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Abstract: - In recent years, inhalation therapy has become the standard treatment for chronic obstructive 
pulmonary disease (COPD). To enhance the effect of inhalation therapy, the effective deposition of drug 
particles into the affected area is required. Numerous simulations have been conducted on particle deposition 
within the airways of the lung. A one-way coupling scheme is often used in computational methods to reduce 
computational costs; however, to consider the effect of finite particle sizes, a two-way coupling scheme is 
required. This scheme includes both fluid-particle interactions and considers the Magnus effect, Saffman lift, 
and wall effect. By taking lift forces into account, particle migration in the direction perpendicular to the flow 
may be captured. In this study, we examined the flow and particle distribution at bifurcations using a two-way 
coupling scheme, particularly in environments where the inertial effects acting on particles cannot be neglected. 
A two-dimensional symmetric bifurcated channel was used as the calculation model. The regularized lattice 
Boltzmann method was applied as the governing equation for the flow field and the virtual flux method was 
used to represent the two-dimensional bifurcated channels and particles. A flow field characterized by an 
asymmetric flow distribution was reproduced and the particle behavior within this field was evaluated. The 
results indicated that because of particle migration, the particle crossed the boundary line that divides the flow 
rate distribution between the two bifurcated channels. This suggests that discrepancies may occur between flow 
and particle distribution at the bifurcation in environments where inertial effects cannot be neglected. 
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1  Introduction 
Chronic obstructive pulmonary disease, commonly 
known as COPD, was the fourth leading cause of 
death worldwide in 2021 according to the WHO, [1]. 
COPD is a disease that causes inflammation in the 
lungs and decreased lung function resulting from 
long-term inhalation and exposure to harmful 
substances, such as tobacco smoke. 

Inhalation therapy is currently the standard 
treatment for COPD. This therapy delivers 
particulate drugs through oral inhalation. To 
enhance its effects, the effective deposition of drug 
particles to the affected area is required. In addition, 
it is necessary to determine the behavior of particles 

in the pulmonary airways to understand the 
deposition pattern of particles in the airways. 

Numerous studies have employed numerical 
simulations to analyze airflow dynamics and particle 
deposition within the lung airways, with some also 
utilizing AI-based approaches in respiratory 
research, [2], [3].  

In simulations, the airways form two branches 
from the bronchi, and they undergo approximately 
23 bifurcations before they reach the alveoli. This 
geometrically complex structure results in high 
computational costs, which pose a major challenge. 
Therefore, most previous studies have used simple 
models to study these processes. A simplified model 
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was developed to examine particle deposition, 
assuming that the bronchi branch regularly from the 
3rd to the 17th generation, with one daughter branch 
severed at each bifurcation, [4]. 

 The symmetric two-branching model proposed 
by Weibel has been used in many simulations 
because of its simplicity, [5]. A three-dimensional 
symmetric model based on the Weibel model was 
created, with a stenosis added to part of the structure 
to examine particle deposition, [6]. A model with 
symmetric branching from the 3rd to the 10th 
generation was used, where one daughter branch 
was severed at each bifurcation to simulate particle 
behavior, [7]. 

In addition to the simplified models mentioned 
above, many studies have used a one-way coupling 
scheme, which considers only the effects of the fluid 
on the particles to reduce computational costs, [8], 
[9], [10], [11], [12]. In a one-way coupling scheme, 
it is primarily assumed that only drag acts on the 
particles, whereas lift forces are neglected. In 
simulations using a one-way coupling scheme, 
particle motion is fixed along streamlines. Therefore, 
when focusing on particle behavior at bronchial 
bifurcations, the microscopic particle distribution 
ratio at the bifurcation is determined by the 
macroscopic flow rate distribution ratio. However, 
in numerical simulations of particle behavior within 
the lung airways, the computational domain is 
located within the boundary layer. Therefore it is 
necessary to consider the lift forces acting on the 
particles. 

To account for the lift force acting on the 
particles, it is necessary to use a two-way coupling 
scheme that considers fluid-particle interactions. A 
two-way coupling scheme can take the Magnus 
effect, Saffman lift, and wall effect into 
consideration. A distinctive feature of the two-way 
coupling scheme is that it considers the rotational 
motion and size of the particles; however, it requires 
high resolution, leading to higher computational 
costs compared with a one-way coupling scheme. 
To clarify the detailed particle behavior within the 
pulmonary airways, it is necessary to apply the 
two-way coupling scheme to the entire region; 
however, this approach is challenging because of its 
high computational cost. 

Therefore, in this study, regions where inertial 
effects cannot be neglected were locally extracted 
and investigated. It has been reported that the 
inertial effects acting on particles must be 
considered when the particle Reynolds number in 
the flow exceeds 1.0 × 10−3 , [13]. In the 
pulmonary airway, an environment where the 
particle Reynolds number exceeds 1.0 × 10−3 

emerges in the 4th to 10th bronchial generations. 
This suggests that inertial effects must be 
considered. By appropriately selecting between the 
one-way coupling scheme and the two-way coupling 
scheme based on the mechanical environment, it is 
possible to achieve high-accuracy simulations while 
keeping computational costs low. 

In the pulmonary airway, the value of 𝑅𝑒𝑝 
does not exceed 1.0 × 10−3 in the early bronchial 
generations (0th to 3rd generations), and this 
indicates that the one-way coupling scheme can 
provide sufficient accuracy. However, as mentioned 
above, as bifurcations are passed and the central 
region (4th to 10th generations) is approached, the 
particle Reynolds number increases, and 
environments where it exceeds 1.0 × 10−3 emerge.    

