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Abstract: - An unconventional model of three-phase contact liny dynamics is suggested for the numerical 
solution of the boundary value problem of dipping and spreading. The numerical modeling is conducted with 
the use of the finite-element method in Lagrange variables. The mathematical model of the process is described 
by the equation of motion, continuity, and natural boundary conditions on the free surface.  To exclude the ity 
of viscous stresses in the mathematical model on three-phase contact lines (TPCL) there was suggested a 
gridded model of gliding that takes into consideration peculiarities of dissipative processes in the neighborhood 
of TPCL at the microlevel. To reduce oscillations of pressure in the neighborhood of TPCL, a finite element is 
used. The suggested method allows for natural monitoring of free surface and TPCL with an unconventional 
model for dynamic contact micro-angle. A stable convergent algorithm is suggested that is not dependent on 
the grid step size and that is tested through the example of a three-dimensional semispherical drop and a drop in 
the form of a cube. The investigations obtained are compared to well-known experimental and analytical results 
demonstrating a high efficiency of the suggested model of TPCL dynamics at small values of capillary number. 
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1   Introduction 
The processes of dripping and spreading of a drop 
of liquid on solid and liquid surfaces are the initial 
and most important stages of many physicochemical 
phenomena accompanying modern technologies. 
For example, the building of microelectronic 
components, modeling of deformable biological 
membranes, the process of forming powder 
coatings, technology of settling micro-drops of ink 
in the conditions of ink-jet printing. 

In the processes of dripping and spreading, there 
are hydrodynamical peculiarities: the presence of 
interphase or free surface and three-phase contact 
line (TPCL) that moves along a solid surface in a 
tangent direction for instance, a solid body-liquid-
gas. The position of the interphase surface and 
TPCL in the given area is unknown in advance and 
is a part of the solution to a problem.  The analytical 
solution of such boundary problems can seldom be 
obtained and the capabilities of an experimental 
investigation are very limited. Therefore, one of the 
basic tools of investigation of such type boundary 
problems is their numerical solution. Herewith, in 
the case of using mathematical model approaches 
the main difficulties are related to obtaining a 

solution in the TPCL area and building an effective 
computational algorithm. 

Beginning from the 60-ties of the XX century, 
there has been completed a huge number of 
theoretical and experimental investigations at the 
presence of interphase boundary and TPCL. The 
overview of such works is described in the works, 
[1], [2]. However, despite much attention to the 
problem and numerous practical applications of the 
solution thereof, so far there has been no full 
understanding of the mechanisms of interaction of 
phase on the line of contact and related-to-them 
formation of the interface front, peculiarities of the 
contact line dynamics and liquid flow in its 
neighborhood in the conditions of dripping and 
spreading. The universal dependence between outer 
volume flow and local dynamics in the 
neighborhood of TPCL is absent, [3], [4]. 

When modeling static problems of the 
hydrodynamics of dripping, TPCL stays unmovable 
with a given static contact angle to a smooth surface 
determined under Young-Dupré law, [1], [3]. In 
dynamic problems, TPCL moves with a time-variant 
rate and dynamic contact angle. The problem of 
determining dynamic boundary angle (DBA) is 
multiscale. In basic DBA models, the microscopic 
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angle is supposed to be determined by 
intermolecular forces of short-range and to preserve 
its equilibrium value. The Microscopic DBA equal 
to the visually observed in experiments is 
determined by the kinematics of flow, TPCL 
moving rate, and properties of adhesion of liquid on 
a solid surface. All theoretical models contain 
unknown parameters, which need agreeing with the 
experiment and which hide the physics of dynamic 
processes in the neighborhood of TPCL. All 
empirical models are only applicable to certain 
conditions of flow and a limited circle of liquids and 
surfaces. In numerical modeling, the algorithm of 
implementing the selected model of DBA on the 
grid area is also all-important. In the works, [1], [2], 
[5], [6], [7], [8] it is noted that for obtaining 
approximated convergence it is necessary to use a 
grid dependence of the length of gliding with the 
use of advanced approximation of initial functions 
in the neighborhood of TPCL, which in its place 
requires the use of special “approaches” of their 
implementation. To a great degree, this impacts the 
kinematics of flow near TPCL, and as a 
consequence, the efficacy of modeling in 
comparison with the experiment, stability, and 
convergence of the numerical algorithm, [9], [10], 
[11], [12], [13], [14] [15], [16], [17], [18], [19], 
[20], [21]. 

