
Transient MHD Fluid Flow Past a Moving Vertical Surface in a 

Velocity Slip Flow Regime 

 
IGHOROJE W.A. OKUYADE1,*, TAMUNOIMI M. ABBEY2 

1Department of Mathematics/Statistics,  
Federal Polytechnic of Oil and Gas,  

Bonny Island,  
NIGERIA 

  
               2Theoretical and Applied Mathematics Group, Department of Physics,  

University of Port Harcourt,  
Port Harcourt,  

NIGERIA  
 

*Corresponding Author 

 
Abstract: - The problem of unsteady MHD fluid flow past a moving vertical surface in a slip flow regime is 
presented. The model is built on the assumption that the flow is naturally convective with oscillating time-
dependent and exponentially decaying suction and permeability, double-diffusion, viscous dissipation, and 
temperature gradient-dependent heat source, and non-zero tangential velocity at the wall; the fluid is viscous, 
incompressible, Newtonian, chemically reactive, and magnetically susceptible; the surface is porous, and 
electrically conductive, and thermally radiative. The governing partial differential equations are highly coupled 
and non-linear. For easy tractability, the equations are reduced to one-dimensional using the one-dimensional 
unsteady flow theory. The resulting equations are non-dimensionalized and solved using the time-dependent 
perturbation series solutions, and the Modified Homotopy Perturbation Method (MHPM). The solutions of the 
concentration, temperature, velocity, rates of mass and heat diffusion, and wall shear stress are obtained, 
computed, and presented graphically and quantitatively, and analyzed. The results among others, show that the 
increase in the: Schmidt number increases the fluid concentration, velocity, the rate of heat transfer to the fluid, 
and the stress on the wall, but decreases the rate of mass transfer to the fluid; Magnetic field parameter 
decreases the fluid velocity and stress on the wall; Slip parameter increases the flow velocity, but decreases the 
stress on the wall; Permeability parameter increases the flow velocity and the stress on the wall. These results 
are benchmarked with the reports in existing literature and they agree. 
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1   Introduction
Flow problems with the magnetic field, chemical 
reaction, and heat source/sink effects cut across 
nature, science, and engineering. They have 
applications in the chemical and petroleum 
industries, cooling of nuclear reactors, catalytic 
reactors, and the likes.  

In fluid dynamics, the no-slip condition applies 
to viscous fluids, and therein it is assumed that at 
solid boundaries the fluid velocity is equal to zero. 
The exertion is based on the fact that fluid particles 
on the surface do not move along with the flow 
when the force of adhesion is stronger than the 

cohesion. At the fluid-solid interface, the force of 
attraction between the fluid particles and the solid 
particles (adhesive force) is stronger than that 
between the fluid particles (cohesive force). The 
force imbalance brings the fluid velocity to zero. 
The no-slip condition is a universal 
assertion\assumption or a mere ideology and does 
not apply to inviscid flows, where the effect of the 
boundary layer is neglected. However, for 
engineering applications, the concept of no-slip 
condition does not always hold. For example, at 
very low pressure (at high altitude) some of the fluid 
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particles near the solid surface move along with the 
surface, thus bringing to bear the slip velocity 
condition.  Furthermore, at very high altitudes fluid 
particles adjacent to the surfaces (of aircraft and 
rockets, say) no longer take the velocity of the solid 
surface but possess finite tangential velocities 
known as the slip velocities (non-zero) with which 
they slip along the surface.  These slip velocities are 
linearly proportional to the shear stress on the plate, 
while the surface boundary with slip velocity 
condition is the velocity-slip regime. The slip factor 
is a function of mass flow rate, fluid entry condition, 
working fluid viscosity, boundary layer growth, 
flow separation, etc. A common approximation for 
fluid slip is yuwalluu  / , where

1/)12( mm  the slip length, 1m  is Maxwell’s 
reflection coefficient [1]. Importantly, the 
Maxwell’s reflection coefficient/transmission 
coefficient is a parameter that describes how the 
wave is reflected by impedance discontinuity in the 
transmission medium. It is the ratio of the amplitude 
of the reflected wave/ transmitted wave to the 
incident wave. The slip idealization was first 
conceived and presented in [2], as a flow model 
wherein the velocity normal to the boundary is set to 
zero, while the velocity parallel to the boundary is 
left free. Building on this, [3], formulated a slip 
model, which has been used extensively by 
researchers to date. Upon Maxwell’s model, a lot of 
research has been carried out. For example, [4], 
studied the slip flow at the entrance region of a 
parallel plate channel; [5] considered the flow in 
rectangular and annular ducts; [6] studied the MHD 
steady flow in a channel with slip at the permeable 
boundaries. 