In such environments, the one-way coupling 
scheme may not provide sufficient accuracy, and to 
achieve more precise analysis, the application of the 
two-way coupling scheme is necessary. However, at 
present, research using multi-generation models 
primarily applies the one-way coupling scheme, and 
studies utilizing the two-way coupling scheme have 
not been conducted. Therefore, in this study, regions 
where inertial effects cannot be neglected are 
extracted, and calculations are performed by 
applying the two-way coupling scheme. 
Additionally, this study focused on a localized 
bifurcation in the pulmonary airways to examine 
microscopic particle behavior. 

In addition, when considering the lift forces 
acting on particles at bifurcations, the particles may 
deviate from the streamlines. One phenomenon in 
which particles deviate from streamlines is the 
Segre–Silberberg effect, [14]. This occurs when 
particles flowing through a tube under the influence 
of inertia migrate perpendicular to the flow and 
aggregate at specific radial equilibrium positions. 
During circular Poiseuille flow, particles aggregate 
at a position approximately 0.6  times the tube 
radius. This equilibrium position is determined by 
the balance between the wall effect and the lift force, 
which is caused by the shear gradient of the flow 
field, [15].  This suggests that in bronchial 
bifurcations within the lung airways, particles in the 
parent branch migrate across the flow distribution 
boundary before the bifurcation. As a result, 
discrepancies may occur between macroscopic flow 
distribution and microscopic particle distribution. In 
this study, we examined the flow and particle 
distribution at a bifurcation using a two-way 
coupling scheme. The flow distribution boundary 
line described above refers to the line that 
determines whether the fluid flows into either of the 
two branches. In a symmetric bifurcated channel, 
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when flow distribution is symmetric, this boundary 
line is the centerline of the channel. In this study, we 
reproduced a flow field in which the flow 
distribution was asymmetric and examined the 
particle behavior at the bifurcation in an 
environment, in which the boundary line did not 
coincide with the channel centerline. 
 

 

2   Methods 
 

2.1  Computational Models 
The two-dimensional bifurcated channel shown in 
Figure 1 was used to examine particle behavior at 
the bifurcation. 

 
Fig. 1: Schematic diagram of the 
two-dimensional bifurcated channel 
 

The channel width was set as the characteristic 
length 𝐷, the left wall of the parent branch was 
−0.5𝐷, the center was 0.0𝐷, and the right wall of 
the parent branch was 0.5𝐷. The channel diameter 
𝑑  of the left and right daughter branches after 
bifurcation was set to 𝑑 =  𝐷 ⁄ 2  and the 
bifurcation angle was set to 30° for both the left 
and right sides. Air was considered the working 
fluid. The characteristic length was set to 𝐷 =
 0.001 m, the characteristic velocity was set to 𝑈 =
 0.96m s⁄ , and the kinematic viscosity was set to 
𝜈 =  15.01 × 10−6  m2 s⁄ . The Reynolds number 
was set to 𝑅𝑒 =  64 and calculated as 𝑈𝐷/𝜈. In 
addition, the simulation time was 0.012 s. The 
confinement 𝐶, defined as the ratio of the particle 

diameter 𝑟 to the channel width 𝐷, was set to 𝐶 =
 𝑟 𝐷 = ⁄ 0.1. The particle Reynolds number 𝑅𝑒𝑝 is 
given by 𝑅𝑒𝑝  =  𝑅𝑒 × 𝐶2  =  0.64. The behavior 
of particles in the flow channel can be 
systematically discussed based on the particle 
Reynolds number. Therefore, in this study, based on 
the similarity law, the particle Reynolds number 
used in the calculations was set to the order of 10−1, 
which corresponds to the order of the particle 
Reynolds number in the bronchial generations 4 to 
10 during inhalation. Additionally, from the 
perspective of computational cost, the Reynolds 
number was set lower and the confinement higher 
than in the actual environment. Previous numerical 
simulation studies confirmed that particles migrated 
to the equilibrium position when the Reynolds 
number reached 32 and 64, and their results 
suggested that the lift force acting on the particles 
could not be neglected, [16]. In this previous study, 
the confinement ratio was set to 0.05. From the 
perspective of the particle Reynolds number, it is 
considered that the effect of lift cannot be neglected 
when the particle Reynolds number reaches 0.08 or 
0.16. In this study, the particle Reynolds number 
was set to 0.64. Therefore, the application of the 
two-way coupling scheme is considered necessary. 
At the inlet boundary, Poiseuille flow was imposed, 
whereas a Neumann boundary condition, 𝜕𝑃/𝜕𝒏 =
 0 , was applied for the pressure. At the outlet 
boundary, a Neumann boundary condition, 
𝜕𝒖/𝜕𝒏 =  𝟎, was applied for the velocity, whereas 
a Dirichlet boundary condition was imposed for the 
pressure. In addition, a no-slip condition was 
applied to the wall surface. In many simulations of 
the pulmonary airway, a uniform flow or Poiseuille 
flow is introduced at the inlet, and a Dirichlet 
boundary condition is applied to the outlet pressure. 
This approach is commonly used and is considered a 
standard boundary condition setting. Additionally, 
in this calculation, we focused on the particle 
behavior at the bifurcation. Since the analysis area is 
sufficiently distant from the boundaries, the 
boundary conditions are considered not to affect 
particle behavior. 
 
2.2 Governing Equations 
In this study, the regularized lattice Boltzmann 
method (2D9V model), an improved version of the 
lattice Boltzmann method, was used as the 
governing equation for the fluid. This method 
retains the advantages of the lattice Boltzmann 
method, including the high computational efficiency 
and algorithmic simplicity, while reducing memory 
usage and improving computational stability. In the 
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lattice Boltzmann method, several particle distribution 
models have been proposed. In this study, the 
two-dimensional nine-velocity (2D9V) model was 
adopted. In the 2D9V model, the discrete velocities of 
particles are given by the following three equations.  

