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Abstract: - Efficient thermal management in industrial manufacturing and electronic cooling systems can be 
achieved by comprehending characteristics of Reynolds and Prandtl numbers in mixed convection scenarios, 
which aids in the optimization of heat transfer systems through the utilization of forced and natural convection 
effects. The impact of Reynolds and Prandtl numbers on mixed convection in a square cavity connected to a 
moving heated horizontal plate is investigated in this research paper. The convective behavior under different 
conditions was evaluated by discretizing the flow governing equations, which included the momentum and 
energy equations, using the finite difference method. The research assessed various fluids, including air 
(Pr = 0.7), liquid metal (Pr = 0.01), and oil (Pr = 10). The Reynolds number ranged from 0.001 to 100, the 
Eckert number ranged from 0.01 to 40, and a constant Richardson number (Ri = 1) was maintained throughout. 
The results revealed that the Reynolds number substantially impacts the velocity and temperature 
characteristics, especially when coupled with a Prandtl number over one and when viscous dissipation remains 
constant. The utmost velocity that can be attained within the cavity is significantly diminished as the Reynolds 
number rises, underscoring the critical importance of dynamic fluid properties in determining heat transfer 
efficiency and fluid flow characteristics. The research unveiled the critical importance of Reynolds and Prandtl 
numbers in the field of fluid dynamics concerning enhancing heat transfer attributes for engineering purposes, 
thereby guaranteeing the effectiveness of thermal systems. 
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1  Introduction  
The study of mixed convection flow and heat 
transfer in lid-driven enclosures has received 
significant interest in academic literature. 
Conjugate mixed convection heat transfer is 
applied in a wide range of engineering and natural 
processes. These include cooling electronic 
components, lubrication technologies, drying 
processes, food production, flow and heat transfer 
in solar ponds, and the thermal-hydraulics of 
nuclear reactors. Flow and heat transfer occur 
frequently in obstructed enclosures in various 
technical applications, such as improving heat 
transfer efficiency in microelectronic devices, flat-
plate solar collectors, and flat-plate condensers in 
refrigeration systems. These specific matters have 

primarily been investigated about natural 
convection occurring within enclosed spaces. [1], 
performed a study on the properties of natural 
convective flow and heat transfer around a heated 
cylinder placed inside a square area with different 
thermal boundary conditions. In addition, [2], 
conducted a detailed investigation of the combined 
effects of natural convection and conduction within 
a complex enclosure. The findings revealed a clear 
correlation between thermal conductivity in the 
solid region and the improvement of flow and heat 
transfer. The total flow and heat transfer dynamics 
were shown to be considerably affected by 
geometric forms and Rayleigh numbers. 

[3], conducted a study on the natural 
convection processes occurring in a closed cavity 
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of a refrigerator. Similarly, [4], used numerical 
techniques to investigate the continuous flow of 
heat caused by natural convection in a square 
container filled with a fixed amount of solid 
material that conducts heat that contains circular or 
square barriers. The investigation showed a minor 
variation in the average Nusselt number between 
cylindrical rods and square rods. [5], conducted a 
separate investigation on natural convection in a 
horizontal fluid layer that contained a conducting 
body. They utilized a precise and efficient 
Chebyshev spectral collocation approach and [6] 
furthered their research by examining spontaneous 
convection in a horizontal fluid layer that contained 
a heat-generating conducting body. In addition, [7], 
examined the phenomenon of natural convection 
around a heated square cylinder that was positioned 
inside an enclosure, with the Rayleigh number 
varying between 103 and 106. The work focused on 
analyzing the intricate flow and heat transfer 
properties under different thermal boundary 
circumstances, revealing precise differences 
between heating with uniform wall temperature and 
heating with uniform wall heat flux. The use of 
enclosures with movable lids is of utmost 
significance in the field of heat transfer 
mechanisms, especially in applications such as 
cooling electronic chips, harnessing solar energy, 
and the food industry. [8], investigated the impact 
of the Prandtl number on both the flow patterns and 
the mechanisms of heat transmission in a square 
container. The results revealed that the influence of 
buoyancy becomes more noticeable as the Prandtl 
number increases. Additionally, the authors derived 
a correlation between the average Nusselt number 
and the Prandtl number, Reynolds number, and 
Richardson number. A numerical analysis of heat 
transport through mixed convection in a two-
dimensional square cavity with an aspect ratio of 1 
was conducted by [9].  