Specifically, concerning the flow past moving 
vertical plates, [7] examined the MHD visco-elastic 
flow with velocity slip when the plate is oscillating; 
[8] investigated the transient flow under variable 
suction, periodic temperature, and slip conditions; 
[9] examined the effect of periodic heat and mass 
transfer on the unsteady natural convective flow in 
the slip-flow regime when the suction velocity 
oscillates with time; [10] examined the flow under a 
magnetic field influence when the plate is 
oscillating in a slip velocity regime. Furthermore, 
[11] studied the MHD flow under radiation and 
temperature gradient-dependent heat source in a slip 
flow regime; [12] looked into the slip boundary 
layer of non-Newtonian fluid with convective 
thermal boundary condition; [13] considered the 
MHD convective heat and mass transfer in a 
boundary layer slip flow over with thermal radiation 
and chemical reaction; [14] looked at the transient 

MHD flow of a third-grade fluid when the plate is 
insulated, and in the presence of thermo-diffusion, 
time-dependent suction, heat source, mass transfer 
and slip effects. [1], studied the unsteady MHD 
natural convective flow over a porous vertical plate 
in the presence of radiation and temperature 
gradient-dependent heat source, exponentially 
decaying suction and permeability in a slip flow 
regime using time-dependent perturbation method 
and numerical analysis, and observed that the 
velocity increases with the increase in the slip 
parameter and Grashof number, but decreases with 
the increase in the magnetic field, heat source, 
radiation, and chemical reaction rate parameters; the 
temperature decreases with the increase in the 
radiation and heat source parameters; the 
concentration decreases with the increase in the 
Schmidt number and chemical reaction rate 
parameter. [15], studied the MHD natural 
convective chemically reactive flow in the presence 
of thermo-diffusion, fluctuating wall temperature 
and concentration, thermal radiation, and free 
stream and slip velocities; [16], considered the 
MHD boundary layer flow with slip near a 
stagnation point; [17], considered the flow in the 
presence of heat generation/absorption, slip 
velocity, and temperature jump. [18], investigated 
thermal diffusion and chemical reaction effects on 
an unsteady flow in the presence of temperature-
dependent heat source and velocity slip condition 
using the method of exponentially increasing small 
perturbation law, and saw that the velocity is 
enhanced by the increase in the slip and 
permeability parameters, and Grashof numbers; the 
temperature increases with the increase in the 
Prandtl number, but decreases with increase in the 
heat source parameter; the concentration increases 
with the increase in the Soret number, but decreases 
with the increase in the permeability parameter and 
Schmidt number. [19], examined the effects of 
variable viscosity and periodic boundary conditions 
on a free convective flow in a slip regime; [20], 
examined the flow of a micro-polar fluid over a 
radiating surface in the presence of variable 
viscosity in a slip regime; [21], investigated the flow 
under velocity slip and time-periodic boundary 
effects; [22], examined numerically the higher-order 
chemical reaction effects on MHD Nano-fluid flow 
with velocity slip boundary condition. More so, 
[23], considered the boundary layer flow in the 
presence of cross-diffusion effect in a velocity slip 
regime; [24], studied numerically the flow of a 
Newtonian fluid in the presence of buoyancy, order 
two thermal slip and entropy generation; [25], 
looked into the transient slip flow with ramped plate 
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temperature and concentration, thermal radiation 
and buoyancy effects. Similarly, [26], considered 
the transient MHD natural convective flow in a slip 
regime with periodic movement, Hall currents, and 
rotation effects; [27], gave a Reynolds analogy for 
the flow at different regimes. 

Other reports on the convective flow over a 
vertical plate with slip velocity conditions are found 
in [28], [29], [30], [31], [32], [33], [34], [35], [36], 
[37]. 

More so, the interaction of electric and magnetic 
fields in a flow system results in many factors that 
influence the flow. By application, when a wire 
carrying alternating current is applied to a non-zero 
resistive plate/conductor a voltage difference is 
created between the ends of the conductor in the 
electric field. The electric field accelerates the 
charge carriers (electrons, ions, and holes) on the 
plate in the direction of the electric field to give 
kinetic energy. At collision with each other on the 
plate, the charged particles are 
scattered/randomized. The scattering motions of the 
charged particles cause the temperature of the 
plate/conductor to rise. This thermal effect is called 
the Joule/Ohmic heating. By this, electric energy is 
converted into thermal energy. Also, as the fluid 
flows past the plate a dissipating force that works 
mechanically to heat the fluid is produced. It is 
noteworthy that Joule heating is limited by 
viscosity, electric conductivity, and fouling deposits 
on the conductor. Furthermore, the varying 
alternating currents lead to the heating of the plate 
non-uniformly. Similarly, the heating of the plate to 
a high-temperature regime leads to the emission of 
thermal radiant rays. The effects of Joules/Ohmic 
heating, magnetic field, and viscous dissipation in 
the problem of convective heat and mass transfer on 
the flow past vertical plates have been investigated. 
For example, [38], examined the viscous and Joule 
heating effects on the MHD free convection flow 
with variable plate temperature; [39], studied the 
MHD natural convective flow of a radioactive fluid 
past an inclined plate in the presence of chemical 
reaction, temperature-dependent heat source, and 
Joule heating using the method of regular 
perturbation, and noticed that an increase in the 
magnetic field parameter decreases the velocity, 
whereas an increase in the permeability parameter 
increases it; the increase in the Prandtl and Schmidt 
numbers, respectively, condense the thermal and 
concentration boundary layers. 