𝑒𝛼 =

{
 
 

 
 

                          𝑐(0,0)                            (𝛼 = 0)

              𝑐 (cos
(𝛼 − 1)𝜋

2
, sin

(𝛼 − 1)𝜋

2
)     (α = 1 − 4)

 √2𝑐 (cos
(2𝛼 − 9)𝜋

2
, sin

(2𝛼 − 9)𝜋

2
)   (𝛼 = 5 − 8)

 (1) 

 
Here, 𝑐  represents the advection velocity of 

particles and is defined as 𝑐 = 𝛿𝑥/𝛿𝑡  using the 
time step 𝛿𝑡 and the spatial grid size 𝛿𝑥. 

In this study, a single-relaxation-time model 
based on the BGK approximation, which simplifies 
the collision operator, was applied to the governing 
equations for fluid analysis. The distribution 
function 𝑓𝛼 , which represents the presence of 
particles with discrete velocity 𝑒𝛼 , satisfies the 
discrete velocity Boltzmann equation, as shown in 
Equation (2). 

𝜕𝑓𝛼
𝜕𝑡

+ 𝑒𝛼
𝜕𝑓𝛼
𝜕𝑥

=
1

𝜏
(𝑓𝛼

𝑒𝑞
− 𝑓𝛼) (2) 

 
𝜏  represent the relaxation time, where the 

left-hand side of Equation (2) corresponds to the 
advection term, and the right-hand side represents 
the collision term. When a specific discretization is 
applied to Equation (2), the following equation is 
obtained. 

 
𝑓𝛼(𝑡 + 𝛿𝑡, 𝑥 + 𝑒𝛼𝛿𝑡)

= 𝑓𝛼(𝑡, 𝑥)

+
1

𝜏
(𝑓𝛼

𝑒𝑞(𝑡, 𝑥) − 𝑓𝛼(𝑡, 𝑥)) 
(3) 

 
Here, 𝑓𝛼(𝑡, 𝑥)  and 𝑓𝛼

𝑒𝑞(𝑡, 𝑥)  represent the 
particle distribution function and the equilibrium 
distribution function, respectively, which 
correspond to the discrete velocity vector 𝑒𝛼  at 
position 𝑥 on the lattice at time 𝑡. 𝜏 represents the 
relaxation time, and by applying the 
Chapman-Enskog expansion to Equation (3) so that 
it satisfies the Navier-Stokes equations, it can be 
expressed as shown in Equation (4). 

𝜏 =
3𝜈

𝑐𝛿𝑥
+
1

2
 (4) 

 
Here, 𝜈  represents the kinematic viscosity. 

Additionally, the equilibrium distribution function 
𝑓𝛼
𝑒𝑞 is obtained by performing a Taylor expansion 

of Maxwell's equilibrium distribution function with 
respect to velocity and neglecting terms of third 

order and higher, as expressed in the following 
equation. 

𝑓𝛼
𝑒𝑞
= 𝜔𝛼𝜌 {1 +

3(𝑒𝛼 ∙ 𝑢)

𝑐2
+
3(𝑒𝛼 ∙ 𝑢)

2

2𝑐4
−
3𝑢2

2𝑐2
} (5) 

 
Here, 𝜌 represents the fluid density, and 

𝑢 denotes the velocity vector. The weighting 
function 𝜔𝛼 in the 2D9V model is given by the 
following three equations. 

 
The distribution function obtained through the 

above process is used to calculate the macroscopic 
physical quantities, namely the density 𝜌 and the 
momentum 𝜌𝑢, as follows. 

𝜌 =∑𝑓𝛼
𝛼

 (7) 

 
𝜌𝑢 =∑𝑒𝛼𝑓𝛼

𝛼

 (8) 

 
In the regularized lattice Boltzmann method, the 

distribution function 𝑓𝑎  is expressed using the 
stress tensor Π𝑖𝑗 as shown in Equation (9). 

Π𝑖𝑗(𝑡, 𝒙)  =  ∑𝑒𝛼𝑖𝑒𝛼𝑗𝑓𝛼(𝑡, 𝒙)

𝛼

 (9) 

 
The nonequilibrium components of the stress 

tensor Π𝑖𝑗
𝑛𝑒𝑞  and the nonequilibrium part of the 

distribution function 𝑓𝑎 are expressed as follows: 
Π𝑖𝑗
𝑛𝑒𝑞(𝑡, 𝒙)  =  Π𝑖𝑗(𝑡, 𝒙) − Π𝑖𝑗

𝑒𝑞(𝑡, 𝒙) (10) 
  

𝑓𝛼
𝑛𝑒𝑞(𝑡, 𝒙)  =  𝑓𝛼(𝑡, 𝒙) − 𝑓𝛼

𝑒𝑞(𝑡, 𝒙) (11) 
 

By applying the Chapman-Enskog expansion, 
the nonequilibrium part of the distribution function 
can be expressed as shown in Equation (12). At this 
stage, only the first-order term is used as an 
assumption. 