The main requirements when building numerical 
models of the TPCL dynamics in the conditions of 
dripping and spreading are as follows: it is 
necessary to establish a monotonous dependence of 
microscopic and macroscopic dynamical contact 
angles ensuring the kinematics of movements of 
micro volumes in the neighborhood of TPCL in 
form of swell; determining the length of gliding 
from the rate of TPCL and volumetric parameters of 
flow, for instance, of the Reynolds or the Bond 
number; the rate of TPCL is a priori unknown and is 
a solution to the problem in implementing kinematic 
conditions. Therefore, additional assessments of its 
determination are needed that exclude its non-physic 
movements. 

This work introduces a modeling of the flow of 
viscous incompressible liquid with a free surface of 
various conditions of dripping on solid walls with a 
strong effect of surface tension in comparison with 
gravitation and viscous forces. For the modeling, the 
method of finite elements in Lagrange variables, 
[22], [23] is applied. When applying the Laplace–
Beltrami operator in transforming boundary 
conditions for the pressure jump on the free surface, 
[24], the order of derivatives on the free surface was 
reduced. This allowed for naturally including the 
boundary conditions of gliding on TPCL, its rate, 

and DBA. All the dynamic parameters of DBA flow 
are computed naturally in the nodes belonging to 
TPCL and do not require additional interpolation.  

The use of setting up the problem in Lagrange 
variables allows for direct monitoring of free 
surface and TPCL, for excluding the nonlinearity of 
convective member and implementing a completely 
unexpressed algorithm of computation of the 
position of free surface with the DBA model built 
on equipoising Young’s dynamic forces by viscous 
friction on TPCL with due consideration of the 
effect of the dynamical microscopic contact angle. 
All these are obtained in the frame of molecular-
kinetic theory, [25] and agree with molecular-
dynamic computation, [26], [27]. The algorithm is 
tested on the example of the spreading of viscous 
incompressible drop under the impact of surface 
tensions and gravitation forces in static and dynamic 
conditions of dripping and spreading on a smooth 
solid surface. 
 
 
2 Building the Model of TPCL 

Movement 
We shall consider the model of the movement of 
TPCL on the example of a problem of a drop 
spreading on a solid smooth base layer. Figure 1 
introduces a computational area and details of the 
geometry of the area with contact angle θ. 
 

 TPCL -----» 
a)  

 
 

b) 
Fig. 1: a) Viscous drop with free surface Г1 lying on 
solid base layer ГS, b) TPCL (red dot), revealed as 
the circular curve of intersection of boundaries Г1 
and ГS 

 
The balance of forces affecting TPCL can be 

presented as follows: 
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 + cos cos ,S S       σ n u ν         (1) 
 

where, u – velocity vector, = p +2μD I u  – stress 
tensor, p – pressure, μ – dynamic coefficient of 
viscosity,  n – vector of normal to free boundary Г1, 
I – unit tensor, γ – coefficient of surface tension at 
the inter-phase surface of liquid-air, 


 – Dirac 

delta function, 
Sν  – singular vector of the tangent to 

solid wall, ν  – singular vector of the tangent to free 
surface.  
 

If dynamic and static angles equal θ = θS, then 
the tilting angle of the free surface on TPCL to the 
solid wall in the process of spreading is constant and 
equals the static contact angle. 

The majority of investigations when modeling 
exclude the consideration of dissipative processes at 
the microlevel in the neighborhood of TPCL, and 
only consider meso- and macro-levels applying the 
condition of static contact angle at meso-level (fir. 
1), for instance, work, [28]. It’s justified, since from 
the point of mechanics of continuum, the 
microregion is an area of the unavailability of the 
solution. However, the investigations, [29], show 
that the establishment of boundary conditions for 
dynamic contact angle at the microlevel as a static is 
incorrect. Moreover, the conducted molecular-
dynamical calculations also show various 
mechanisms flowing in dissipative processes in the 
neighborhood of TPCL on various scales. 