 
 

2  Physical Domain 
The flow of mixed convection around a heated 
bluff body with a square cross-section is a 
fundamental engineering problem that is relevant in 
several practical scenarios. These scenarios include 
heat exchangers, chemical industries, electronic 
cooling, and the flow around buildings, among 
others. The flow around unheated square barriers is 
characterized by the interplay of a free shear layer, 
a boundary layer that forms on the surfaces of the 
obstacle. Heating a cylinder causes the added 
buoyancy to greatly complicate the flow. The 
quantification of the buoyancy effect is done using 

a non-dimensional metric called the Richardson 
number. This number indicates the ratio of the 
buoyancy force to the inertial force. The flow field 
surrounding a hot object is mainly influenced by 
the Reynolds number (Re), Richardson number 
(Ri), and Prandtl number (Pr).  

Several empirical and computational 
investigations have been carried out to analyze the 
influence of these parameters on fluid dynamics. 
The impact of Reynolds number (Re) on the flow 
over a square cylinder has been recorded by several 
studies, [10], [11]. When a cylinder is placed in a 
free stream, the flow remains constant for Reynolds 
numbers (Re) below 40 and becomes irregular for 
Re values beyond 50, [12]. At low Reynolds (Re) 
values, there is no separation of flow at the leading 
and trailing edges of the cylinder, resulting in the 
top and bottom surfaces behaving similarly to a flat 
plate. As a result, the transfer of heat is highest at 
the surfaces close to the front corners and decreases 
towards the rear corners, [13]. Many scholars have 
extensively studied the influence of buoyancy on 
the flow field surrounding a square cylinder and 
vortex shedding occurs in a cross-buoyancy flow 
scenario for all Ri values in the unstable flow 
regime, as shown by [14]. However, in the steady 
flow regime, [15] found that vortex shedding 
begins after a threshold Ri value. The reduction of 
vortex shedding is observed after attaining a 
threshold Ri value, which helps to enhance 
buoyancy, [16] 

According to [17], the requirement for a certain 
Re value to initiate flow separation becomes more 
important as the Ri value increases. The increase in 
Ri was associated with a greater length of vortex 
formation, resulting in the suppression of vortex 
shedding, [18]. The Prandtl number (Pr) is a crucial 
factor that affects the flow field. It is calculated by 
dividing the momentum diffusivity by the thermal 
diffusivity in the fluid. The range of values varies 
significantly, ranging from approximately 0.001 for 
liquid metals to 1025 for the Earth's mantle. Fluids 
with varying Prandtl numbers are widely used in 
chemical industries and nuclear reactors. However, 
there have been few studies that have examined the 
influence of Pr on the flow around a square 
cylinder.  

 [19], investigated the impact of Prandtl 
number (Pr) on the restricted cross buoyancy flow 
around a square cylinder positioned in a channel 
under constant flow circumstances, with Pr values 
ranging from 0.7 to 100. The behavior of 
streamlines, isotherms, and drag and lift 
coefficients for different Pr values was 
demonstrated. [20], examined the impact of 
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the Prandtl number (Pr) on the phenomenon of 
unstable forced convection around a square 
cylinder. It was found that the Nusselt number, 
which represents the convective heat transfer over 
the surface of the cylinder, rose as the Prandtl 
number grew. [21], examined the movement of 
fluid around two square cylinders placed one after 
the other, with a constant and controlled flow, for a 
range of Prandtl numbers from 0.7 to 1000. It was 
observed that when the Pr values were low, the 
isotherms were wider, and when the Pr values were 
high, the isotherms became narrower as a result of 
decreased thermal diffusion. [22], investigated the 
movement of fluid with different densities passing 
between two square cylinders arranged in a line. 
They conducted their study for a range of Prandtl 
numbers (Pr) between 0.7 and 100, while 
maintaining a constant flow rate. As the Pr values 
increased, they saw a decrease in the asymmetry 
caused by buoyancy in the flow field. Additionally, 
at higher Pr values, there was a less pronounced 
change in the lift coefficient with Ri. The current 
investigation examined the flow of a heated 
rectangular cavity under specific conditions: 0.001 
< Prandtl number (Pr) < 10, 0.001 < Reynolds 
number (Re) = 100, 0.01 < Eckert number (Ec) = 
40, with a Richardson number (Ri) of 1. This study 
investigated the impact of changing the Reynold 
number and Prandtl number, along with the 
viscous-energy dissipation function, on the flow 
patterns, energy distribution, and heat transfer rate 
within a rectangular cavity. 