𝑓𝛼
𝑛𝑒𝑞(𝑡, 𝒙) ≅ 𝑓𝛼

1(𝑡, 𝒙) =  −
𝛿𝑡

𝑐𝑠
2
𝜏𝜔𝛼𝑄𝛼𝑖𝑗𝜕𝑖𝜌𝑢𝑗 (12) 

 

𝜔𝛼

{
  
 

  
 

 

4 9⁄  (𝛼 = 0) 

(6) 

1 9⁄  (𝛼 = 1 − 4) 

1 36⁄  (𝛼 = 5 − 8) 
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where 𝑄𝛼𝑖𝑗  is the regularized tensor defined as 
𝑄𝛼𝑖𝑗  =  𝑒𝛼𝑖𝑒𝛼𝑗 − 𝑐𝑠

2𝛿𝑖𝑗 . Using Equations (9) and 
(10), the nonequilibrium component of the stress 
tensor can be expressed as follows: 

Π𝑖𝑗
𝑛𝑒𝑞(𝑡, 𝒙) ≅∑𝑒𝛼𝑖𝑒𝛼𝑗𝑓𝛼

1(𝑡, 𝒙)  

𝛼

= −𝛿𝑡𝑐𝑠
2𝜏(𝜕𝑖𝜌𝑢𝑗  +  𝜕𝑗𝜌𝑢𝑖) 

(13) 

 
Here, using Equations (12) and (13), 𝑓𝛼1(𝑡, 𝒙) 

can be expressed as shown in Equation (14). 
 

𝑓𝛼
1(𝑡, 𝒙)  =  

𝜔𝛼
2𝑐𝑠

4
𝑄𝛼𝑖𝑗Π𝑖𝑗

𝑛𝑒𝑞(𝑡, 𝒙) (14) 

 
The time evolution equation in the regularized 

lattice Boltzmann method are expressed as shown in 
Equation (15) using Equations (11), (12), and (14). 

𝑓𝛼(𝑡 +  𝛿𝑡, 𝒙 +  𝒆𝛼𝛿𝑡)  
=  𝑓𝛼

𝑒𝑞(𝑡, 𝒙)  

+ (1 −
1

𝜏
) 𝑓𝛼

1(𝑡, 𝒙) 
(15) 

 

In this study, to reduce errors caused by 
compressibility, the incompressible formulation 
using the pressure distribution function was adopted, 
as employed in a previous study, [17]. According to 
this previous study, when the initial density is 
denoted as 𝜌0 and the small variation in density as 
𝛥𝜌, the total density can be decomposed as 𝜌＝
𝜌0 + 𝛥𝜌. In an incompressible flow field, 𝛥𝜌 can 
be considered negligible as a small quantity. 
Consequently, a relationship between the pressure 
distribution function and the density distribution 
function can be derived as follows. 

𝑝𝛼 = 𝑐𝑠
2𝑓𝛼 (16) 

 

Thus, the time evolution equation formulated for 
incompressible flow is given as follows. 
𝑝𝛼(𝑡 +  𝛿𝑡, 𝒙 + 𝒆𝛼𝛿𝑡)  

=  𝑝𝛼
𝑒𝑞(𝑡, 𝒙)  

+ (1 −
1

𝜏
)𝑝𝛼

1(𝑡, 𝒙) 
(17) 

 

2.3  Governing Equation for Particles 
A two-way coupling scheme may be used to take 
into account the lift forces acting on the particles as 
well as the translational and rotational motions of 
the circular particles. Newton’s second law is used 
for the equation of motion for translation and the 
angular equation of motion is used for the equation 

of motion for rotation, which are expressed by 
Equations (18) and (19), respectively, as follows: 

𝑚𝑝

𝑑2𝒙𝑝

𝑑𝑡2
 =  𝑭𝑝 (18) 

𝐼
𝑑2𝜃𝑝

𝑑𝑡2
 =  𝑇𝑝 (19) 

 
where 𝑚𝑝 is the mass of the particle, 𝒙𝑝  is the 
position vector of the particle, 𝑭𝑝 is the external 
force vector acting on the particle, 𝐼 is the moment 
of inertia, 𝜃𝑝 is the rotational angle of the particle, 
and 𝑇𝑝 is the torque applied to the particle. 

In this study, we focused on three components 
of lift forces: the Magnus effect-induced lift, the 
Saffman lift, and the wall effect. These three lift 
forces are obtained as a combined value from the 
fluid force. The external force vector acting on the 
particle, 𝑭p = (𝐹p𝑥 , 𝐹p𝑦), was calculated from the 
fluid force around the particle as follows. 

𝐹p𝑥 = ∫ (𝑝p − 𝑝0) cos 𝜃 𝑑𝑠
𝑐

+∫ 𝜏p sin 𝜃 𝑑𝑠
𝑐

 (20) 

 

                     𝐹p𝑦 = −∫ (𝑝p − 𝑝0) sin 𝜃 𝑑𝑠
𝑐

+∫ 𝜏p cos 𝜃 𝑑𝑠
𝑐

 
(21) 

 
Here, the vertical component of the external 

force vector acting on the particle, 𝐹p𝑦 is calculated 
as the lift force. Additionally, 𝑝p  and 𝑝0  
represent the pressure acting on the particle surface 
and the reference pressure, respectively, and 𝜏p  
represents the shear stress acting on the particle 
surface. 

The Equations of motion (18) and (19) are 
discretized employing the third-order 
Adams-Bashforth scheme and the numerical 
computations are carried out based on these 
Equations. The discretized equations are shown as 
(22), (23), (24), and (25). 