The idea of building the TPCL dynamics model 
consists of presenting the balance of forces on 
TPCL (1) at the microlevel or, in other words, 
building of correct boundary conditions for the 
TPCL macro-model. In such cases, the contact 
angles on TPCL are presented as microscopic. 
According to molecular-dynamical calculations, we 
shall express the coefficient of gliding in the form of 
a sum of Navier friction-gliding and the coefficient 
of friction on TPCL itself: 

 
N CL      . 

 
The coefficient of Navier friction-gliding 

distributes in the neighborhood of TPCL on the 
solid wall under exponential law from some given 

N  with nearing of the gliding length 
S Nl    to 

zero with distancing from it, i.e. no-slip condition.  
We shall compute the coefficient of friction 

directly on TPCL from the relations molecular 
kinetic theory, [25] 

3
0

,B
CL

T

K





  

where, κB – Boltzmann constant, T – Kelvin 
temperature, K0, λ – frequency and length of jumps 
of molecules of liquid. 

A special difficulty in modeling the dynamics of 
TPCL appears in the case of hysteresis of contact 
angle, [1], [2]. In this care, there differ the 
advancing and the receding contact angles, which 
are not equal. Their difference is the one that forms 
the hysteresis. The difficulty is in the fact that TPCL 
is immovable for all angles located in the interval of 
the hysteresis and begins moving only at the angle 
leaving the interval of hysteresis. In this case, 
similar to the Signorini contact problems with 
friction, we get to the variational setting in the form 
of variational inequalities. To solve this problem, 
we shall apply Lagrange multipliers.  
 On the basis of the mathematical model of the 
considered problem we shall put Navier-Stokes 
equations and equation of continuity, [24]: 
 

0g, ,
u

u u σ u
t

 
 

       
 (2) 

 
where, ρ – density, g – gravitational acceleration. 

We shall compute the system of equations (2) 
with the use of the following boundary conditions: 

– on the free surface moving with kinematic 
condition:  

d 0
dt

 
   

 

x
u n  

 
we shall set up boundary dynamic boundary 
conditions consisting in the absence of tangent 
stresses and equality of normal to the sum of 
external and capillary pressures:   

  0n σ I nn    , 

1 κ
Ca

n n n   ap , 

 
where, n – vector of normal to free surface, κ – 
curvature of the free surface, Ca – capillary number, 
pa – pressure over the free surface, which we accept 
as equal to zero without losing the solidarity of 
purpose. 

At the lines of three-phase contact, we shall 
establish boundary conditions of gliding and 
impermeability, [23] 

 
    , 0,s s s s s sn σ I n n u I n n n u         

 
where, β – nondimensional parameter of gliding     
(β = 0 – complete gliding, β = ∞ – adhesion), ns – 
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singular vector of normal to a solid wall in the 
neighborhood of TPCL. 

Projection-fine-difference equations are reported 
in, [24], so we shall report here the peculiarities of 
numerical implementation with consideration of the 
hysteresis of the angle. 

With due consideration of the angle hysteresis, 
the smallness of the Reynolds number and the 
condition (1) in the neighborhood of TPCL, the 
projection-fine-difference equations of the problem 
can be expressed as follows: 

To find 1 1( , )n n

h h h hp W Q   u  consistent with the 
equation: 

1 12 : d dn n

h h h hD D p 

 

     u w w  

1 1

1 1: d ( ) d
n n
h h

n n

h h S h
 

 

 

         P w M w  

1 d ,n

h hw



    u      (3) 

1 1d d 0,n n

h h h h hq p q 

 

       u  (4) 

1

[cos cos ( )]dS 0,
n
h

h S h S


     u ν     (5) 

where, ,S SM    



 arccosM,S   i.e. 

cos S S S       – Young-Dupré law, 

  P I n n  (
ij ij i jP = - n n ), =ch

h

h


u
 – 

parameter of the equation stability, λh, ηh – Lagrange 
multipliers, c =0.5. 
 
