1i QQQQr  

 ,   (103) 

 

where the nonlinear limiters at the left and at the 

right states of the flux interface are defined by 

 
 j,2/1i

L r  and  
 j,2/1i

R r1 . In this 

work, five options of nonlinear limiters were 

considered to the numerical experiments. These 

limiters are defined as follows: 
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2
l

2
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l
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rr
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


 , Van Albada limiter;    (105) 

    llll
MIN
l signal,rMIN,0MAXsignalr  ,  (106) 

minmod limiter;  

          2,rMIN,1,r2MIN,0MAXr lll
SB
l  ,  (107) 

“Super Bee” limiter, due to [40];  

          ,rMIN,1,rMIN,0MAXr lll
L

l ,  (108) 

-limiter,                                                                 

 

with “l” varying from 1 to 15 (two-dimensional 

space), signall being equal to 1.0 if rl  0.0 and -1.0 

otherwise, rl is the ratio of consecutive variations of 

the lth conserved variable and  is a parameter 

assuming values between 1.0 and 2.0, being 1.5 the 

value assumed in this work. 

 With the implementation of the numerical flux 

vectors following this MUSCL procedure, second 

order spatial accuracy and TVD properties are 

incorporated in the algorithms. 

 

9 Spatially Variable Time Step 

The idea of a spatially variable time step consists in 

keeping constant a CFL number in the calculation 

domain and to guarantee time steps appropriated to 

each mesh region during the convergence process. 

The spatially variable time step can be defined by: 

                   
 

 
j,if

j,i

j,i
aq

sCFL
t




 ,                    (109) 

where CFL is the Courant-Friedrichs-Lewis number 

to method stability;    j,is   is  a  characteristic 

length of information transport; and  
j,ifaq   is 
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the maximum characteristic speed of information 

transport, where af is the frozen speed of sound. The 

characteristic length of information transport, 

  j,is , can be determined by: 

                    
j,iMINMINj,i C,lMINs  ,           (110) 

 

where lMIN is the minimum side length which forms 

a computational cell and CMIN is the minimum 

distance of centroids among the computational cell 

and its neighbours. The maximum characteristic 

speed of information transport is defined by 

 
j,ifaq  , with 22 vuq  . 

 

10 Nondimensionalization, Initial and 

Boundary Conditions 

10.1 Nondimensionalization 
 

The nondimensionalization employed in the reactive 

case, in two-dimensions, consisted in: 

(a) Constant gas of the “s” species, Rs: 

sunivs MRR  with Runiv assuming the value 

1.987 cal/(g-mol.K) and Ms in g/g-mol  Rs in 

cal/(g.K). Multiplying this value by 4.184 x 10
3
 

(conversion to Joules and kilogram) the gas 

constant pass to be evaluated in J/(kg.K). 

Hence, as the temperature is 

nondimensionalized with achar, in m/s, in which: 

  pachar , with the freestream properties 

defined by the simulation flight altitude, Rs pass 

to be nondimensionalized by achar too; 

(b)  Specific heat at constant volume of the “s” 

species, Cvs: 

as this parameter is directly proportional to the 

gas constant of the “s” species, its 

nondimensionalization is also performed by 

achar; 

(c)  Enthalpy of the “s” species, hs and : 

nondimensionalized by 2
chara . hs is given in 

cal/g-mol, what implies that it should be 

multiplied by 4.184 x 10
3
 to pass for J/kg. 

Hence, its nondimensionalization is by 2
chara . 