 
2.1 The Physical and the Mathematical 

Models 
Figure 1 illustrates the continuous motion of a 
horizontal plate emerging from a slot at a velocity 
Uw and temperature Tw into a quiescent fluid 
within a rectangular enclosure. This plate serves as 
the upper boundary of the enclosure, which is also 
defined by a fixed horizontal isothermal wall at the 
bottom, a fixed isothermal vertical wall on the left, 
and an adiabatic vertical wall on the right. The 
upper horizontal wall's temperature Tw is higher 
than the lower horizontal wall (i.e. Tw > T∞), 
leading to free convective motion within the 
enclosure. The flow is considered steady, 
incompressible, laminar, and two-dimensional, 
with the fluid being Newtonian. Negligible heat 
transfer by radiation and internal heat generation is 
assumed while accounting for the viscous-energy 
dissipation function effect. The fluid properties are 
assumed to be temperature-independent except for 
the buoyancy term in the momentum equation, for 
which the Boussinesq approximation is utilized. 

The extrusion die wall is both stationary and 
impermeable, imposing non-slip boundary 
conditions. 

The governing equations for the flow at each 
point in the continuum consist of mass, momentum, 
and energy conservation expressions, including the 
viscous dissipation term, these equations for a two-
dimensional rectangular domain are as presented in 
equations (1-6): 
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The Navier-Stokes equations in the x- and y-

directions as presented in equations (2 and 3): 
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where  T-Tg  is the body force per unit 
volume in the y-direction. 
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Fig. 1: Schematic representation of the physical 
model with the boundary constraints and the 
coordinate axes 
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The thermal energy transport equation is 
expressed in equation (4): 
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where   represents the viscous-energy-dissipation 
function, defined by equation (5): 
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The consideration of this function becomes 

crucial in cases of high fluid viscosity or flow 
velocities.  

The specified boundary conditions for 
velocities and temperature are: 

; L    x    0   H, y atT T 0, v  ,U u ww    
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3 Procedure of Analysis and the 

Solution Techniques 
The Navier-Stokes equations represent a group of 
partial differential equations that can be categorized 
as elliptic, parabolic, or hyperbolic based on the 
specific problem being addressed. When 
considering these equations in their incompressible 
form, one can opt to solve them using either the 
vorticity-stream function approach or in their 
primitive-variable form. For this study, the former 
method is employed resulting in equations (2) and 
(3) being simplified into a vorticity transport 
equation by removing the pressure gradient terms 
through the use of the continuity equation (1), 
along with the scalar value of the vorticity, w, in a 
two-dimensional Cartesian coordinate system 
defined in equation (7): 
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This derived expression manifests as the 

dimensional vorticity transport equation (8): 
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The velocity components within a two-
dimensional Cartesian coordinate system are 
delineated as derivatives of the stream function, as 
indicated in eqn(9): 
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Upon substitution into equation (7), the Poisson 

equation for the stream function is obtained in eqn 
(10): 
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The energy equations developed alongside the 

prescribed boundary conditions were transformed 
into non-dimensional form to allow for 
generalization across various physical scenarios 
using L, (Tw - T), WU , LUW  and LUW  
respectively for length, temperature, velocity, 
stream function, and vorticity as presented in 
equation (11) : 
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The normalized versions of the X- and Y-

velocity components, stream function, vorticity, 
and energy transport equations are presented in 
equations (12-15): 
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Within the equations (14-15), Ec represents the 

Eckert number, k denotes thermal conductivity, μ 
signifies dynamic viscosity, Cp stands for specific 
heat capacity, Re represents the Reynolds number, 
and Gr represents the Grashof number. The Eckert 
number serves to relate the flow viscous-dissipation 
term to energy distributions. This number acts as a 
criterion for determining the inclusion of the 
viscous-energy dissipation effect in heat transfer 
analysis. The Prandtl number establishes a link 
between the rates of heat and momentum diffusion. 
The Grashof number serves as a dimensionless 
parameter reflecting the ratio of buoyancy force to 
viscous force in free-convection flow issues, it 
signifies whether the flow is laminar or turbulent, 
and which dynamic process holds dominance. 