 
𝒙̇𝑝
𝑛 + 1  

=  𝒙̇𝑝
𝑛  +  Δ𝑡

23𝑭𝑝
𝑛 − 16𝑭𝑝

𝑛−1  +  5𝑭𝑝
𝑛−2

12𝑚𝑝
 

(22) 

𝒙𝑝
𝑛 + 1  

=  𝒙𝑝
𝑛  +  Δ𝑡

5𝒙̇𝑝
𝑛 + 1  +  8𝒙̇𝑝

𝑛 − 𝒙̇𝑝
𝑛−1

12
 

(23) 
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𝜃̇𝑝
𝑛 + 1  

=  𝜃̇𝑝
𝑛  +  Δ𝑡

23𝑇𝑝
𝑛 − 16𝑇𝑝

𝑛−1  +  5𝑇𝑝
𝑛−2

12𝐼
 

(24) 

𝜃𝑝
𝑛 + 1  

=  𝜃𝑝
𝑛  +  𝛥𝑡

5𝜃̇𝑝
𝑛 + 1  +  8𝜃̇𝑝

𝑛 − 𝜃̇𝑝
𝑛−1

12
 

(25) 

 
2.4  Virtual Flux Method 
The virtual flux method was used to represent and 
compute the bifurcated channel and circular 
particles on a Cartesian grid, [18]. A schematic view 
of the virtual flux method is shown in Figure 2. 
 

 
Fig. 2: Schematic view of the virtual flux method. 
The white-shaded area represents the fluid region, 
the green-shaded area represents the circular 
particle, and the red circles indicate the virtual 
boundary points 

 
 The flow around a fixed two-dimensional 

circular cylinder was analyzed using both VFM and 
IBM, and the two methods were compared, [19]. As 
a result, it was reported that compared to IBM, 
VFM could capture physical quantities near the 
boundary more sharply. Additionally, it was 
reported that in VFM, the convergence rate could be 
improved by adjusting the interpolation accuracy of 
pressure according to the distance between objects. 

This method is easy to implement because it 
only requires the addition of a calculation routine 
for the virtual flux method into a standard flow 
simulation program.  

A no-slip condition was applied to the velocity 
as the boundary condition for the 

bifurcated channel and the surface of circular 
particles. For pressure, an approximate boundary 
condition with a zero normal pressure gradient was 
applied. The respective equations are as follows:  

𝒖𝑣𝑏  =  𝒖𝑤𝑎𝑙𝑙  (26) 

𝜕𝑝

𝜕𝒏
 =  0 (27) 

 
As an example, we considered a flow field 

separated into fluid and circular particles as 
illustrated in Figure 2. When we calculated the 
distribution function at lattice point C for the next 
time step, we focused on the case in which the 
distribution function at lattice point D crossed the 
virtual boundary and moved to lattice point C. In 
this case, the distribution function at lattice point D 
cannot pass through the virtual boundary. Instead, 
the virtual distribution function at lattice point D is 
determined using the distribution function at the 
virtual boundary point 𝑣𝑏 . As a result, the 
distribution function at lattice point D can be 
obtained solely from the physical quantities in the 
fluid region. The equilibrium pressure distribution 
function 𝑝𝛼

𝑒𝑞(𝑡, 𝒙𝑣𝑏) at the virtual boundary point 
is shown in Equation (28). 

𝑝𝛼
𝑒𝑞(𝑡, 𝒙𝑣𝑏)  =  𝜔𝛼 [𝑝𝑣𝑏  

+  𝜌0 {(𝒆𝛼 ∙ 𝒖𝑣𝑏)  

+ 
3

2

(𝒆𝛼 ∙ 𝒖𝑣𝑏)
2

𝑐2
−
1

2
𝒖𝑣𝑏
𝟐 }] 

(28) 

where 𝑝𝑣𝑏 is the pressure at the virtual boundary 
point and where Equation (27) is approximated with 
second-order accuracy. Using the pressures 𝑝1，𝑝2 
at points ℎ1，ℎ2away from the virtual boundary 
point 𝑣𝑏 in the normal direction, 𝑝𝑣𝑏  is expressed 
as shown in Equation (29). 

𝑝𝑣𝑏  =  
ℎ1
2𝑝2 − ℎ2

2𝑝1

ℎ2
2 − ℎ1

2  (29) 

 
Here, the pressures (𝑝1，𝑝2) are calculated by 

weighting the pressures at the four surrounding 
lattice points using only the values in the fluid 
region. For this purpose, ℎ1  =  √2，ℎ2  =  2√2 
were applied. The virtual equilibrium pressure 
distribution function at lattice point D was obtained 
through linear extrapolation using the internal 
division ratios a and b along line segment CD. 
Interpolation was applied to make the 
nonequilibrium components of the pressure 
distribution function at lattice point C and point D 
equal. 

𝑝𝛼
𝑒𝑞⋇(𝑡, 𝒙𝐷)  =  −

𝑏

𝑎
𝑝𝛼
𝑒𝑞(𝑡, 𝒙𝐶)  

+ 
𝑎 +  𝑏

𝑎
𝑝𝛼
𝑒𝑞
(𝑡, 𝒙𝑣𝑏) 

(30) 
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𝑝𝛼
𝑛𝑒𝑞⋇(𝑡, 𝒙𝐷)  =  𝑝𝛼

𝑛𝑒𝑞(𝑡, 𝒙𝐶) (31) 
 

From the above equations, the distribution 
function at lattice point C was calculated using the 
virtual equilibrium distribution function 
𝑝𝛼
𝑒𝑞⋇(𝑡, 𝒙𝐷) and the nonequilibrium component 
𝑝𝛼
𝑛𝑒𝑞⋇(𝑡, 𝒙𝐷)at lattice point D. This was achieved 

through the time evolution equation (32). 
𝑝𝛼(𝑡 +  𝛿𝑡, 𝒙 + 𝒆𝛼𝛿𝑡)  

=  𝑝𝛼
𝑒𝑞(𝑡, 𝒙𝐷)  

+ (1 −
1

𝜏
)𝑝𝛼

𝑛𝑒𝑞∗(𝑡, 𝒙𝐷) 
(32) 

 

 

3  Validation 
 
3.1  Computational Model and Conditions 
In pipe flow, it was known that particles flowing 
with inertia accumulate at specific equilibrium 
positions. Such an aggregation phenomenon is 
known as the Segré-Silberberg effect. In this 
validation, we investigate particle behavior under 
three different conditions. In Condition 1, particles 
were released from different initial positions to 
confirm the Segré-Silberberg effect. In Conditions 2 
and 3, the Reynolds number and confinement, 
respectively, were varied to examine their influence 
on the equilibrium position. By comparing the 
results with previous studies, this validated its 
physical accuracy. A two-dimensional parallel-plate 
channel was used as the computational model for 
the validation, as shown in Figure 3. The 
computational conditions were listed in Table 1 
(Appendix) and the parameters that were varied in 
each condition were presented in Table 2 
(Appendix). 
 

