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Abstract: - The paper explores the nonlinear dynamics of drill strings under stochastic factors and external 
influences by providing its comprehensive analysis. These studies are motivated by the need to improve the 
safety and efficiency of drilling operations in complicated conditions. The authors model the dynamics of drill 
strings from the perspective of the randomness of the processes involved, enabling a broader range of 
operational modes for drilling equipment to be considered, as well as enhancing the accuracy and efficiency of 
optimal decision-making. The nonlinear dynamics of the drill string are examined under the influence of 
random factors and environmental conditions. The mathematical model of the drill string describes its planar 
vibrations accounting for the initial curvature of the string, external loads, fluid flow around the string, and 
frictional forces against the wellbore walls. The randomness of the effects is taken into account through the 
friction coefficient. Stochastic terms derived using the prior probability distribution, which allows the 
application of Shannon’s maximum entropy principle, are employed in the study. A numerical experiment is 
conducted to identify instability zones of the drill string motion. The study relies on the Galerkin method and 
partial discretization method. The influence of random factors on the drill string stability is revealed. 
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1  Introduction 
Drilling is a key stage in the oil and gas industry. 
This process involves complex dynamics, as it 
depends not only on the components of the 
equipment but also on external factors such as rock 
properties, the drilling fluid used, wellbore 
characteristics, etc. During the drilling of wells, the 
drill string is subject to undesirable vibrations, 
which can lead to reduced efficiency and, in 
extreme cases, can compromise the integrity of the 
drill string. 

One of the common methods to minimize 
vibrations is the proper selection of drilling 
parameters, such as rotational speed and bit load, 
along with the adjustment of drilling fluid 
properties. This approach can be implemented 
quickly and, in most cases, does not require 
additional equipment. However, due to the 
complexity of the drilling process, its mathematical 

modeling is not limited to nonlinearities, 
discontinuities, and other challenges. Drilling 
operations are subject to uncertainties of various 
nature like imperfections in the drill string, the 
complex interaction between the bit and the rock, 
borehole wall properties, fluid-equipment 
interactions, and more. To account for such 
uncertain effects on the drill string, it is advisable to 
employ stochastic analysis. 

For instance, in [1], the coupled lateral and 
torsional vibrations of the drill string taking into 
account the interaction between the drill bit and the 
rock, as well as the contact of the drill string and 
drilling fluid with the borehole walls, are 
investigated. Stochastic models were developed for 
the cases under consideration, and the results were 
compared with deterministic ones.  

Several studies utilize stochastic methods to 
optimize model parameters. The authors of [2] apply 
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the Bayesian approach to the parameter estimation 
and selection of an appropriate model for drill bit-
rock interaction in the case of torsional vibrations. 
During the parameter estimation process, 
randomness effects were also incorporated. 
Moreover, the authors conducted the stability 
analysis in the context of uncertainty. In [3], the 
Bayesian approach was employed using the Markov 
method to estimate the parameters of drill bit-rock 
interaction. Gaussian noise was used to simulate 
randomness. The reliability of the approach in the 
context of drill string torsional vibrations was 
demonstrated by comparison with pseudo-
experimental data. The application of the Gaussian 
noise was also noted in studies [4], [5], [6]. The 
results showed that the intensity of random 
perturbations had a significant impact on the 
system’s response. Increased noise led to vibrations 
with larger amplitudes, underscoring the importance 
of accounting for the randomness when modeling 
drill string vibrations. 

The nonlinear stochastic dynamics of horizontal 
drill strings were examined in [7]. Based on the 
beam theory, the authors developed a model that 
accounted for rotational inertia, shear deformations, 
friction forces, impact effects, and torque. In 
addition to the mechanical analysis of the system, 
the study formulated a methodology for addressing 
uncertainties in dynamic systems. Stochastic 
analysis of the system parameter randomness was 
conducted using a probabilistic approach based on 
the maximum entropy principle. Stochastic 
modeling of vertical and inclined drilling was 
investigated in [8]. The application of stochastic 
analysis was justified by the spatial heterogeneity of 
the mechanical properties of rock formations, 
allowing for more accurate predictions of plastic 
deformation zones around the wellbore and 
assessments of the probability of the wellbore 
collapse or drilling equipment sticking. The stick-
slip effect in systems with dry friction using a 
stochastic model was explored in [9]. The authors 
treated the duration and frequencies of stick-slip 
events as stochastic variables, and their statistics 
were estimated from the system dynamic equations. 
Statistical analysis of stick-slip phenomena was also 
conducted in [10]. Furthermore, this study focused 
on modeling random disturbances during drill bit-
rock interaction. The proposed model treated 
variations of the drill bit torque as a random process 
dependent on the bit rotational speed, implemented 
via the multiplicative Gaussian stochastic process 
calibrated on real data. In [11], stochastic 
disturbances in drill bit-rock interactions and their 
impact on the performance of two vibration control 

controllers were studied. The model was calibrated 
with field data, and an intensity map of torsional 
vibrations was constructed. Uncertainties in drill bit-
rock interactions and applied maximum speeds were 
analyzed in [12]. The random nature of these 
interactions was further examined in [13], where the 
authors developed a lumped-mass model to analyze 
the torsional and axial vibrations of drill strings. The 
study demonstrated that high formation 
heterogeneity resulted in greater vibration 
amplitudes. 

