[7] Amine El Harfouf, Rachid Herbazi, Sanaa
Hayani Mounir, Hassane Mes-Αdi,
Abderrahim Wakif, "Non-Fourier Heat Flux
Model for the Magnetohydrodynamic Casson
Nanofluid Flow Past a Porous Stretching
Sheet using the Akbari-Gangi Method,"
WSEAS Transactions on Fluid Mechanics,
vol. 19, pp. 157-165, 2024,
https://doi.org/10.37394/232013.2024.19.16.
[8] P. S. A. Reddy, A. Chamkha, Heat and mass
transfer characteristics of MHD three-
dimensional flow over a stretching sheet
filled with water-based alumina nanofluid,
Int. J. Numer. Methods Heat Fluid Flow,
(2018). https://doi.org/10.1108/HFF-02-
2017-0061.
[9] T. Hayat, R.S. Saif, R. Ellahi, T. Muhammad,
B. Ahmad, Numerical study of boundary-
layer flow due to a nonlinear curved
stretching sheet with convective heat and
mass conditions, Results Phys., 7 (2017)
2601–2606.
https://doi.org/10.1016/j.rinp.2017.07.023.
[10] M. Ferdows, M.J. Uddin, A. Afify, Scaling
group transformation for MHD boundary
layer free convective heat and mass transfer
flow past a convectively heated nonlinear
radiating stretching sheet, Int. J. Heat Mass
Tran., 56 (1–2) (2013) 181–187.
https://doi.org/10.1016/j.ijheatmasstransfer.2
012.09.020.
[11] Amine El Harfouf, Rachid Herbazi, Walid
Abouloifa, Sanaa Hayani Mounir, Hassane
Mes-Adi, Abderrahim Wakif, Mohamed
Mejdal, Mohamed Nfaoui, "Numerical
Examination of a Squeezing Casson Hybrid
Nanofluid Flow Considering Thermophoretic
and Internal Heating Mechanisms," WSEAS
Transactions on Heat and Mass Transfer,
vol. 19, pp. 41-51, 2024,
https://doi.org/10.37394/232012.2024.19.5.
[12] S. Nadeem, R.U. Haq, Z. Khan, Numerical
study of MHD boundary layer flow of a
Maxwell fluid past a stretching sheet in the
presence of nanoparticles, J. Taiwan Inst.
Chem. Eng., 45 (1) (2014) 121–126.
https://doi.org/10.1016/j.jtice.2013.04.006.
[13] M. Mustafa, J.A. Khan, T. Hayat, A. Alsaedi,
Simulations for Maxwell fluid flow past a
convectively heated exponentially stretching
sheet with nanoparticles, AIP Adv., 5 (3)
(2015), 037133.
https://doi.org/10.1063/1.4916364.
[14] G. Ramesh, B. Gireesha, Influence of heat
source/sink on a Maxwell fluid over a
stretching surface with convective boundary
condition in the presence of nanoparticles,
Ain Shams Eng. J., 5 (3) (2014) 991–998.
https://doi.org/10.1016/j.asej.2014.04.003.
[15] Mohamad Isa, S., Mahat, R., Katbar, N. M.,
Goud, B. S., Ullah, I., Jamshed, W. Hussain,
S. M. (2024). Thermal radiative and Hall
current effects on magneto-natural
convective flow of dusty fluid: Numerical
Runge–Kutta–Fehlberg technique. Numerical
Heat Transfer, Part B: Fundamentals, 1–23.
https://doi.org/10.1080/10407790.2024.2318
452.
[16] Y. Dharmendar Reddy, F. Mebarek-Oudina,
B.S. Goud, A.I. Ismail, Radiation, velocity
and thermal slips effect toward MHD
boundary layer flow through heat and mass
transport of Williamson nanofluid with
porous medium, Arabian J. Sci. Eng., 47 (12)
(2022) 16355–16369,
https://doi.org/10.1007/s13369-022-06825-2.
[17] G. Ramesh, B. Gireesha, T. Hayat, A.
Alsaedi, MHD flow of Maxwell fluid over a
stretching sheet in the presence of
nanoparticles, thermal radiation and chemical
reaction: a numerical study, J. Nanofluids, 4
(1) (2015) 100–106.
https://doi.org/10.1166/jon.2015.1133.
[18] P. S. Narayana, D.H. Babu, Numerical study
of MHD heat and mass transfer of a Jeffrey
fluid over a stretching sheet with chemical
reaction and thermal radiation, J. Taiwan
Inst. Chem. Eng., 59 (2016) 18–25.
https://doi.org/10.1016/j.jtice.2015.07.014.
[19] S. Mukhopadhyay, Slip effects on MHD
boundary layer flow over an exponentially
stretching sheet with suction/blowing and
thermal radiation, Ain Shams Eng. J., 4 (3)
(2013) 485–491.
https://doi.org/10.1016/j.asej.2012.10.007.
[20] He JH. Variational iteration method—a kind
of non-linear analytical technique: some
examples. Int J NonLin Mech., 1999; 34:
699–708. https://doi.org/10.1016/S0020-
7462(98)00048-1.
[21] He JH. Some asymptotic methods for
strongly nonlinear equations. Int J. Mod.
Phys. B., 2006; 20: 1141–1199.
https://doi.org/10.1142/S0217979206033796.
[22] He JH. Variational iteration method—some
recent results and new interpretations. J.
Comput. Appl. Math., 2007; 207: 3–17.
https://doi.org/10.1016/j.cam.2006.07.009.
[23] Biazar J, Gholamin P, Hosseini K. Variational
iteration method for solving Fokker–Planck
WSEAS TRANSACTIONS on FLUID MECHANICS
DOI: 10.37394/232013.2024.19.25
Amine El Harfouf, Abderrahim Wakif, Sanaa Hayani Mounir