The boundary conditions, when expressed in 
non-dimensional form, are as follows: 
 

;  1  X 0  1;  Yat 
1       U0; V 0;    0;     



 
 

 

 ;  X ;   at Y 

    θ V U   ;  Ψ   Ω 

100
00




 

 

 100
00  

 ;  Y ;   at X 

  θ  VU ;  Ψ Ω




 

 

 1  Y 0  1;  Xat 

  0  
X

   
X
V   

X
U     ; 0     





















.      (16) 

 
The vorticity and energy transport equations 

(14) and (15) exhibit non-linear characteristics. 
Currently, there are no universally accepted 
analytical solutions available for these 
interconnected equations. Among the most 
effective methods for solving equations (12) – (15) 

is the finite difference technique, where each term 
within the differential equations is approximated by 
their corresponding differential quotient. The 
resulting linear equations are subsequently 
addressed concurrently by employing the relaxation 
technique. 

The convective heat transfer inside the 
enclosure is calculated based on the Nusselt 
number, a dimensionless quantity that characterizes 
the proportion of heat transfer via convection and 
conduction across the fluid layer. The temperature 
gradient resulting from the exchange of heat 
between the fluid and the wall can be associated 
with the local Nusselt number, Nux, through 
Equation (17): 
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The mean Nusselt number is derived through 

the integration of the local Nusselt number along 
the entire length of the heated wall as shown in 
Equation (18): 
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The attainment of a stable flow state was 

determined by monitoring the convergence of 
temperature and vortex field, utilizing the 
prescribed criterion given by Equation (19): 
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The parameter δ represents α, θ, or ω, with n 

indicating the number of iterations until the results 
converge. The literature reports variations in the 
value of δ ranging from 10-3 to 10-8, [23]. 

 
 

4 Discussion of Numerically 

 Generated Results 
An investigation was conducted to assess the 
influence of the convergence criterion on the 
numerical results. This was accomplished by 
calculating the mean Nusselt number for various 
values of the convergence parameter,  which 
ranged from 10-1 to 10-8. The results, shown in 
Figure 2, indicate that a  value of 10-4 was enough 
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to achieve convergence. To verify the code used in 
this study and the precision of the simulations, the 
Nusselt number was calculated for a convective 
flow situation with a Prandtl number of 0.7 and a 
Rayleigh number of 1000. The Nusselt number 
calculated using the program was Nu = 1.1210, 
which closely matches the value of Nu = 1.132 
given by [24] for the same Prandtl and Rayleigh 
values, with a discrepancy of around 2%. 
Additional validation was conducted by calculating 
the Nusselt number for a Rayleigh number (Ra) of 
105 and a Prandtl number (Pr) of 0.7., [24], 
documented 4.6201, and the current simulation 
produced Nu = 4.7438, indicating consistent 
findings across the three investigations. 
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Fig. 2: Plot of average Nusselt number, Nu versus 
the convergence parameter,  
 

The numerical results were rigorously validated 
to ensure grid independence. This was done by 
obtaining solutions using progressively larger grid 
sizes until a point was reached where a significant 
change in the solutions occurred with further 
increases in the number of nodes. This is shown in 
Figure 3 for Re = 100, Pr = 0.7, and Ra = 1000, 
represented by a dotted line. The accuracy of the 
computed numerical results was found to be highly 
dependent on the number of nodal points. The 
numerical results closely matched several well-
established benchmarks using a grid structure 
consisting of 41 × 41 nodal points. The grid 
independence tests demonstrated that a grid system 
with dimensions of 41 × 41 was sufficient in terms 
of numerical stability, field resolution, and 
accuracy, which aligns with the conclusions of a 
previous study conducted by [23], [25]. 

Figure 4.2 Average Nusselt number, Nu versus log(Grids size) 

with different Reynolds number, Re , for Pr = 0.7, Ra = 1000
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Fig. 3: Average Nusselt number, Nu versus log 
(Grid sizes) with different Reynolds numbers, Re, 
for Pr=0.7, Ra=1000 
 

Figure 4 shows the non-dimensional 
temperature distribution at Y = 0.5 for various 
Eckert numbers (Ec), with Ra = 1000, Pr = 0.7, and 
Re = 100. The data illustrates that an elevation in 
the Eckert number results in an intensified 
temperature gradient. The Eckert number quantifies 
the relationship between the dynamic temperature 
resulting from fluid motion and the optimum 
temperature gradient of the fluid flow. The study 
concludes that the Eckert number has a 
considerable impact on the temperature gradient, 
especially at higher altitudes where there are 
matching strong temperature gradients. This 
discovery supports the research conducted by [23], 
which emphasizes the significant influence of 
viscous energy dissipation in flows with high-
temperature gradients. 