In highly interactive systems, where magnetic 
flux, convection, and chemical reaction are 
significant heat and mass transfer occur 
simultaneously. The simultaneous effect on the 

system called double-diffusion induces buoyancy. 
The differential in temperature produces Dufour 
(thermo-diffusion), while the differential in 
concentration produces Soret (diffusion-thermo). 
The double-diffusion phenomena were developed 
from the kinetic theory of gases, [40], [41]. They are 
smaller than the Fourier and Ficks effects, [42]. For 
their relevance, many reports bearing double-
diffusion effects exist in the literature. Specifically, 
on the flow over vertical plates, [43], considered 
natural convective and mass transfer effects on a 
two-dimensional case using the similarity technique 
and Runge-Kutta sixth-order approach; [44], 
examined the effects of thermal radiation, Hall 
currents, Dufour and Soret numbers on the MHD 
mixed convective flow; [45] investigated the free 
convective flow with double-diffusive convection 
using the successive linearization method; [46] 
studied a mixed convective heat and mass transfer 
flow along a wavy surface in a Darcy porous 
medium in the presence of cross-diffusion effects 
using similarity transformation and numerical 
scheme for aiding flow, opposing flow, and for both 
aiding and opposing flows. 

The problem of natural convective fluid flow 
over a vertical plate with chemical reaction, 
radiation, and temperature-dependent heat source in 
a slip flow regime using the time-dependent and 
exponentially decaying perturbation series solution 
approach was examined by [1]. In their work, the 
effects of thermo-diffusion and viscous dissipation 
were neglected. As an extension of  [1], this present 
work investigates the flow problem in the presence 
of the aforementioned parameters using the time-
dependent and exponentially decaying perturbation 
series solutions and the Modified Homotopy 
Perturbation Method.  

This paper is presented in the following format: 
Section 2 gives the problem formulation; Section 3 
holds the problem Solution; Section 4 holds the 
conclusion. 

 
 

2   Problem Formulation 
x

U , C , T  

y

gT
C
u B

 
Fig. 1: The model of a vertically accelerating plate 
in a fluid 
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The transient MHD natural convective flow past 
a moving vertical surface in a slip flow regime is 
investigated. The schematic of the flow is shown in 
Figure 1. The model formulation is based on the 
assumptions that: the fluid is Newtonian, thermally 
radiating, chemically reacting and electrically 
conducting; the physical properties of the fluid such 
as the specific heat at constant pressure, thermal 
conductivity, and density remain constant 
throughout the fluid; the fluid is mixed with a 
chemical species at a higher concentration to initiate 
a chemical reaction; the plate is porous, its 
permeability and suction  at the wall are oscillating, 
time-dependent and exponentially decaying; the 
plate is connected to a wire carrying an alternating 
current, which produces a voltage between the ends, 
and which in turn energizes the ions, electrons and 
holes on the plate to generate a Joule/Ohmic heating 
that produces a mechanical force/viscous 
dissipation; a magnetic field force of uniform 
strength and negligible induction effect is applied 
transversely to the plate; there is a convective 
temperature gradient between the bottom and upper 
surfaces of the plate with a heat source at the bottom 
and sink at the top; the plate is heated to a high 
temperature regime such that thermal rays are 
emitted into the fluid; the flow is naturally 
convective. In this model, the x-axis is taken to be in 
the vertical direction of the plate and the y-axis is 
normal to it. Therefore, if ),( vu are the velocity 
components in the spatial ( tyx ,, ) coordinates; wT  
and wC are the temperature and concentration at the 
wall; v is the velocity along the y-axis and the 
suction at the wall; T  and C  are the fluid 
equilibrium temperature and concentration, T and
C  are the fluid temperature and concentration. 
Then, using the unsteady one-dimensional flow 
theory and Boussinesq’s approximations the 
governing equations of continuity, momentum, 
energy, and mass diffusion are: 

ovy
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with the boundary condition:  

,0)0,'(','
')0,'(' 




 tv

y

u
tu  ,)0,'(' wTtT 

wCtC )0,'(' at 0'y     (5)                                              
,),'(',0),'(',0),'('  TtTtvtu

 CtC ),'(' at ' y      (6) 
 

 is the kinematic viscosity;    is the density; g   is 
the acceleration due to gravity; t is the coefficient 
of volumetric expansion due to temperature; c   is 
the coefficient of volumetric expansion due to 
concentration; k   is the thermal conductivity of the 
fluid; m   is the magnetic field permittivity; 'Q   is 
the heat source/sink; e   is the electrical 

conductivity of the fluid; 2
oB  is the magnetic field 

flux; pC   is the specific heat capacity at constant 
pressure; sC is the concentration susceptibility; tk is 
the thermal diffusivity ratio; D   is the coefficient of 
mass transfer/ mass diffusion coefficient;   is the 
permittivity of the porous plate; rk  is the chemical 
reaction term of the species.  
 