0
sh  is given in J/g-mol, which implies that it 

should be divided by Ms to pass for J/g and 

multiplied by 10
3
 to pass for J/kg. With this 

procedure, its nondimensionalization is by 
2
chara ; 

(d)  Translational/rotational temperature, Ttr: such 

variable is nondimensionalized by achar; 

(e)  Vibrational temperature, Tv: such variable is 

nondimensionalized by achar; 

(f)  Characteristic vibrational temperature of the “s” 

species, v,s: such variable is 

nondimensionalized by achar; 

(g)  Density of the “s” species and of the mixture, s 

and : Both variables are nondimensionalized 

by , in kg/m
3
. Note that the species and 

mixture initial densities are init,s and init, 

differents from ; 

(h)  Velocity components, u and v: both Cartesian 

components of velocity are dimensionalized by 

achar; 

(i)  Molecular viscosity, : given in kg/(m.s) and 

nondimensionalized directly by ; 

(j)  Thermal conductivity, k: both translational and 

rotational thermal conductivities, as also the 

vibrational thermal conductivity, are given in 

J/(m.s.K) and nondimensionalized by k; 

(k)  The diffusion coefficient, D: given in m
2
/s and 

nondimensionalized by 2
chara dtchar, in which 

dtchar should be the minor time step calculated at 

the computational domain at the first iteration; 

(l)  Chemical source term,  : nondimensionalized 

by char
3 dt10x 

 . The 10
-3

 term is necessary to 

convert from kg/m
3
 to g/cm

3
. In the equation of 

the law of mass action, density terms inside the 

productory are given in kg/m
3
. They also should 

be multiplied by 10
-3

 to pass from kg/m
3
 to 

g/cm
3
; 

(m)  Vibrational internal energy, ev: 

nondimensionalized by 2
chara ; 

(n)   Total energy, e: nondimensionalized by 
2
chara ; 

(o)   Pressure, p: nondimensionalized by 2
chara ; 

(p)   Relaxation time, s: nondimensionalized by 

dtchar. 

10.2 Initial conditions 
 

As initial conditions, the following flow properties 

are given: init, uinit, , Ttr,init, Tv,init, cs(1), cs(2), cs(4), 

cs(5), cs(6), cs(7), cs(8), cs(9), cs(10), and cs(11) in 

which:  is the flow attack angle, Ttr,init is the initial 

translational/rotational temperature, Tv,init is the 

initial vibrational temperature, “init” is relative to 

the initial conditions and the cs’s are initial mass 

fractions of the N, O, O2, NO, N
+
, O

+
, 


2N , 

2O , 

NO
+
 and e

-
, respectively. Hence, cs(3) is obtained 

from Eq. (111). Initialy, Tv,init = Ttr,init. 
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  )7(c)6(c)5(c)4(c)2(c)1(c1)3(c sssssss

           )11(c)10(c)9(c)8(c ssss  .            (111) 

 

 The nondimensional variables which compose 

the vector of initial conserved variables are 

determined by: nond = init/, unond = uinit/achar, vnond 

= unond/tg(), Ttr,nond = Ttr,init/achar and Tv,nond = 

Tv,init/achar, with tg() being the tangent of the  

angle ( is the attack angle). With the species and 

mixture mass fractions and with the values of the 

specific heats at constant volume, it is possible to 

obtain the mixture specific heat at constant volume 

[ 



ns

1s

s,vsmixt,v CcC ]. The mixture formation 

enthalpy is also possible to obtain from the species 

enthalpy and from the species mass fraction, 

according to 



ns

1s

0
ss

0 hch . The nondimensionalized 

internal vibrational energy to each molecular species 

is obtained by: 
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 1eRe
nond,VNO,V

T

NO,vNONO,nond,v
; 

(112) 

 

The nondimensionalized-total-vibrational energy of 

the system is determined by: 

 NO,nond,vNOO,nond,vON,nond,vNnond,v ececece
2222

 
NO,nond,vNOO,nond,vON,nond,vN

ececec
2222

. 

(113) 

 

The nondimensionalized-species-electronic energy 

of the system is determined by Eq. (65). The total 

electronic energy is defined by: 

 

                            



ns

1s

s,elsel ece ,                     (114) 

with “ns” being the number of species. The electron 

vibrational/electronic energy is defined as 

                           .                         (115) 

 

Finaly, the nondimensionalized total energy is 

obtained by: 

 

  nond,elnond,v
0
mixtnond,trmixtnondnond eehTCve

 

             2
nond

2
nond vu5.0  .                                (116) 

The initial vector of conserved variables is defined 

to an eleven species chemical model of the 

following form: 
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10.3 Boundary conditions to the dynamical 

part 
 

(a) Dynamical Part: 

 

The boundary conditions are basically of three 

types: solid wall, entrance and exit. These 

conditions are implemented in special cells, named 

ghost cell. 