 

 
Fig. 4: Temperature distributions at Y = 0.5, with 
varying Eckert numbers, for given values of Ra = 
1000, Pr = 0.7, and Re = 100 
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Figure 5 displays temperature profiles that have 
been scaled to remove units of measurement for 
different Prandtl numbers, Pr, at a specific location 
Y = 0.5. The values of Ra, Re, and Ec are fixed at 
1000, 100, and 0.4, respectively. The diagram 
illustrates the impact of the Prandtl number on 
thermal patterns. The relationship between greater 
Prandtl numbers and enhanced temperature 
gradients in various fluids is apparent; it was 
supported by [8]. On the other hand, when the 
Prandtl number (Pr) is less than 1, there are only 
small variations in temperature gradient. This is 
due to either weak convection (low momentum 
diffusivity) or strong thermal diffusivity. This 
figure highlights the influence of the Prandtl 
number on temperature profiles, demonstrating a 
significant reduction in the thickness of the thermal 
boundary layer as the surface temperature 
differential increases.  

 

Figure 4.7 Temperature  fields with different Prandtl numbers, Pr.  

     at Y = 0.5, for Ra = 1000, Re = 100, Ec = 0.4.
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Fig. 5: Temperature distributions with varying 
Prandtl numbers, at Y = 0.5, for given values of 
Ra = 1000, Ec = 0.4, and Re = 100 
 

Figure 6 depicts the dimensionless temperature 
distribution for various Reynolds numbers, labeled 
as Re, at a specific location Y = 0.5. The 
parameters Pr = 0.7, Ec = 0.4, and Ra = 1000 are 
also considered. The results suggest that as the 
Reynolds number increases, there is a proportional 
increase in the thermal fields, as evidenced by the 
temperature gradient. The figure demonstrates that 
when the Reynolds number (Re) is much smaller 
than 1, the thermal fields exhibit minor alterations. 
Nevertheless, when the Reynolds (Re) values reach 
50, 70, 80, 90, and 100, the fields experience a 
sudden rise and converge at a shared point 
positioned at x = 0.4. Beyond this point, any further 
alterations in the fields become negligible. This 
pattern is caused by the prevalence of inertia forces 
over viscous forces in the fluid flow. 

Figure 4.8 Temperature  fields with different Reynolds numbers, Re.      

   at Y = 0.5, for  Ra = 1000, Ec = 0.4, Pr = 0.7
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Fig. 6: Dimensionless temperature distribution for 
various Reynolds numbers, Re, at Y = 0.5 for Pr = 
0.7, Ec = 0.4, and Ra = 1000 

 
Figure 7 depicts the non-dimensional 

maximum stream function profile for different 
Eckert numbers while keeping the values of Ra = 
1000, Pr = 0.7, and Re = 100 constant. The 
illustrated diagram demonstrates that the Eckert 
number has a negligible impact on the flow fields. 
More precisely, an increase in the Eckert number 
does not cause major changes in the flow patterns. 

Figure 4.9 Effect of Eckert number on convective flow vigours

as related by the maximum stream function, for Re = 100, Ra = 1000 and Pr = 0.7
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Fig. 7: Dimensionless maximum stream function 
profile for different Eckert numbers, at Ra = 1000, 
Pr = 0.7, and Re = 100  
 

Figure 8 displays non-dimensional streamline 
profiles corresponding to different Prandtl 
numbers, Pr, while keeping the circumstances fixed 
at Ra = 1000, Re = 100, and Ec = 0.4. The figure's 
representation demonstrates that an increase in the 
Prandtl number results in a decrease in the flow 
fields. Convection has a significantly reduced 
impact on the fields in the case of liquid metal. The 
Prandtl number is a measure of the material 
characteristics of a fluid, which might vary among 
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various fluids. A Prandtl number below 1 indicates 
either low momentum diffusivity (indicating weak 
convection) or high thermal diffusivity. This 
number is used to quantify the correlation between 
the rates at which heat and momentum diffuse, 
which is crucial in calculating the thickness of 
boundary layers in a specific external flow field. 
Increased momentum or thermal diffusivity 
indicates that the effects of viscosity or temperature 
spread over a larger area inside the flow field. 

