5 Conclusion
1. A mathematical model is described that allows
analytically determining the most optimal type of
contour of a well-streamlined body;
2. A numerical solution of the problem for arbitrary
Reynolds numbers is obtained.
3. In the next paper we will considering in more
detail the influence of the Prandtl number.
References:
[1] L. D. Landau, E. M. Lifshitz. Hydrodynamics.
V. 6. Moscow: Science. 1988.
[2] L. Prandtl, O. Titiens. Hydro- and
Aeromechanics In 2 vols. Moscow, GITTL,
1933-1935.
[3] H. Lamb. Hydrodynamics. Moscow, GITTL,
1947.
[4] S.A. Khristianovich, V.G. Galperin, M.D.
Millionshchikov, L.A. Simonov. Applied Gas
Dynamics. Moscow, TsAGI, 1948.
[5] N.E. Zhukovskiy. Collected Works. Volume
2. Hydrodynamics. – Moscow, GITTL, 1949.
[6] G.V. Lipman, A.E. Paket. Introduction to the
Aerodynamics of a Compressible Fluid. –
Moscow, IL, 1949.
[7] N.A. Slezkin. Dynamics of a Viscous
Incompressible Fluid. Moscow, GITTL,
1955.
[8] V.G. Levich. Physicochemical
Hydrodynamics. Moscow, Fizmatgiz, 1959.
[9] G. Birkhoff. Hydrodynamics: a Study in
Logic, Fact, and Similitude. Moscow, GIIL,
1963
[10] J. Serrin. Mathematical Principles of
Classical Fluid Mechanics. Moscow, GIIL,
1963
[11] N.E. Kochin, I.A. Kibel, N.V. Roze.
Theoretical Hydromechanics. In 2 parts. –
Moscow, Fizmatlit, 1963.
[12] L. M. Milne-Thomson. Theoretical
Hydrodynamics. Moscow, Mir, 1964.
[13] A.S. Monin, A.M. Yaglom. Statistical
Hydromechanics. In 2 parts. – Moscow,
Nauka, 1965-1967.
[14] H. Rouse. Mechanics of Fluids. Moscow,
Stroyizdat, 1967.
[15] L.I. Sedov. Continuum Mechanics. In 2 parts.
Moscow, Nauka, 1970.
[16] I.S. Sokolnikov. Tensor Calculus. Theory and
Applications in Geometry and Continuum
Mechanics. Moscow, Nauka, 1971.
[17] A.A. Ilyushin. Continuum Mechanics.
Moscow, MSU, 1971-1990.
[18] O.V. Golubeva. Course of Continuum
Mechanics. Moscow, Vysshaya Shkola, 1972.
[19] G. Batchelor. An Introduction to Fluid
Dynamics. Moscow, Mir, 1973.
[20] M.A. Lavrentyev, B.V. Shabat. Problems of
Hydrodynamics and their Mathematical
Models. Moscow, Nauka, 1973.
[21] L.E. Elsholz. Differential Equations and
Calculus of Variations. Moscow, Science,
1971.
[22] S.O. Gladkov. On One Proof of the
Uniqueness of the Stokes Hydrodynamic
Solution. Russian Physics Journal. V.61, N6,
2018. pp. 103-105.
[23] S.O. Gladkov. On Calculating the Stopping
Time of a Cylindrical Body Rotating in a
Viscous Continuum and the Time of
Entrainment of a Coaxial External Cylinder.
Technical Physics. V.59, N3, 2018, pp. 377-
341.
[24] W. Chester. The Forces on a Body Moving
through a Viscous Fluid. Mathematical and
Physical Science. V.437, N1899, 1992, pp.
185-193.
[25] N.V. Chemetov, S.Necasova. The motion of
the rigid body in the viscous fluid includes
collisions. Global solvability result. Nonlinear
Analisis: Real Word Applications. V.34, N4,
2017, pp. 416-445.
WSEAS TRANSACTIONS on FLUID MECHANICS
DOI: 10.37394/232013.2023.18.24
S. O. Gladkov, N. S. Nagibin