 
3   Results of Computations 
We shall consider the spreading of the viscous drop 
(Figure 1) with known initial θ0 and static contact 
angles θS under the effect of the surface tension 
forces. Density, viscosity, and surface tension 
coefficient shall be taken to be equal to one.  We 
believe that the gravitation forces are sufficiently 
small (the Bond number << 1). At the initial 
moment, the liquid is moveless and occupies the 
volume equal to V, which doesn’t change in the 
process of spreading. We shall take Navier–Stokes 
equations and equations of continuity as a basis of 
mathematical description. For the dV σ n w  
member for normal stresses, we shall substitute the 
right part of the equation (3) with the additional 
condition (5). The introduction of Lagrange 
multipliers is needed in the case of contact angle 
hysteresis since they ease out the conditions in the 
form of inequation at the ratio of the contact angle 
and the rate of TPCL. We shall obtain the 

projection-fine-difference equations in Lagrange 
variables by way of adding to the left part of the 
equation (3) a nonstationary member of Navier–
Stokes equations or consider the solution (3)-(5) as a 
sequence of quasistatic problems with integrating of 
kinematic conditions on Г1 free surface by the 
implicit scheme. 

We shall investigate the grid convergence of the 
suggested algorithm based on the spreading of the 
drop in the form of a semisphere with an initial 
angle of 90 degrees and a static angle of 60 degrees. 
The initial radius of the drop equals 0,5. For the 
case, when the capillary number is substantially 
smaller than one, the radius of spreading of the drop 
in the function from the visual contact angle can be 
expressed as follows  

3 03 ( ),


 
  
 

d d

V
R Ф  

3

3

sin( ) .
2 3cos cos




 


 

d
d

d d

Ф         (6) 

 
After differentiating equation (6) by time, we 

obtain a regular differential equation of evolution of 
the radius of spreading in the function from the rate 
of the rate of contact angle changing, which is 
solved by the Runge–Kutta method. The spreading 
radius of the drop to the static state can be 
calculated from the relation (6) by substituting the 
static contact angle with the condition of the volume 
stationarity. In our case, for the static angle of 60 
degrees, the relation of the static spreading radius to 
the initial equals 1,276186. 

We shall produce the numerical solution of the 
problem (3)-(5) on the sequence of grids. 

Figure 2 shows the grid convergence of the 
suggested algorithm and the comparison of the 
evolution of the spreading radius in the functions 
from the time with an analytic solution at values of 
the microscopic parameters of friction on TPCL    
βN = 100, βCL = 1. From the calculation results there 
follows a grid convergence of the considered 
algorithm and a good correspondence of the 
evolution of the spreading radius to the analytic 
solution. 

 

WSEAS TRANSACTIONS on FLUID MECHANICS 
DOI: 10.37394/232013.2024.19.1 Konstantin A. Chekhonin, Victor D. Vlasenko

E-ISSN: 2224-347X 4 Volume 19, 2024



 
Fig. 2: Evolution of spreading radius of 
semispherical drop in time t  to a static contact angle 
of 60 degrees 
 

Figure 3 shows the influence of the changing of 
dynamical parameters of friction of TPCL on the 
evolution of the radius of spread. The computational 
experiment was conducted on the grid with minimal 
step on TPCL equal to hmin = 1/64. It follows from 
the calculation results that the growth coefficient of 
Navier friction-gliding has a weak effect on the 
evolution of the radius of spreading, but has a strong 
effect on the grid convergence. The growth of the 
friction coefficient βCL substantially slows down the 
evolution of the radius of spreading and reduces the 
effective length of gliding LS (Figure 3). 

 

 
Fig. 3: Influence of changing in parameters of 
friction on TPCL on the evolution of radius of 
spreading  

 
Now, therefore, the contribution of friction 

coefficients on TPCL in the efficiency of the 
considered algorithm becomes clear.  