Assuming the suction at the wall and 
permeability of the medium are oscillating, time-
dependent, and exponentially decaying, then: 

)''1( tmeovv         (7) 

)''1( tmeo
        (8) 

 
where 'm  is a positive constant, ov is the steady 
suction at the wall. Suction is a criterion for 
determining certain flow situations. For example, 
for 0v  suction (the fluid moves towards the 
plate), 0v  injection (the fluid moves from the 
plate), and 0v  the plate is impermeable. Similarly,

o is the steady permeability of the wall. 
Permeability is Darcian for ,1o and non-Darcian 
for

 
1o . While porosity is a measure of the voids 

in a material, permeability is a measure of the ease 
of flow of a fluid through a porous solid.  In other 
words, porosity determines the number, sizes, and 
inter-connectedness of the voids in a solid material, 
while permeability determines the ease of fluid flow 
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through the voids. Both porosity and permeability 
are related to the number, size, and connections of 
openings in solid materials, hence many a time they 
are used interchangeably. 

More so, radiation is seen as a heat transfer 
from a high-temperature regime. In effect, it is 
comparable to convective heat transfer. It is 
described in terms of optical depths: depths at which 
photons travel/penetrate fluids. Optical depths can 
be thin or thick. A fluid is optically thin/transparent 
when its density is relatively low, and the depth of 
penetration/distance it allows long photon travel in 
it is far less than unity ( 1 ). Examples of 
optically thin environments include the non-
participating media in which energy is emitted from 
the fluid but is not absorbed, as in gray gas. Also, a 
fluid is optically thick/non-transparent when its 
density is high enough to allow short photon travel 
in it. The optically thick fluid emits and absorbs 
radiation at the boundaries. The analysis of radiation 
is based on the optic limits: thin or thick. 
Importantly, the radiative heat flux is approximated 
by the Roseland diffusion approximations. Now, on 
the assumption that the fluid here is optically thin, 
we adopt the Roseland approximation: 
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Taking the temperature difference within the 

flow to be sufficiently small such that ,)( TT

and is a non-constant small temperature correction 

factor, then 4T can be expressed as a linear function 
of the temperature in the Taylor series about T : 

43344
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with the higher-order terms neglected.  
 
Substituting this into equation (9) gives: 
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and by equations (7), (8) and (10), equations (2) - 
(4) become: 
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Making the problem independent of particular 

units of measurement and geometry, and generating 
the necessary parameters that control the flow, we 
introduce the following non-dimensionalized 
quantities: 
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where  and   are the non-dimensionalized 
temperature and concentration, respectively; N is the 
heat generation/absorption parameter; Gr is the 
Grashof number due to temperature difference; Gc  
is the Grashof number due to concentration 
difference; M  is the magnetic field force;  is the 
porosity parameter; Pr  is the Prandtl number; Dr  
is the Dufour number; Sc  is the Schmidt number;
is the chemical reaction rate) into equations (11) – 
(13), (5) and (6), we have:  
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and the boundary conditions 
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Other factors influencing the flow are the 
Nusselt number (or thermal conductivity of the 
fluid), Sherwood number (or species conductivity of 
the fluid), and wall shear stress (the force the fluid 
exerts on the wall), and these are prescribed non-
dimensionally as:   

0)('



y

yNu                (20)

0)('



y

ySh                (21) 

0)('



y

yuCf                 (22) 

 

 

3   Problem Solution 
 
3.1   Method of Solution 
Equations (15) - (17) are reduced to ordinary 
differential equations and solved using time-
dependent perturbation series solutions of the form, 
[11]: 

)2()(1)(),(  Omteyuyoutyu               (23) 

)2()(1)(),(  Omteyyoty               (24) 

)2()(1)(),(  Omteyyoty               (25) 
 

Substituting these into equations (15) - (19) 
appropriately, collecting and equating the cefficient 
of the powers ,  we have: 
 
for the zeroth order 

oGcoGrouM
dy

odu

dy

oud
 12

2
             (26) 

2

22
Pr2

2

y

oDr
dy

odu
Ec

dy

od

dy

od




















     
(27) 

02
2







oSc
dy

od
Sc

dy

od
               (28) 

 

with the boundary conditions 

1,1, 



 ooy

ou
ou  at 0y              (29) 