The influence of rock strength variations in the 
context of torsional vibrations was analyzed in [14]. 
The drill bit-rock interaction model considered the 
coupling between axial and torsional dynamics, 
while the stochastic dynamics was based on the Itô 
equation, which allowed the description of the 
cutting component of the torque. 

The stability analysis of the model considering 
uncertainties, as well as the development of a 
control methodology for drilling systems, was 
presented in [15]. According to the study's findings, 
variability in the drill bit-rock interaction, 
implemented through random friction, significantly 
influenced the stability and performance of the 
drilling system.  

The application of statistical and stochastic 
methods to dynamic systems was discussed in [16]. 
The study examined linear dynamic systems subject 
to random influences using the stochastic Galerkin 
method. The formulation and solution of partial 
differential equations considering uncertainties in 
input data were presented in [17]. The authors 
identified uncertainties arising from natural 
randomness, which can be described by random 
fields with covariance functions, as well as 
uncertainties caused by a lack of knowledge about 
input parameters. For the latter, an algorithm was 
developed to improve the efficiency of the solution. 
In [18], a methodology was proposed for reliability 
assessment and design optimization of structures 
considering uncertainties of both probabilistic and 
interval nature. Moreover, the consideration of the 
random factor goes beyond the study of drill strings, 
thus demonstrating its versatility. For example, in 
[19], stochastic modeling was used in the context of 
ecological systems. The dynamics of the stochastic 
Gilpin-Ayala model with a white noise overlay were 
considered. In this way, fluctuations in the 
concentration of the pollutant were taken into 
account. In [20], a stochastic epidemiological 
model, which accounts for the effects of 
transportation movements, media exposure, and 
time delays on the spread of infectious diseases, was 
introduced. Random processes allowed a more 
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realistic modeling of the influence of external 
factors on the infection dynamics. 

Thus, it can be noted that the rock formation 
often serves as a source of uncertainty in the model. 
In this study, this uncertainty is accounted for by the 
application of a probabilistic model for the friction 
coefficient. This approach is based on the fact that 
real rock formations can be heterogeneous, 
containing various types of inclusions, fractures, and 
variations in mineral composition, which affect their 
mechanical properties. 
 

 

2  Deterministic Model 
Based on the structural features of the drill string, it 
is modeled as a rotating elastic isotropic rod. In 
contrast to known models, in particular [21], only 
lateral vibrations are considered as dominant. 
Additionally, the imperfections of the drill string 
such as its initial curvature, [22], along with external 
loads and the influence of fluid flow, are taken into 
account. In accordance with [12], the effect of 
friction forces against the borehole walls is also 
considered. The cross-section of the drill string is 
assumed to be constant and symmetric. 
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where E is Young’s modulus, 

xI  axial inertia 
moments,   the drill string density, ν  Poisson’s 
ratio, A the cross-sectional area of the drill string, 

f  the fluid density, fA  the internal cross-sectional 
area of the drill string,   the friction coefficient. 

 
Let us define the boundary and initial conditions 

as follows: 
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The axial compressive load is of a conservative 

nature and follows a periodic law: 

0 cos ,tN N N t    (3) 
 

where 0N  and tN  represent the constant and time-
varying components of the compressive load, 
respectively;   is the frequency of external 
influence. 

 
To set the initial curvature, the following 

expression is considered: 

 0 0 sin z
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For further analysis, the model has to be 

reduced to an equation with generalized parameters 
using the Galerkin method. The displacement of the 
drill string is expressed as a series: 
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The basis functions sin , 1,i z
i n

l
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 fully 

satisfy the boundary conditions (2). 
For transition to the relative time variable,  , a 

nondimensionalization operation is performed with 
respect to t: 

0t   , (6) 
 
where 0  is the natural vibration frequency of the 
drill string. 