 
Fig. 3: Schematic diagram of a single circular 
particle in a two-dimensional channel 
 

3.2  Computational Results 
The particle trajectories in Condition 1 were shown 
in Figure 4. In Condition 1, particles were released 

from three different initial positions: 𝑦0 = 0.20,
0.30, 0.40. From Figure 4, it was confirmed that 
particles released from different initial positions 
reached the same equilibrium position. This result 
suggests that the Segré-Silberberg effect was 
observed. Next, the particle trajectories in Condition 
2 were shown in Figure 5. In Condition 2, particles 
were released at three different Reynolds numbers: 
𝑅𝑒 = 12.73, 27.54, 54.91 . The initial particle 
position was set to 𝑦0 = 0.40. 
 

 
Fig. 4: Particle trajectories with different initial 
position 
 

Additionally, the particle equilibrium positions 
were presented in Table 3 along with the results 
from previous studies. 

 

 
Fig. 5: Particle trajectories at different Reynolds 
numbers 
 

From Figure 5, it was observed that as the 
Reynolds number increased, the distance required to 
reach the equilibrium position became shorter. 

Table 3. Equilibrium position of the center of the 
particle at different Reynolds number 

𝑅𝑒 Present Inamuro 

12.73 0.2786 0.2745 

27.54 0.2766 0.2733 

54.91 0.2759 0.2723 
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Additionally, from Table 3, it was found that the 
equilibrium position shifted closer to the wall. This 
trend is consistent with previous results, indicating 
the validity of the present study, [20]. 

Next, the particle trajectories in Condition 3 
were shown in Figure 6. In Condition 3, particles 
were released at three different confinement values: 
𝐶 = 0.20, 0.25, 0.30 . The initial particle position 
was set to 𝑦0 = 0.40, and the Reynolds number 
was set to 𝑅𝑒 = 27.54. This trend is consistent with 
the findings of [20]. 
 

 
Fig. 6: Particle trajectories at different confinement. 

  

Through numerical analysis under the three 
conditions and comparison with previous studies, 
this validated its physical accuracy. Additionally, 
the equilibrium position can be summarized by the 
particle Reynolds number, 𝑅𝑒𝑃 = 𝑅𝑒 × 𝐶2. Based 
on the above computational results, while the 
equilibrium position varies with 𝑅𝑒𝑃, it is generally 
located at approximately 60% of the channel radius. 
 
3.3  Verification 
In this study, a grid resolution verification was 
conducted using a two-dimensional parallel-plate 
channel to investigate the minimum number of grid 
points assigned to a particle without losing 
numerical reliability. The computational model was 
the same as that shown in Figure 3. The 
computational conditions were listed in Table 4 
(Appendix). In a single-particle flow, the number of 
grid points assigned to the particle diameter was set 
to 10, 15, 20, and 25 cells, and the equilibrium 
position of the particle was investigated. The 
relationship between the number of grid points 
assigned to the particle diameter and the equilibrium 
position was shown in Figure 7. 

From Figure 7, it was shown that as the number 
of grid points assigned to the particle increased, the 
equilibrium position converged. Additionally, at 
grid numbers of 20 and 25, the difference in 

equilibrium position values was minimal. From this, 
the number of grid points assigned to the particle 
was set to 20 cells for subsequent particle behavior 
analysis. This corresponds to the white-filled point 
in Figure 7. 

 

4  Result and Discussion 
 

4.1  Particle Behavior in a Symmetric Flow 

Field 
To examine particle behavior in an asymmetric flow 
field, we first examined it as a test case in a flow 
field, in which the outlet pressures were equal on 
both sides and the flow distribution was symmetric. 
The initial positions of the particles on the left and 
right were (−0.2, 1.0)  and (0.2, 1.0)  for 
normalized coordinates (𝑥/𝐷, 𝑦/𝐷)  respectively, 
and the Reynolds number was set to 𝑅𝑒 =  64. The 
calculated particle trajectories are shown in Figure 8 
(Appendix). In this test case, the flow distribution 
was symmetric, so the boundary line dividing the 
flow was the centerline of the channel. The fluid on 
the left side of the centerline flows into the left 
daughter branch after the bifurcation, whereas the 
fluid on the right side flows into the right daughter 
branch. 

As shown in Figure 8 (Appendix), when 
particles are positioned to the left of the channel 
centerline, they flow into the left branch after the 
bifurcation. Similarly, particles positioned to the 
right of the centerline flow into the right branch. 

Figure 9 (Appendix) shows the extracted 
particle trajectory within the parent branch region 
from Figure 8 (Appendix). In Figure 9 (Appendix), 
the horizontal axis corresponds to 𝑥 =  −0.5 for 
the left wall of the parent branch, 𝑥 =  0.0 for the 
channel centerline, and 𝑥 =  0.5 for the right wall 
of the parent branch.  

From Figure 9(a) (Appendix), particle migration 
toward the left wall is apparent, whereas Figure 9(b) 
(Appendix) shows migration toward the right wall. 