Now, we shall conduct a comparison of the 
calculation results with the experiment of drop 
spreading conducted in work, [30]. For the 
calculations, there was taken the value of static 
contact angle θS = 54°. The initial radius of the drop 

was taken as equal to 0,5 with the center of mass  
(0; 0.48) on a solid base layer. The liquid viscosity 
was normalized and was taken as equal to 1. The 
calculation results are stated in Figure 4.  

 

 
Fig. 4: Evolution of radius of spreading of a drop in 
time t at various values of friction coefficient with 
hmin = 0.01,  – experimental result, [30] 

 
It follows from the calculation results that the 

coefficient of friction on TPCL is an adjustable 
parameter of the model of the TPCL dynamics (for 
the correspondence of the numerical model to the 
experiment). In our case, the best result is obtained 
at friction coefficient βCL = 0.5. In addition, the 
calculation analysis shows that the suggested model 
of the TPCL dynamics does not correspond to the 
initial period of spreading of the drop, which is 
inertial. The model requires clarification by way of 
dependence of the friction coefficient on TPCL 
from the TPCL rate. It must be noted, that all the 
above-stated investigations were conducted in a 
three-dimensional set-up. Figure 5 illustrates an 
expressed three-dimensional case of the spreading 
of the drop of the initial form of a cube, initial 
contact angle of 90 degrees and a static contact 
angle of 60 degrees. The calculation results show a 
satisfactory agreement with the drop form of a 
constant volume in a static state. In all the 
calculations, the drop volume loss didn’t exceed 
0.01% at the static contact angle detection error, not 
above 0,1 degree. 

 

   
 

       t = 0.0 s              t = 0.5 s                 t = 1.0 s 
Fig. 5: Spreading of a drop in the form of a cube 
lying on the solid base layer  
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The peculiarities of modeling a drop flow with a 
hysteresis of the angle of dripping are considered in 
the example of a drop lying on the oblique surface 
(Figure 6). 

 

 
Fig. 6: Determining parameters of drop on the 
oblique surface  

 
All these methods consist in the observance of 

the following conditions for normal rate Ucl of 
contact line: 

0 if ,
0 if ,
0 if .

cl d R

cl R d A

cl A R

U

U

U

 

  

 

 

  

 

 

 
The oblique angle of surface αc in the beginning 

of the movement can be obtained by watching the 
balance of forces affecting the drop: 

13sin (cos cos ) ,
4c R A Eo

a


  



   where, 

2 / Eo ga – the Eötvös number, a – drop 
diameter, so the critical contact angle changes as 

1(cos cos )R A Eo    and depends on the form of 
the contact line. Figure 7 shows the evolution of the 
linear rate of three-phased contact in the dependence 
on the hysteresis of the angle of dripping, where 

4 (sin sin )
3

   cCa Eo
C

. 
 

 
 

Fig. 7: Effect of hysteresis on velocity of liquid fall 
at α=50 

Ca is illustrated as a function cos cos R A ,  
□ – modeling,   ······ – у = 0,0128 - 0,013x 

 
 

4   Conclusion 
As the investigation results there was suggested a 
correct dynamic model of TPCL and a variational 
formulation of a problem with variable dynamic 
contact micro-angle. To exclude the singularity of 
tangent stresses on TPCL, the coefficient of Navier 
friction-gliding is applied. The friction coefficient 
on TPCL is adjustable for the comparison with an 
analytical solution or experiment. There was 
suggested a stable, not-depending on a grid state, 
convergent numerical algorithm that is tested on the 
example of a three-dimensional semispherical drop 
and a drop in the form of a cube. The investigations 
obtained are compared with the known experimental 
and analytical results demonstrating a high 
efficiency of the suggested model of the TPCL 
dynamics at small values of capillary number. These 
investigations may be useful for solving and 
forecasting such situations as, for instance, the 
production of ink for ink-jet printing, applying of 
liquid coatings and drainage in porous media, 
spreading of pesticides on leaves, whole blood 
dripping, spreading and drying of a blood serum 
drop. 
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