 
Considering the lateral vibrations of the drill 

string in its basic form of bending with respect to 
the dimensionless function  f  , the equation in 
generalized parameters takes the form: 
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To analyze the stability of the dynamic system, 

let us represent the function  f   as the sum of 

some periodic solution  0f   and a small 
perturbation from the equilibrium state f . We 
exclude the main solution and the terms containing 
the deviation from the solution to powers higher 
than the first since this value is sufficiently small. 
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For the case of main resonance 

 0 1 1cos ,f r      the equation for the perturbed 
state with respect to the small deviation takes the 
form of the well-known Hill equation, [23], [24]: 
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In this case, the stability of the system is 

characterized by the behavior of the small deviation  
f : 

1) if f  uncontrollably increases at   , then 
the system is unstable; 

2) if f  remains bounded at   , then the 
system is stable. It corresponds to the Lyapunov 
stability. 
 
To determine the instability zones, according to 

the Floquet theory, a particular solution of equation 
(9) is sought in the form of a vibration spectrum: 
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Here   is the characteristic exponent, which 

governs the behavior of the variation f : 
1)  Re 0  : 0f   at   ; hence, the 

solution is stable; 
2)  Re 0  : the solution at the boundary of 

stability zones. 
3)  Re 0  : f   at   ; then, the 

solution is unstable. 
 
 
 

Let us focus on the first instability zone: 
 1 1cosf e b     . (11) 

 
To obtain the equation describing the 

boundaries of the first instability zone, the harmonic 
balance method is applied. 

The transition to the characteristic determinant 
is performed as follows: 
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To construct the boundaries of the first 

instability zone the condition  0 0    is 
introduced: 
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For a more detailed quantitative analysis of the 

system's response, the partial discretization method 
is applied. The idea of the partial discretization 
method is to discretize the nonlinear terms of the 
equation, which complicate the process of solving 
the problem. Since the nonlinear term becomes 
constant at each discretization step, it allows one to 
obtain a quasi-analytical solution. Its general form is 
given by: 
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where  F z  is the nonlinear function that must be 

discretized,  iF z  is the discrete form of the 

function  F z  at 
iz z , 1,i n ; n is the number of 

divisions of z ,  iz z   is the Dirac’s delta 
function. 

 
Applying the partial discretization method to 

Eq. (7), one obtains: 
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where 
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Using the method of mathematical induction, a 
recurrence formula is derived from the quasi-
analytical solution of Eq. (15): 
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3  Uncertainty Modeling 
The friction force is assumed to be of a random 
nature. The influence of randomness is accounted 
for through the friction coefficient, [12]. 

The random field { ( ) : [0, ]}x x L   is defined as 
a set of real-valued random variables over the 
probability space ( , ,P) F , where   is the set of 
elementary events, F  is the σ-algebra, and P  is the 
probability measure. 

It is assumed that   is the stationary truncated 
Gaussian random field on the interval [0, L] with the 
exponential autocorrelation function: 

2 12
1 2( , ) exp( ).

x x
R x x

b
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
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The stochastic field is transformed using the 

Karunen-Loeve expansion, [25]: 
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k k k

k

x x Z x     

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where   is the mean value of the friction 
coefficient, k  and k  are the k-th eigenvalue and 
eigenvector of the autocorrelation function, 
respectively, kZ  are independent random variables 
with the standard Gaussian distribution, N  
determines the accuracy of the expansion (the larger 
N, the more accurate the approximation). 
 
 
4  Results and Discussions 
Parameters used for numerical simulations are 
presented in Table 1. To obtain statistically 
significant results, 100 simulations were conducted 
for each stochastic experiment. If the amplitude-
frequency characteristics fall within the instability 
region for the given system parameters, the system 
undergoes primary resonance, where the amplitude 

begins to increase uncontrollably. This can lead to 
adverse consequences. 
 

Table 1. Parameters of the drilling system. 

System parameter Value 

Drill string length, l 100m  

Young’s modulus, E  112.1 10 Pa  

Drill string density,   37800kg m  

Poisson’s ratio, ν  0.28  

The outer diameter of the drill string, 
D 0.2m  

The inner diameter of the drill string, d 0.12m  

Longitudinal load, constant part, 0N  31.7 10 N  

Expected value of the friction 
coefficient,   0.4  

 
As can be seen from the results obtained (Figure 

1 and Figure 2), the instability zone is limited to the 
average value of the friction coefficient. The 
addition of stochastic influence causes the 
expansion of the boundaries of the instability zones, 
but no qualitative changes are observed. The same 

can be said about instability zones at 
30
60

   

(Figure 3 and Figure 4). Although there is a 
significant difference between the shapes of the 
zones at different values of angular velocity, no 
qualitative difference between the deterministic and 
stochastic models is observed.   
 