0,0,0  ooou at y              (30) 
 
and for the first order 

1112
1

2
1

2
 GcGr

dy
odu

uM
dy

du

dy

ud

             

(31) 

dy
odm

dy

d

dy

d 






Pr14Pr1

2
1

2
  

2'
1

2
1Pr2

y
Dr

dy

du

dy
odu

Ec


















                        (32) 

dy

od
Sc

dy

d
Sc

dy

d 







1
1

2
1

2


             (33) 
 
with the boundary conditions 

01,01,1
1 






y

u
u 

at 0y              (34) 
0,0,0 111 u at y              (35)  

where 
o

MM

1

1  ,
4

1
2

m

o
MM 


,

)1Pr(,1,4 NRa
m

Sc  







  

 
Equations (26), (27), (31), and (32) are still 

highly coupled. A second perturbation becomes 
necessary. We resort to using the Modified 
Homotopy Perturbation Method (MHPM) of 
solutions. 

 
The analysis associated with the Homotopy 

Perturbation Method is as follows: 
Consider the nonlinear equation 
     rfvNvL  , r               (36) 

 
with the boundary condition 















r

y

u
uB ,0,                        (37) 

 
where L is a linear operator, N is a nonlinear 
operator, B is a boundary operator, is the boundary 
of the domain  ,  rf is a known analytic function. 
For a Homotopy Perturbation technique, He (a 
Chinese) constructed a homotopy: 
  Rprv  ]1,0[,  
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which satisfies 
              0][][1,  rfvNvLpouLvLppvH                                                                         

            (38) 
 
where ]1,0[p is an impending parameter, ou is an 
initial approximation that satisfies the boundary 
conditions. Clearly, from equation (38), we have: 

      0][0,  ouLvLvH , 

        0][1,  rfvNvLvH  
 

Importantly, the process of changing p from 
zero to unity  prv ,  is like that of changing from 

 rou
 
to  ru , and this is called a deformation in 

Topology; the     0][  ouLvL  and 
      0][  rfvNvL are called homotopic.  

Here, the basic assumption is that the solution of 
equation (38) can be expressed as a power series in 
p: 

...2
2

1  vppvovv  
 
and the approximate solution of equation (36) is 
obtained as, [47]; [48]:  

...21lim  vvovvu  

   1p  
 

The difference between HPM and MHPM is 
seen in their use of boundary conditions. In HPM, 
order zero takes the boundary conditions at t<0, 
order one takes the boundary conditions at t>0 for 
y=0, and order two takes that at t>0 for y=∞, while 
in MHPM all the orders use the boundary conditions 
at t>0: y=0 and y=∞ but with little modifications, as 
we shall see below. 
 
Based on the given analysis, writing equations (26) - 
(35) in MHPM form, we have  
 

For the Zeroth Order 

]1'''['')1( oGcoGrouMououpoup  (39) 

]''2)''(Pr'''['')1( oDrouEcoopop  

                 (40) 
]'''['')1( oScoScopop  

                          
(41) 

such that  
]1'['' oGcoGrouMoupou               (42) 

]''2)''(Pr'['' oDrouEcopo  
                   

(43) 
]'['' oScoScpo                 (44) 

 
Expanding the dependent variables in terms of p, we 
have: 

for the zeroth order: 

..02
2

0100  uppuuou               (45) 

..02
2

0100  ppo                           (46) 

..02
2

0100  ppo               (47) 
 and for the first order 

..12
2

11101  uppuuu               (48) 

..12
2

11101  pp                           (49) 

..12
2

11101  pp               (50) 
 
Substituting equations (45)-(47) into equations (42)-
(44) and (29) and (30), gives:  

































































)02
2

0100(
)02

2
0100(

)02
2

01

00(1

)'02
2

'01'00(

''02
2''01''00

p

pGc

p

pGr

up

puuM

up

puu

puppuu  

                             (51) 
 












































































)''02
2

''01

''00(
]2)''02(2

2)''01(

2)''00[(Pr

)'02
2

'01'00(

''02
2''01''00

p

p

Dr

up

up

uEc

p

p

ppp



   

         (52) 













































)02
2

01

00(
)'02

2
'01

'00(

''02
2''01''00

p

Sc

p

p

Sc

ppp



                (53) 
 
Collecting the coefficients of the of the powers of p 
in each case, we have: 

0''00 u                 (54) 
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0''00                  (55) 

0''00                  (56) 

0000001'00''01  GcGruMuu              (57) 

''00
2)''00(Pr'00''01  DruEc

               
(58) 

00'00''01  ScSc               (59) 
 

0101011'01''02  GcGruMuu              (60) 

''01
2)''01(Pr'01''02  DruEc            (61) 

01'01''02  ScSc               (62) 
 
with the boundary conditions 

100,100,00
00 






y

u
u  at 0y              (63) 

000,000,000 u at y              (64) 

001,001,01
01 






y

u
u  at 0y              (65) 

