
Mathematics, vol.22, pp.451-465, 2023,
https://doi.org/10.37394/23206.2023.22.51.
[7] Abita R. Blow-up phenomenon for a semi
linear pseudo-parabolic equation involving
variable source. Applicable Analysis, 2021.
[8] Abu Zaytoon M.S, Hamdan M.H. Fluid
Mechanics at the Interface between a Variable
Viscosity Fluid Layer and a Variable
Permeability Porous Medium, WSEAS
Transactions on Heat and Mass Transfer,
vol.16, pp.159-169, 2021,
https://doi.org/10.37394/232012.2021.16.19.
[9] Xu R, Su J. Global existence and finite time
blow-up for a class of semilinear pseudo-
parabolic equations, J. Funct. Anal.,
vol.264(12), pp.2732-2763, 2013.
[10] Aboulaich R, Meskine D, Souissi A. New
diffusion models in image processing.
Comput. Math. Appl., vol.56(4), pp.874-882,
2008.
[11] Lian S, Gao W, Cao C, Yuan H. Study of the
solutions to a model porous medium equation
with variable exponent of nonlinearity. J.
Math. Anal. Appl., vol.342(1), pp.27-38, 2008.
[12] Antontsev S, Shmarev S. Blow-up of
solutions to parabolic equations with
nonstandard growth conditions. J. Comput.
Appl. Math., vol.234, pp.2633-2645, 2010.
[13] Pinasco J.P, Blow-up for parabolic and
hyperbolic problems with variable exponents.
Nonlinear Anal. TMA. vol.71, pp.1049–1058,
2009.
[14] S. Lian, W. Gao, C. Cao, H. Yuan, Study of
the solutions to a model porous medium
equation with variable exponent of
nonlinearity, J. Math. Anal. Appl., vol.342 (1)
, pp.27–38, 2008.
[15] Y. Chen, S. Levine, M. Rao, Variable
exponent, linear growth functionals in image
restoration, SIAM J. Appl. Math., vol.66,
pp.1383–1406, 2006.
[16] Tarek G. Emam, Boundary Layer Flow over a
Vertical Cylinder Embedded in a Porous
Medium Moving with non Linear Velocity,
WSEAS Transactions on Fluid Mechanics,
vol. 16, pp. 32-36, 2021.
[17] Songzhe L, Gao W, Cao C. Study of the
solutions to a model porousmedium equation
with variable exponent of nonlinearity. J Math
Anal Appl., vol.2008, 342, pp.27–38
[18] Diening L, Růžička, M. Calderón-Zygmund
operators on generalized Lebesgue spaces
and problems related to fluid
dynamics, J. Reine Angew. Math., vol.563,
pp.197-220, 2003.
[19] Gawade S.S, Jadhav A.A. A Review On
Electrorheological (ER) Fluids And Its
Applications. International Journal of
Engineering Research & Technology (IJERT),
Vol. 1, Issue 10, December 2012.
[20] Acerbi E, Mingione G. Regularity results for
electrorheological fluids, the stationary case,
C. R. Acad. Sci. Paris, vol.334, pp.817–822,
2002.
[21] Růžička M. Electrorheological Fluids,
Modeling and Mathematical Theory, Lecture
Notes in Mathematics, vol.1748, Springer,
2000.
[22] Diening L, Hästo P, Harjulehto P, Růžička M.
Lebesgue and Sobolev Spaces with Variable
Exponents, Springer Lecture Notes, vol. 2017,
Springer-Verlag, Berlin, 2011.
[23] Acerbi E, Mingione G, Seregin G.A.
Regularity results for parabolic systems
related to a class of non Newtonian fluids,
Ann. Inst. H. Poincaré Anal. Non Linéaire
vol.21(1), pp.25-60, 2004.
[24] Yin H.M. Weak and classical solutions of
some Volterra integro-differential equations.
Comm. Partial Differ. Equ., vol.17(7-8),
pp.1369-1385, 2019.
[25] Wu X, Yang X, Zhao Y. The Blow-Up of
Solutions for a Class of Semi-linear Equations
with -Laplacian Viscoelastic Term Under
Positive Initial Energy. Mediterr. J. Math.
vol.20, 272, 2023.
[26] Tian S.Y. Bounds for blow-up time in a
semilinear parabolic problem with viscoelastic
term. Computers and Mathematics with
Applications, vol.74(4), pp.736 743, 2017.
WSEAS TRANSACTIONS on FLUID MECHANICS
DOI: 10.37394/232013.2023.18.16
Touil Nadji, Abita Rahmoune