 

 
Fig. 1: The deterministic first instability zone at 

890l   kg/m3, 
10 .
60

   
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Fig. 2: The stochastic first instability zone at 

890l   kg/m3, 
10 .
60

 
 

 

 
Fig. 3: The deterministic first instability zone at 

1500l   kg/m3, 
30 .
60

 
 

 

 
Fig. 4: The stochastic first instability zone at 

1500l   kg/m3, 
30 .
60

   

 
For better understanding of the effect of random 

friction, the results using the partial discretization 
method are considered (Figure 5, Figure 6, Figure 7, 
Figure 8, Figure 9 and Figure 10). 
 

 
Fig. 5: The deterministic stable system at      

890l   kg/m3, 1 0.02r  , Ω 2.  
 

 
Fig. 6: The stochastic stable system at          

890l   kg/m3, 1 0.02r  , Ω 2.  
 

 
Fig. 7: The deterministic unstable system at 

890l   kg/m3, 1 0.1r  , Ω 2.75.  
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Fig. 8: The stochastic unstable system at      

890l   kg/m3, 1 0.1r   , Ω 2.75.  
 

 
Fig. 9: The stochastic stable system at         

1500l   kg/m3, 1 0.05r  , Ω 3.   
 

 
Fig. 10: The stochastic stable system at       

1500l   kg/m3, 1 0.05r  , Ω 3.   
 

For the given system parameters, a good 
agreement of the results was obtained. Namely, the 
system with parameters outside the instability zone 

remains restricted, while parameters within the 
instability zone result in the sharp growth of 
perturbations. Stochastic effects cause an increase in 
amplitude over specific intervals, indicating 
significant quantitative changes. 

When analyzing the displacements (Figure 11 
and Figure 12), since the largest vibrations of the 
rod are observed at the center and significantly 
decrease toward the ends, the vibrations in the 
cross-section 0.5z l  are considered, [26]. 

 

 
Fig. 11: The deterministic system’s displacement 
values 

 

 
Fig. 12: The stochastic system’s displacement 
values 
 

According to the results of the analysis, in the 
case of random impact, the expansion of the 
instability zones is observed, and the results of the 
study using the Floquet theory are in good 
agreement with those obtained by the partial 
discretization method. In the case of the stochastic 
model, the overall structure of the vibration remains 
predictable. The increase in amplitude is due to the 
proximity of the system to the resonant frequency 
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zone, which requires careful consideration in design 
and operation. 

It should be noted that in the discretization case 
considered here, the discrete model corresponds to 
the studied processes, unlike the results of [27], 
where a potential mismatch between dynamic 
models after their discretization and re-continuation 
occurs, which can lead to a radical change in their 
behavior. The work presents examples of 
deterministic discretization and chaotic re-
continuation of dynamic systems. To preserve the 
properties of the model, the authors adjusted the 
dynamics of the phenomenon based on the 
characteristic parameters of chaotic systems, such as 
Lyapunov exponents and dimensions. 

 
 

5  Conclusion 
The findings confirmed the significant influence of 
stochastic factors on the drill string behavior. By 
accounting for random factors, in particular the 
coefficient of friction, the study provided a deeper 
understanding of the drill string behavior under 
environmental uncertainty. Using the Galerkin 
method, Floquet theory, and partial discretization 
method, critical zones of instability were identified. 

The results showed that the introduction of 
stochastic effects led to a significant increase in the 
range of critical values of the system parameters. No 
structural changes in the dynamics were observed; 
therefore, the behavior of the system remained 
predictable. These results emphasized the 
importance of considering random factors when 
modeling drilling processes. 

Identification of instability zones is important 
for the optimization of drilling processes, as it 
allows determining in advance the operating modes 
where potential risks of equipment failure may arise. 
More accurate consideration of the random factors 
reproduces the unpredictable dynamics of the real 
process. Thus, based on the forecasts obtained on 
the basis of the presented methodology, either 
equipment operators can adjust the intensity of 
work, or modifications can be introduced at the 
stage of equipment design, thereby reducing the 
risks of emergencies as well as financial and time 
losses. In practice, this leads to safer, more efficient 
drilling. 

Moreover, the shown methodology can be 
applied to a wide class of mechanical engineering 
problems beyond the oil and gas industry and can be 
adopted for the use of other similar numerical 
methods, allowing for further flexibility in 
application. Given the unpredictability inherent in 
real systems, this approach allows for more accurate 

modeling and prediction of processes. Such methods 
can be applied in aerospace, automotive, and 
construction fields. This approach will improve 
models of structural behavior by introducing factors 
that are difficult to account for with traditional 
methods. 

Further development of the work is seen in the 
development of models complicated by 
uncertainties of other nature such as randomness of 
initial curvature, random impact of gas or liquid 
flows, and their subsequent solution by the partial 
discretization and stability analysis. For each case, it 
will be necessary to derive its own probability 
distribution functions based on statistical data. 
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