001,001,001 u at y              (66) 

002,002,02
02 






y

u
u  at 0y              (67) 

002,002,002 u at y              (68) 
 
The First Order 

Similarly, by expressing equations (31)-(35) in 
MHPM form, we substitute equations (48)-(50) into 
them, and collecting and equating the coefficients of 
the powers of p in the resulting equations to zero, 
we obtain: 

0''10 u                 (69) 

0''10                  (70) 

0''10                  (71) 

1010'00102'10''11  GcGruuMuu      (72) 

'00Pr104
Pr'10''11 

m
   

''10
2)'10'.00(Pr2  DruuEc               (73) 

0010'10''11   ScSc              (74) 
 

1111011121112 ''''  GcGruuMuu         (75) 

'01Pr114
Pr'11''12 

m
  

''10)]'10'.01()'11'.00[(Pr2  DruuuuEc        (76) 

0111'11''12   ScSc              (77) 
 
with the boundary conditions, 

010,010,10
10 






y

u
u  at 0y              (78) 

010,010,010 u at y
     

             (79) 

011,011,11
11 






y

u
u  at 0y              (80) 

011,011,011 u at y               (81) 

012,0102,12
12 






y

u
u  at 0y              (82) 

012,012,012 u at y              (83) 
 

Equations (54)-(68) and (69)-(83) are solved 
using the Mathematica 11.2 computational software, 
and their solutions are found in the Appendices. 
 
3.2  Results and Discussion 
The solutions of the concentration, temperature, 
velocity, Nusselt number, Sherwood number, and 
wall shear stress are computed and presented 
quantitatively and graphically. The effects of the 
rate of chemical reaction, Schmidt number, Grashof 
number, slip, magnetic field, and permeability 
parameters are considered. For physically realistic 
constant values of ,7.0Pr,01.0,1.0  DrEc

5.0,1,1.0,01.0,3,3,3  mtpNGcRa    
and varied values of 0,,,,,  MGrSc , we obtained 
the figures and table below. 
 

 
Fig. 2: Concentration-Chemical Reaction Rate 
Profiles     
                          

 
Fig.  3: Velocity-Chemical Reaction Rate Profiles 
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Table 1.  Some Parameters-Sherwood Number, 
Nusselt Number, and Wall Shear Stress Relations 

Parameters )0('  )0('  )0('u  
     

0.1 0.294755 0.327439 0.256117 
0.5 0.267821 0.327442 0.260611 
1.0 0.233099 0.327447 0.266285 
1.5 0.197205 0.327451 0.271934 
Sc     

0.1 0.323176 0.327744 0.250048 
0.5 0.280969 0.327446 0.258193 
1.0 0.224703 0.327449 0.268373 
1.5 0.164533 0.327451 0.278554 
M     

0.1   0.293304 
0.5   0.260064 
1.0   0.220136 
1.5   0.179636 
     

0.1   0.509107 
0.5   0.382889 
1.0   0.260636 
1.5   0.165565 

o     

0.1   0.152264 
0.5   0.260631 
1.0   0.341636 
1.5   0.368636 
 

The effects of the chemical reaction rate on the 
flow are seen in Figure 2, Figure 3 and Table 1. 
They show that the increase in the rate of chemical 
reaction increases the fluid concentration, velocity, 
the rate of heat transfer to the fluid, the force 
exerted on the wall, and the rate of mass transfer to 
the fluid. A chemical reaction may lead an increase 
in the interaction of fluid particles, and the 
production of new species. More so, a chemical 
reaction may be exothermic or endothermic, and 
therein heat is generated or absorbed. 
Phenomenally, this ought to increase the velocity, 
thus accounting for what is seen in Figure 2, Figure 
3 and Table 1. 

 

 
Fig.  4: Concentration-Schmidt Number Profiles   

 
Fig.  5: Velocity-Schmidt number Profiles 
 

The effects of Schmidt number on the flow are 
shown in Figure 4, Figure 5 and Table 1. They 
depict that the increase in the Schmidt number 
increases the fluid concentration, velocity, the rate 
of heat transfer to the fluid, and stress on the wall, 
but decreases the rate of mass transfer to the fluid. 
Schmidt number is the ratio of momentum diffusion 
to mass diffusion. When the mass diffusion 
increases the concentration increases. Similarly, 
when the momentum diffusion dominates the 
system, the velocity increases. More so, with the 
increase in the concentration, the velocity, as a 
function of concentration increases. 
 

 
Fig. 6: Velocity-Grashof Number Profiles                                                 
 
 

 
Fig. 7:  Velocity-Slip Parameter Profiles   
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Furthermore, the effect of the Grashof number 
on the flow is shown in Figure 6. It depicts that the 
increase in the Grashof number increases the 
velocity of the flow. When the temperature at the 
plate/environmental temperature is higher than that 
of the fluid at equilibrium heat is transferred from 
the plate to the fluid. Now, a differential exists 
between the temperature at the plate and that of the 
fluid at equilibrium. In the presence of volumetric 
expansion due to heat exchange and gravity, 
convection currents are generated. The convection 
currents induce a buoyancy force which reduces the 
fluid viscosity, thus enhancing the fluid velocity; as 
seen in Figure 6. This result aligns with [1] and [18]. 