Figure 4.13  Flow  fields with different Prandtl numbers, Pr.    

    at Y = 0.5, for  Ra = 1000, Re = 100, Ec = 0.4.
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Fig. 8: Dimensionless streamline profiles 
corresponding to different Prandtl numbers, Pr, at 
mid-plane, for Ra = 1000, Re = 100, and Ec = 0.4 

Figure 9 displays the non-dimensional 
streamline profile for different Reynolds numbers, 
Re while keeping Ra = 1000, Pr = 0.7, and Ec = 0.4 
constant. The findings indicate that as the Reynolds 
number rises, there is a corresponding increase in 
the flow fields. This discovery emphasizes the 
dominant impact of inertia force compared to 
viscous force. When the Reynolds number (Re) is 
much less than 1, the flow fields experience little 
changes because the dominant force in the fluid 
flow is viscosity, rather than inertia. In this 
situation, diffusion is less significant compared to 
the inertial and buoyant forces within the enclosure. 

Figure 4.14  Flow  fields with different Reynolds numbers, Re.    

      at Y = 0.5, for Ra = 1000, Ec = 0.4, Pr = 0.7
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Fig. 9: Dimensionless streamlines profile for 
different Reynolds numbers, Re, for Ra = 1000, 
Pr = 0.7, and Ec = 0.4 

Figure 10 illustrates the relationship between 
the Nusselt number (Nu) and the Prandtl number 
(Pr) for different values of the Eckert number (Ec). 
The graph shows the Nu-Pr relationship for Ra = 
1000, Ec = 0.4, and 0.0, with Re fixed at 100. The 
findings demonstrate that a higher Prandtl number 
corresponds to an increase in the Nusselt number.  

Figure 4.15 Nuselt number, Nu versus Prandtl numbers, Pr.   
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Fig. 10: plot of Nu against Pr for Ra = 1000, 
Ec = 0.4, and 0.0, with Re fixed at 100. 
 

Figure 11 depicts the graph of the Nusselt 
number, Nu, against the Reynolds number, Re, for 
Eckert numbers, Ec = 0.4, Ra = 1000, and Pr = 0.7. 
The obtained data demonstrates that when the 
Reynolds number increases, the Nusselt number 
displays harmonic patterns that are associated with 
energy-viscous-dissipation. The graphical 
representation suggests that the Reynolds number 
has a notable influence on the heat transfer 
properties within this particular region. 
Furthermore, at lower Reynolds numbers, the 
influence on the rate of heat transfer by different 
convection modes is insignificant because the 
diffusion effects decrease in both the inertial and 
buoyancy forces near the extrusion slot. 
 

 
Fig. 11: Nusselt number, Nu versus Reynolds 
number, Re, for Pr = 0.7, Ra = 1000, Ec = 0.4 
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5  Conclusions 
The study examined the heat transfer 
characteristics, flow patterns, and thermal 
distributions on a constantly moving horizontal 
sheet of extruded material in a stable fluid 
environment. This analysis was conducted both 
near and far from the extrusion slot and the 
numerical model was discretized using a central 
finite difference method. The study investigated the 
influence of the Prandtl number and Reynolds 
numbers at various values of the Eckert number on 
the thermal distributions, flow patterns, and heat 
transfer rates. The following findings were derived 
based on the analyzed flow conditions and 
parameter ranges: 

The Eckert number has a substantial effect on 
the distribution of energy and the transfer of heat. It 
improves the distribution of energy without having 
a noticeable impact on the patterns of flow. An 
increase in Prandtl numbers results in enhanced 
thermal distributions and heat transfer rates, 
although it leads to diminished flow patterns. At 
lower Reynolds numbers, the heat transfer rates 
from distinct convection modes show negligible 
changes. However, as the Reynolds numbers 
increase, the thermal distributions, flow patterns, 
and heat transfer rates become more pronounced.  

The findings of this research underscore the 
considerable significance of fluid dynamics in 
optimizing heat transfer for the benefit of 
engineering. Additional research that expand the 
range of Reynolds and Prandtl numbers so that the 
effects in various industrial and technological 
settings were thoroughly elucidated and ultimately 
contributed to the enhancement of thermal system 
design and performance. 
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