 

(a.1) Wall condition: To the inviscid case, this 

condition imposes the flow tangency at the solid 

wall. This condition is satisfied considering the wall 

tangent velocity component of the ghost volume as 

equals to the respective velocity component of its 

real neighbor cell. At the same way, the wall normal 

velocity component of the ghost cell is equaled in 

value, but with opposite signal, to the respective 
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velocity component of the real neighbor cell. It 

results in: 

 

                     ;                       (118) 

                     ;                     (119) 

 

where, for the (i+1/2,j) interface: 

 

                      ;                       (120) 

                      .                      (121) 

 

Hence, the ghost cell velocity components are 

written as: 

 

                ;                 (122) 

               ,                 (123) 

 

with “g” related with ghost cell and “r” related with 

real cell. To the viscous case, the boundary 

condition imposes that the ghost cell velocity 

components be equal to the real cell velocity 

components, with the negative signal: 

 

                                ;                               (124) 

                                .                               (125) 

 

The pressure gradient normal to the wall is 

assumed be equal to zero, following an inviscid 

formulation and according to the boundary layer 

theory. The same hypothesis is applied to the 

temperature gradient normal to the wall, considering 

adiabatic wall. The ghost volume density and 

pressure are extrapolated from the respective values 

of the real neighbor volume (zero order 

extrapolation), with these two conditions. The total 

energy is obtained by the equation (116). 

For the eleven species chemical model, it is 

necessary to consider the electronic energy of the 

atoms and molecules, Eq. (65), to calculate the total 

energy. The vibrational / electronic energy 

contribution from electron is calculated as: 

 

                       vve,el
Tce

e
  ,                        (126) 

and the total vibrational-eletronic energy is 

determined by: 

                  
 

 
mols

ns

1s

s,elss,vselv ecece ,         (127) 

 

where ev,s is obtained from Eq. (111) and the eel,s is 

obtained from Eq. (65). Note that the electronic 

energy is considered only in the complete model. 

 

(a.2) Entrance condition: 

(a.2.1) Subsonic flow: Three properties are specified 

and one is extrapolated, based on analysis of 

information propagation along characteristic 

directions in the calculation domain ([41]). In other 

words, three characteristic directions of information 

propagation point inward the computational domain 

and should be specified. Only the characteristic 

direction associated to the “(qn-a)” velocity cannot 

be specified and should be determined by interior 

information of the calculation domain. The total 

energy was the extrapolated variable from the real 

neighbor volume, to the studied problems. Density 

and velocity components had their values 

determined by the initial flow properties. 

(a.2.2) Supersonic flow: All variables are fixed with 

their initial flow values. 

(a.3) Exit condition: 

(a.3.1) Subsonic flow: Three characteristic 

directions of information propagation point outward 

the computational domain and should be 

extrapolated from interior information ([41]). The 

characteristic direction associated to the “(qn-a)” 

velocity should be specified because it penetrates 

the calculation domain. In this case, the ghost 

volume’s total energy is specified by its initial 

value. Density and velocity components are 

extrapolated. 

(a.3.2) Supersonic flow: All variables are 

extrapolated from the interior domain due to the fact 

that all four characteristic directions of information 

propagation of the Euler equations point outward 

the calculation domain and, with it, nothing can be 

fixed. 

 

(b) Chemical Part: 

 

The boundary conditions to the chemical part are 

also of three types: solid wall, entrance and exit. 

 

(b.1) Wall condition: In both inviscid and viscous 

cases, the non-catalytic wall condition is imposed, 

which corresponds to a zero order extrapolation of 

the species density from the neighbor real cells. 

 

(b.2) Entrance condition: In this case, the species 

densities of each ghost cell are fixed with their 

initial values (freestream values). 
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(b.3) Exit condition: In this case, the species 

densities are extrapolated from the values of the 

neighbor real cell. 