 
Fig. 7: Particle trajectories at different confinement 
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For the particle flow between two-dimensional 
parallel plates, the mechanical equilibrium positions 
of the particle at 𝑅𝑒 =  64 and confinement 𝐶 =
 0.1  are located at 𝑥/𝐷 =  −0.23  and 𝑥/𝐷 =
 0.23 . These positions are symmetric about the 
y-axis. Therefore, the particle in Figure 9(a) 
(Appendix) is considered to migrate to the position 
𝑥/𝐷 =  −0.23, whereas the particle in Figure 9(b) 
(Appendix) migrates to the position 𝑥/𝐷 =  0.23 . 
This suggests that in a symmetric flow field, 
particles migrate away from the channel centerline, 
which serves as the flow distribution boundary. 
Therefore, it is unlikely that flow and particle 
distribution differ. 
 
4.2 Particle Behavior in an Asymmetric 

Flow Field 
In this study, we examined particle behavior under 
conditions in which a pressure difference was 
applied to the left and right outlets. This pressure 
difference caused the flow distribution to become 
asymmetric. The pressure difference between the 
left and right outlets was defined as 𝛥𝑃 , 
with  𝑃𝑙𝑒𝑓𝑡  =  𝑃𝑟𝑖𝑔ℎ𝑡  +  𝛥𝑃 . In addition, 𝛥𝑃  was 
set to 3.34 Pa. Under these conditions, the 
left-to-right flow distribution ratio was 69: 31 
when the inlet flow rate was set to 100. Figure 10 
shows the velocity distributions at three 
cross-sections near the bifurcation in the parent 
branch located at 𝑦 =  12𝐷, 14𝐷 , and 14.25𝐷 . 
Figure 11 (Appendix) shows the relationship 
between the outlet pressure difference ∆𝑃∗ , the 
𝑥/𝐷 coordinates of the flow distribution boundary 
line, and the mechanical equilibrium position within 
the parent branch region. ∆𝑃∗ represents the 
pressure difference normalized by  1 2⁄  × 𝜌𝑈2 , 
which corresponds to the dynamic pressure.  

In this study, a geometrically symmetric model 
was used, and the velocity distribution peak was 
reproduced at approximately 0.5 times the channel 
radius by adjusting the pressure difference at the 
outlet boundary condition. The boundary line that 
determines which daughter branch the fluid enters 
was located at 0.13, as shown in Figure 11(b) 
(Appendix). This position varied with changes in the 
pressure difference, as illustrated in Figure 11(a) 
(Appendix). 

From Figure 10, it is apparent that the velocity 
distribution becomes eccentric as the flow 
approaches the bifurcation. In addition, at the 
cross-section 𝑦 =  12𝐷 , the velocity distribution 
shows a parabolic shape, which confirms that it is 
Poiseuille flow. Therefore, at 𝑦 =  12𝐷 , the 
mechanical equilibrium position of the particles is 

considered to be located at approximately 0.6 times 
the tube radius. The flow rate error before and after 
the bifurcation was 0.09%, which indicates that the 
law of conservation of mass is satisfied. 

 
 

 
Fig. 10: Velocity profile within the parent branch 

 
From Figure 11(a) (Appendix), it is evident that 

as the normalized pressure difference ∆𝑃∗increases, 
the boundary line approaches the right wall of the 
parent branch. As shown in Figure 11(b) (Appendix), 
when the boundary line is located closer to the 
center of the channel than the equilibrium position 
and the particles are positioned between the channel 
center and the boundary line (the gray region in 
Figure 11(b) (Appendix)), the particles may cross 
the boundary line as they migrate toward the 
equilibrium position. We set the normalized outlet 
pressure difference to ∆𝑃∗  =  6.00  which 
corresponds to the dimensionless value of 3.34 Pa 
when normalized by dynamic pressure, as indicated 
by the red circle in Figure 11(b) (Appendix). We 
placed the initial position of the particle within the 
gray region and examined particle behavior.  
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Fig. 12: Boundary line dividing the left-right 
flow distribution 

The boundary line dividing the flow distribution 
is shown in Figure 12. The horizontal coordinate of 
the boundary line in the parent branch was 𝑥/𝐷 =
 0.13. Figure 13 shows the relationship between 
particle trajectory and the flow distribution 
boundary line. 

 

 
Fig. 13: Particle trajectory and flow distribution 
boundary line when released from the initial position 
(𝑥/𝐷, 𝑦/𝐷)  =  (0.11, 1.0) 

 
Figure 14 (Appendix) shows the relationship 

between particle trajectory, the flow distribution 
boundary line, and the mechanical equilibrium 
position within the parent branch region. This 
position is located 1 5⁄  of the particle diameter to 
the left of the flow distribution boundary line at 
𝑥/𝐷 =  0.13  along the horizontal axis. In this 
calculation, the Reynolds number was set to 𝑅𝑒 =
 64 and the confinement ratio was set to 𝐶 =  0.1. 

Figure 14 (Appendix) shows that the particle 
has crossed the flow distribution boundary line. This 
was attributed to the particle migration toward the 
mechanical equilibrium position at 𝑥/𝐷 =  0.23. 
This suggests that particles may cross the boundary 
line as a result of migration in an environment 
where the flow distribution boundary line exists 
between the initial particle position and the 
mechanical equilibrium position. Furthermore, when 
particles cross the boundary line, discrepancies 
between flow and particle distribution at the 
bifurcations may occur.  

We discuss flow distribution and particle 
distribution using Figure 15. 