Additionally, the effects of the slip velocity 
parameter on the flow are shown in Figure 7 and 
Table 1. They show that the increase in the slip 
parameter increases the flow velocity, but decreases 
the stress on the wall. The slip length is a function 
of Maxwell’s reflection/transmission coefficient, 
which describes the way wave 
reflection/transmission affects the flow velocity. A 
higher reflection/transmission increases the slip 
length, and vice versa. Therefore, an increase in the 
wave reflection/transmission increases the fluid 
velocity. This result is in agreement with [1] and 
[18].  
 

 
Fig. 8: Velocity-Magnetic Field Profiles  
 

 
Fig. 9: Velocity-Permeability Profiles     
 

Similarly, the effects of the magnetic field on the 
flow are shown in Figure 8 and Table 1. They show 
that the increase in the magnetic field parameter 
decreases the fluid velocity and the stress on the 
wall. The particles of a chemically reactive fluid 
exist as charges or ions and generate electric 
currents in the presence of an applied magnetic 
force. Again, the interaction of the electric currents 
with the magnetic field force produces a mechanical 

force called the Lorentz force ( oBjF  , where j 
is the electric current density, and Bo is the magnetic 
field flux). The Lorentz force has the potency of 
freezing up the flow velocity. More so, the decrease 
in the velocity must decrease the stress on the wall. 
The results are in consonant with [1]. 

Also, the effects of permeability/porosity are 
shown in Figure 9 and Table 1. They show that the 
increase in the permeability factor of the porous 
media increases the flow velocity and the stress on 
the wall. In addition to the hydraulic conductivity 
effect of the porous plate, the permeability factor 
determines the ease of flow of a fluid passing 
through a porous medium. The higher the 
permeability parameter the easier the fluid flows 
through the medium. Therefore, the velocity will 
increase with the increase in the permeability 
parameter. This result aligns with [18]. 
 
 
4   Conclusion 
Transient MHD fluid flow past a moving vertical 
surface in a slip flow regime is investigated. The 
analysis of results shows that the increase in the: 

● rate of chemical reaction increases the fluid 
concentration, velocity, rate of heat transfer 
to the fluid, and stress on the wall, but 
decreases the rate of mass transfer to the 
fluid. 

● Schmidt number increases the fluid 
concentration, velocity, rate of heat transfer 
to the fluid, stress on the wall, and the rate 
of mass transfer to the fluid. 

● Grashof number increases the fluid 
velocity. 

● magnetic field parameter decreases the 
fluid velocity and stress on the wall. 

● slip parameter increases the flow velocity, 
but decreases the stress on the wall 

● porosity parameter increases the flow 
velocity and stress on the wall.  

These results are benchmarked with some reports in 
existing literature, and they are in consonance. 
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APPENDICES 
Φ00(y) = (A-y)/A 
Φ01(y) = (3 A y Sc-3 y2 Sc+2 A2 y δ Sc-3 A y2 δ 
Sc+y3 δ Sc)/(6 A) 
Φ02(y) = (30 A2 y -90 A y2 +60 y3 +30 A3 y δ 