 

(c) Vibrational Part: 

The boundary conditions in the vibrational part are 

also of three types: solid wall, entrance and exit. 

 

(c.1) Wall condition: In both inviscid and viscous 

cases, the internal vibrational energy of the ghost 

cell is extrapolated from the value of its neighbor 

real cell. 

 

(c.2) Entrance condition: In this case, the internal 

vibrational energy of each ghost cell is fixed with its 

initial value (freestream value). 

 

(c.3) Exit condition: In this case, the internal 

vibrational energy is extrapolated from the value of 

the neighbor real cell. 

 

11 Configurations 
 

11.1 Computational domain descriptions 

 

(1) Blunt body configuration to Earth reentry 

problems: 

 

 
Figure 3. Blunt body physical domain. 

 

Figure 3 presents the computational domain 

employed in the structured and unstructured 

simulations in two-dimensions. This figure 

represents a blunt body with a 1.0 m nose radius and 

far field located twenty (20) times this radius in 

relation to the nose configuration. The domain 

presents three frontiers, as mentioned in the 

boundary conditions: solid wall, entrance and exit. 

Such blunt body does not present wall inclination. 

 Figures 4 and 5 exhibit the employed meshes to 

the structured and two-dimensional simulations. 

Figure 4 shows the mesh to the inviscid simulations, 

whereas figure 5 shows the mesh to the viscous 

simulations. An exponential stretching of 7.5% in 

the  direction was employed to the viscous mesh. 

 
Figure 4. Blunt body inviscid mesh. 

 
Figure 5. Blunt body viscous mesh. 

 
Figure 7. Blunt body inviscid mesh – Same sense. 
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The inviscid mesh has 3,658 rectangular cells and 

3,780 nodes, which corresponds in finite differences 

to a mesh of 63x60 points. The viscous mesh also 

has the same number of rectangular cells and nodes, 

defining again a mesh of 63x60 points. 

 
Figure 8. Blunt body viscous mesh – Same sense. 

 
Figure 9. Blunt body inviscid mesh – Alternated sense. 

 

 The same meshes employed to the inviscid and 

viscous structured cases are applied to the 

unstructured cases. Figures 7 and 8 exhibit the 

inviscid and viscous unstructured meshes, in the 

same sense discretization. An exponential stretching 

of 7.5% in the  direction was also applied. For the 

unstructured cases, two options of unstructured 

discretization are possible: the same sense 

discretization and the alternated sense discretization. 

As the cells are distributed in the same orientation 

along the mesh, the discretization is said in the same 

sense; On the other hand, as the cells are distributed 

in alternate sense orientations, the discretization is 

said in the alternated sense. Figures 9 and 10 show 

the alternated sense discretization option. This form 

of orientation of the cells introduces more one line 

in the mesh, resulting in always using an odd 

number of lines in the  direction. 

 
Figure 10. Blunt body viscous mesh – Alternated sense. 

 

(2) Double ellipse configuration: 

 

The double ellipse mesh is composed of 3,528 

rectangular cells and 3,650 nodes in the structured 

case and of 7,056 triangular cells and 3,650 nodes in 

the unstructured case, for the same sense mesh 

orientation. The structured mesh has 73x50 points, 

on a finite difference context. The alternated sense 

mesh orientation has 73x51 points. An exponential 

stretching of 7.5% in the  direction was applied to 

both structured and unstructured configurations. 

 
Figure 11. Double ellipse configuration. 

 

 Figure 11 exhibits the double ellipse 

configuration and Figs. 12 and 13 show the 

structured meshes for the inviscid and viscous cases, 

respectively. Figures 14 and 15 present the inviscid 

and viscous unstructured meshes to a same sense 

orientation, respectively. 
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 Figure 16 and 17 show the inviscid and viscous 

unstructured meshes to an alternated sense 

orientation, respectively. The idea of the double 

ellipse problem is trying to simulate the shuttle 

flight at the Earth upper atmosphere. 

 
Figure 12. Double ellipse inviscid mesh. 

 
Figure 13. Double ellipse viscous mesh. 

