Fig. 12: The impact of on
4 Conclusion
The current study investigates the flow of an
incompressible, non-Newtonian fluid in the
presence of heat radiation, a porous material with
an inverse Darcy number, and MHD. Using AGM,
the resultant equations are solved analytically. The
result is also analyzed using a silver water
nanofluid. Using this solution, we get the following
conclusions.
When M is added, the tangential and
transverse velocities drop.
As
values increase,
also rises.
and
have an inverse relationship.
References:
[1] M.M. Amin, M.H. Ahmadi, M.B. Fatemeh
Joda, V. Antonio, S. Uson, Exergy analysis
of a Combined Cooling Heating and power
system integrated with wind turbine and
compressed air energy storage system, Eng.
Conv. Management. 131 (2017) 69– 78.
[2] B.C. Sakiadis, Boundary layer behaviour on
continuous solid surface, AIchE J. 7 (1961)
26.
[3] L.J. Crane, Flow past a stretching plate,
Zeitschift fur Angewandte Mathematik and
Physik 21 (1970) 645–647.
[4] U.S. Mahabaleshwar, I.E. Sarris, A.H.
Antony, G. Lorenzini, I. Pop, An MHD
couple stress fluid due to a perforated sheet
undergoing linear stretching with heat
transfer, Int. Jour. Heat Mass Transf. 105
(2017) 157–167.
[5] U.S. Mahabaleshwar, K.R. Nagaraju, P.N.
Vinay Kumar, D. Baleanu, G. Lorenzini, An
exact analytical solution of the unsteady
magnetohydrodynamics nonlinear dynamics
of laminar boundary layer due to an
impulsively linear stretching sheet,
Continuum mech. Therm. 29 (2017) 559–
567.
[6] A. Tamayol, K. Hooman, M. Bahrami,
Thermal analysis of Flow in a porous
medium over a permeable stretching wall,
Transp Porous med 85 (2010) 661–676.
[7] M. Sharifpur, A.A. Saheed, J.P. Mayer,
Experimental investigation and model
development for effective viscosity of
Al2O3-glycerol nanofluids by using
dimensional analysis and GMDH-NN
methods, Int. Commun. Heat Mass Transf.
68 (2015) 208–219.
[8] M. Sharifpur, S. yousefi, J.P. Meyer. A new
model for density of nanofluids including
nanolayer. Int. Commun. Heat Mass Transf.
78, (2016), 168-174.
[9] M. Sharifpur, N. Tshimanga, J.P. Mayer, O.
Manca, Experimental investigation and
model development for thermal conductivity
alpha- Al2O3-glecerol nanofluids, Int.
Commun. Heat Mass Transf. 85 (2017) 12–
22.
[10] U.S. Mahabaleshwar, P.N. Vinay Kumar, M.
Sheremet, Magnetohydrodynamics flow of a
nanofluid driven by a stretching/shrinking
sheet with suction, Springer plus. 5 (2016) 1–
9.
[11] L.T. Benos, N.D. Polychronopoulos, U.S.
Mahabaleshwar, G. Lorenzini, I.E. Sarris,
Thermal and flow investigation of MHD
natural convection in a nanofluid saturated
porous enclosure: an asymptotic analysis, J.
Therm. Anal. Calorim. 1–15 (2019).
[12] M. Sharifpur, A.B. Solomon, T.L.
Ottermann, J.P. Mayer, Optimum
concentration of nanofluids for heat transfer
enhancement under cavity flow natural
convection with TiO2- water, Int. Commun.
Heat and Mass Transf. 98 (2018) 297–303.
[13] M. Sharifpur, N. Tshimanga, J.P. Mayer.
Parametric analysis of effective thermal
conductivity models for nanofluids. ASME
Int. Jour. Mech. Eng. Congress and
Exposition. 45257, (2012), 1-11.
[14] M. Sharifpur, O.G. Solomon, K.Y. Lee, H.
Ghodsinezhad, J.P. Mayer, Experimental
investigation into natural convection of Zinc
Oxide/water nanofluids in a square cavity,
Heat Transf. Eng. (2020) 1–13.
WSEAS TRANSACTIONS on FLUID MECHANICS
DOI: 10.37394/232013.2024.19.16
Amine El Harfouf, Rachid Herbazi,
Sanaa Hayani Mounir, Hassane Mes-Αdi, Abderrahim Wakif