In Figure 15, the gray region corresponds to the 
gray-shaded area in Figure 11(b) (Appendix). This 
gray region represents the area where particles may 
cross the boundary line during the migration process 

toward the mechanical equilibrium position. Under 
the assumption that particles are uniformly 
distributed, 13% of the total particles would be 
located in the gray region. As a result, a 13% 
discrepancy may occur between the flow rate 
distribution and the particle distribution at 
bifurcation. 

In the one-way coupling scheme, particle 
motion strictly obeys streamlines. Therefore, in the 
one-way coupling scheme, the microscopic particle 
distribution at the bifurcation completely 
corresponds to the macroscopic flow rate 
distribution.   

On the other hand, in this study, the two-way 
coupling scheme was employed to investigate 
particle behavior, and the results suggested the 
possibility of a 13% discrepancy between particle 
distribution and flow rate distribution. 

Therefore, under conditions like those in this 
study, where the particle Reynolds number satisfies 
𝑅𝑒𝑝 > 10⁻³ and inertial effects must be considered, 
the relationship between the boundary line and the 
mechanical equilibrium position can lead to 
discrepancies between flow rate distribution and 
particle distribution. This suggests that it is 
necessary to use a two-way coupling scheme in 
environments where inertial effects cannot be 
neglected. 

 

 
Fig. 15: Relationship between the boundary line and 
the mechanical equilibrium position 

 
 
5  Conclusions 
In this study, we examined particle behavior under 
conditions where inertial effects cannot be neglected 
using a two-dimensional, symmetric bifurcated flow 
channel. The analysis examined particle behavior in 
both symmetric and asymmetric flow fields. In a 
symmetric flow field, the boundary line that 
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determines which daughter branch the fluid enters 
corresponds to the centerline of the channel. When a 
single particle was released from a position left or 
right of the centerline, the particle migrated away 
from the centerline. As a result, the possibility of 
particles crossing the boundary line was considered 
low. This suggests that, in a symmetric flow field, 
discrepancies between flow rate distribution and 
particle distribution at the bifurcation are unlikely to 
occur. In a flow field where the flow rate was not 
evenly distributed between the left and right 
branches, we observed that, under conditions where 
inertial effects cannot be neglected, depending on 
the positional relationship between the boundary 
line and the mechanical equilibrium position, 
particles crossed the boundary line while migrating 
toward the equilibrium position. 

Furthermore, under the assumption that particles 
are uniformly distributed, we found that a 13% 
discrepancy may arise between flow rate 
distribution and particle distribution at the 
bifurcation. 
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APPENDIX 

 

 

 

 

 

 

Table 4. Calculation conditions for verification 
Calculation area 𝑥 × 𝑦 = 𝐿𝑥 × 𝐿𝑦 = 𝐷 ×𝐷 

Resolution 200 cells/𝐷 
Characteristic velocity 𝑈 = 0.01 

Reynolda number 𝑅𝑒 = 64 
Working fluid density 𝜌 = 1.0 

Confinement 𝐶 = 0.1 

Initial conditions 
Pressure 𝜕𝑝

𝜕𝑥
= −

12𝜌𝑈2

𝑅𝑒𝐷
 

Velocity 𝑢 =
1

2𝜇

𝜕𝑝

𝜕𝑥
𝑦(𝑦 − 𝐷) 

Boundary conditions Inflow Periodic boundary condition with pressure difference 
 Outflow 

 
 

Table 1. Conditions for validation of a single particle model in a two-dimensional channel under Poiseuille 
flow Calculation area 𝑥 × 𝑦 = 𝐿𝑥 × 𝐿𝑦 = 𝐷 × 𝐷 

Resolution 200 cells/𝐷 

Characteristic velocity 𝑈 = 0.041 

Working fluid density 𝜌 = 1.0 

Initial conditions 
Pressure 𝜕𝑝

𝜕𝑥
= −

12𝜌𝑈2

𝑅𝑒𝐷
 

Velocity 𝑢 =
1

2𝜇

𝜕𝑝

𝜕𝑥
𝑦(𝑦 − 𝐷) 

Boundary conditions 
Inflow Periodic boundary condition with pressure difference 

Outflow Periodic boundary condition with pressure difference 

Table 2. Parameters of a single rigid circular particle in a two-dimensional channel at each of the Conditions 
 Particle initial position 𝑦0 Reynolds number 𝑅𝑒 Confinement 𝐶 

Condition 1 0.20, 0.30, 0.40 27.54 0.25 

Condition 2 0.40 12.73, 27.54, 54.91 0.25 

Condition 3 0.40 27.54 0.20, 0.25, 0.30 
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(a) (b) 

Fig. 9: Horizontally stretched diagram showing the relationship between particle trajectory and mechanical 
equilibrium line within the parent branch. (a) On the horizontal axis, 𝑥/𝐷 =  −0.5 corresponds to the left 
wall of the parent branch, and 𝑥/𝐷 =  0.0 corresponds to the center of the channel. (b) On the horizontal 
axis, 𝑥/𝐷 =  0.0 corresponds to the center of the channel, and 𝑥/𝐷 =  0.5 corresponds to the right wall 

of the parent branch 

 
(a) (b) 

Fig. 8: (a) Particle trajectory when released from the initial position(𝑥 𝐷⁄ , 𝑦/𝐷)  =  (−0.2, 1.0). (b) Particle 
trajectory when released from the initial position (𝑥/𝐷, 𝑦/𝐷)  =  (0.2, 1.0) 
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Fig. 14: Horizontally stretched diagram showing the relationship between particle trajectory and mechanical 

equilibrium line within the parent branch 
 
 
 

 
(a) (b) 

Fig. 11: (a) Relationship between the normalized outlet pressure difference, the boundary line, and mechanical 
equilibrium position within the parent branch. (b) Relationship between the boundary line, mechanical 

equilibrium position, and particle migration 
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