-60 A2 y2 δ  +8 A4 y δ2 -20 A2 y3 δ2 +15 A y4 
δ2 -3 y5 δ2 )/(360 A) 
Φ10(y) = 0 
Φ11(y) = (2 A2 y δ Sc-3 A y2 δ Sc+y3 δ Sc)/(6 A) 
Φ12(y) = 1/(360 A λ) (-15 A3 y γ ψ+30 A y3 γ ψ-15 
y4 γ ψ+30 A2 y γ Sc-90 A y2 γ Sc+60 y3 γ Sc+15 A3 y 
δ λ -30 A y3 δ λ +15 y4 δ λ +8 A4 y δ2 λ -20 
A2 y3 δ2 λ +15 A y4 δ2 λ -3 y5 δ2 λ ); 
Θ00(y) = (A-y)/A 
Θ01(y) = -(((-A y+y2) γ)/(2 A λ)) 
Θ02(y) = 1/(12 A2 λ2) (A3 y γ2-3 A2 y2 γ2+2 A y3 
γ2+3 A3 y λ Εc  Pr-6 A2 y2 λ Εc  Pr+4 A y3 λ Εc  
Pr-y4 λ Εc  Pr+6 A3 y λ ΕcGc Gr Pr-12 A2 y2 λ ΕcGc 
Gr Pr+8 A y3 λ ΕcGc Gr Pr-2 y4 λ ΕcGc Gr Pr+3 A3 y λ 
Εc  Pr-6 A2 y2 λ Εc  Pr+4 A y3 λ Εc  Pr-y4 λ Εc  
Pr-6 A2 y λ Dr Sc+6 A y2 λ Dr Sc-4 A3 y δ λ Dr Sc+6 
A2 y2 δ λ Dr Sc-2 A y3 δ λ DrSc) 
Θ10(y) = 0 
Θ11(y) = -(((-A y+y2) γ)/(2 A λ)) 
Θ12(y) = 1/(96 A λ2) (8 A2 y γ2-24 A y2 γ2+16 y3 γ2-
A3 m y +2 A m y3 -m y4 -32 A2 y δ λ Dr Sc+48 
A y2 δ λ Dr Sc-16 y3 δ λ Dr Sc+8 A2 y λ Pr Sc-24 A y2 
λ Pr Sc+16 y3 λ Pr Sc+4 A3 y δ λ Pr Sc-16 A2 y2 δ λ Pr 
Sc+16 A y3 δ λ Pr Sc-4 y4 δ λ PrSc) 
u00(y) = 0 
u01(y) = (2 A3 y Gc-3 A2 y2Gc+A y3 Gc+2 A3 α Gc-3 
A y2 α Gc+y3 α Gc+2 A3 y Gr-3 A2 y2Gr+A y3 Gr+2 
A3 α Gr-3 A y2 α Gr+y3 α Gr)/(6 A (A+α)); 
u02(y) = 1/(360 A (A+α) λ) (15 A4 y λ Gc-60 A3 y2 λ 
Gc+60 A2 y3 λ Gc-15 A y4 λ Gc-45 A3 y α λ Gc+60 A 
y3 α λ Gc-15 y4 α λ Gc+15 A4 y γ Gr-30 A2 y3 γ 
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Gr+15 A y4 γ Gr+15 A3 y α γ Gr-30 A y3 α γ Gr+15 
y4 α γ Gr+15 A4 y λ Gr-60 A3 y2 λ Gr+60 A2 y3 λ Gr-
15 A y4 λ Gr-45 A3 y α λ Gr+60 A y3 α λ Gr-15 y4 α 
λ Gr-8 A5 y λ Gc M1+20 A3 y3 λ Gc M1-15 A2 y4 λ Gc 
M1+3 A y5 λ Gc M1-48 A4 y α λ Gc M1+60 A3 y2 α λ 
Gc M1-15 A y4 α λ Gc M1+3 y5 α λ Gc M1-8 A5 y λ 
Gr M1+20 A3 y3 λ Gr M1-15 A2 y4 λ Gr M1+3 A y5 λ 
Gr M1-48 A4 y α λ Gr M1+60 A3 y2 α λ Gr M1-15 A 
y4 α λ Gr M1+3 y5 α λ Gr M1+15 A4 y λ Gc Sc-30 A2 
y3 λ Gc Sc+15 A y4 λ Gc Sc+15 A3 y α λ Gc Sc-30 A 
y3 α λ Gc Sc+15 y4α λ Gc Sc+8 A5 y δ λ Gc Sc-20 A3 
y3 δ λ Gc Sc+15 A2 y4 δ λ Gc Sc-3 A y5 δ λ Gc Sc+8 
A4 y α δ λ Gc Sc-20 A2 y3 α δ λ Gc Sc+15 A y4 α δ λ 
Gc Sc-3 y5 α δ λ GcSc) 
u10(y) = 0 
u11(y) = 0 
u12(y) = 1/(360 A (A+α)2) (15 A5 y Gc-60 A4 y2 
Gc+60 A3 y3 Gc-15 A2 y4 Gc+15 A5 α Gc-45 A4 y α 
Gc-60 A3 y2 α Gc+120 A2 y3 α Gc-30 A y4 α Gc-45 
A4 α2 Gc+60 A y3 α2 Gc-15 y4 α2 Gc+15 A5 y Gr60 
A4 y2 Gr +60 A3 y3 Gr-15 A2 y4 Gr+15 A5 α Gr -45 
A4 y α Gr -60 A3 y2 α Gr +120 A2 y3 α Gr-30 A y4 α 
Gr-45 A4 α2 Gr +60 A y3 α2 Gr-15 y4 α2 Gr+8 A6 y δ 
Gc Sc-20 A4 y3 δ Gc Sc+15 A3 y4 δ Gc Sc-3 A2 y5 δ Gc 
Sc+8 A6 α δ Gc Sc+8 A5 y α δ Gc Sc-40 A3 y3 α δ Gc 
Sc+30 A2 y4 α δ Gc Sc-6 A y5 α δ Gc Sc+8 A5 α2 δ Gc 
Sc-20 A2 y3 α2 δ Gc Sc+15 A y4 α2 δ Gc Sc-3 y5 α2 δ 
GcSc) 
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