 
Figure 14. Double ellipse inviscid mesh (Same Sense). 

This configuration was also studied in the Mars 

entry flows ([42-43]), trying to simulate the 

behaviour of the shuttle in such environment. 

 
Figure 15. Double ellipse viscous mesh (Same Sense). 

 
Figure 16. Double ellipse inviscid mesh (Alternated Sense). 

 
Figure 17. Double ellipse viscous mesh (Alternated Sense). 

 

(3) Reentry capsule configuration: 
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The reentry capsule is composed of 3,136 

rectangular cells and 3,250 nodes in the structured 

case. This mesh is equivalent in finite differences to 

a grid of 65x50 points. 

 
Figure 18. Reentry capsule configuration. 

 
Figure 19. Reentry capsule inviscid mesh. 

 
Figure 20. Reentry capsule viscous mesh. 

 

The unstructured case to the reentry capsule 

problem was not simulated. This geometry has four 

frontiers: solid wall, entrance, exit and continuity. 

This last boundary is implemented considering the 

properties of the flow at the wake upper side as 

equal to the wake lower side, assuring in this way 

the conservation of the flow at the wake frontier. 

 Figure 18 exhibits the reentry capsule 

configuration. The inviscid and viscous meshes are 

presented in Figs. 19 and 20. 

 

12 Conclusion 
This work, the first part of this study, presents a 

numerical tool implemented to simulate inviscid and 

viscous flows employing the reactive gas 

formulation of thermochemical non-equilibrium 

flow in two-dimensions. The Euler and Navier-

Stokes equations, employing a finite volume 

formulation, on the context of structured and 

unstructured spatial discretizations, are solved. 

These variants allow an effective comparison 

between the two types of spatial discretization 

aiming verify their potentialities: solution quality, 

convergence speed, computational cost, etc. The 

aerospace problems involving the “hot gas” 

hypersonic flows around a blunt body, around a 

double ellipse, and around a reentry capsule in two-

dimensions, are simulated. 
 To the simulations with unstructured spatial 

discretization, a structured mesh generator 

developed by the first author ([44]), which creates 

meshes of quadrilaterals (2D), was employed. After 

that, as a pre-processing stage ([45]), such meshes 

were transformed in meshes of triangles. Such 

procedure aimed to avoid the time which would be 

waste with the implementation of an unstructured 

generator, which was not the objective of the 

present work, and to obtain a generalized algorithm 

to the solution of the reactive equations. 
 In this work, first part of this study, the 

structured and unstructured formulations of the two-

dimensional Euler and Navier-Stokes reactive 

equations are presented. In [46], the second part of 

this study, it will be presented the structured and 

unstructured solutions. 
 The reactive simulations involved an air 

chemical model of eleven species: N, O, N2, O2, 

NO, N
+
, O

+
, 


2N , 

2O , NO
+
 and e

-
. Thirty-two or 

fourth-three chemical reactions, involving 

dissociation, recombination and ionization, were 

simulated by the proposed models. In the former 

case, the [27] model is employed, whereas in the 

latter, the [28] model was used. The Arrhenius 

formula was employed to determine the reaction 
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rates and the law of mass action was used to 

determine the source terms of each gas species 

equation. 
 The results have demonstrated that the most 

correct aerodynamic coefficient of lift is obtained by 

the [23] scheme with first-order accuracy, in an 

inviscid formulation, to the blunt body and reentry 

capsule problems. The cheapest algorithm was due 

to [24], inviscid, first-order accurate, and structured 

discretization. Moreover, the shock position is 

closer to the geometry as using the reactive 

formulation than the ideal gas formulation. 

 Errors less than 20% were obtained with the 

second-order version of the [23] algorithm in the 

determination of the stagnation pressure at the body 

nose, in all three physical problems, and an error 

around 10% was found in the determination of the 

shock standoff distance, again in all three physical 

problems, highlighting the correct implementation 

and good results obtained from the reactive 

formulation. Values of these parameters were 

evaluated and proved the significant potential of the 

present numerical tool.  
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