[10] Y.M. Chu, B.M. Shankaralingappa, B.J.
Gireesha, F. Alzahrani, M.I. Khan, S.U.
Khan, Combined impact of Cattaneo-
Christov double diffusion and radiative heat
flux on bio-convective flow of Maxwell liquid
configured by a stretched nano-material
surface, Appl. Math. Comput. 419, 2022,
126883. ISSN: 1873-5649, 0096-3003.
[11] S. Qayyum, M.I. Khan, T. Hayat, A. Alsaedi,
Comparative investigation of five
nanoparticles in flow of viscous fluid with
Joule heating and slip due to rotating disk,
Physica B Condensed Matter, 534, 2018,
p.173-183, ISSN: 0921-4526.
[12] M.I. Khan, S. Qayyum, S. Kadry, W.A.
Khan, S.Z. Abbas, Irreversibility Analysis and
Heat Transport in Squeezing Nanoliquid Flow
of Non-Newtonian (Second-Grade) Fluid
Between Infinite Plates with Activation
Energy, Arabian J. Sci. Eng. 45, 2020,
p.4939-4947. ISSN: 2191-4281, 2193-567X.
[13] M.I. Khan, T. Hayat, M. Waqas, A. Alsaedi,
Outcome for chemically reactive aspect in
flow of tangent hyperbolic material, J. Mol.
Liq. 230, 2017, 143-151. ISSN: 1873-3166,
0167-7322.
[14] T. Hayat, S.A. Khan, M.I. Khan, A. Alsaedi,
Optimizing the theoretical analysis of entropy
generation in flow of second grade nanofluid,
Phys. Scr. 94, 2019, 085001. ISSN: 0031-
8949.
[15] A.C. Eringen, Simple micro fluids, Int. J. Eng.
Sci, 2, 1964, p.205-217. ISSN: 0020-7225
[16] A.C. Eringen, Theory of micro polar fluids, J.
Math. Mech. 16, 1966, p.118. ISSN: 0095-
9057.
[17] A.C. Eringen, Theory of thermo micro polar
fluids, J. Appl. Math. 38, 1972, p.480-495.
ISSN: 1687-0042.
[18] K.E. Aslani, U.S. Mahabaleshwar, J. Singh,
I.E. Sarries, Combined effect of radiation and
inclined MHD flow of a micropolar fluid over
a porous stretching/shrinking sheet with mass
transpiration, Int. Jour. Appl. Comput. Math.,
7, 2021, p.1-21. ISSN: 1641-876X.
[19] M. Turkyilmazoglu, Flow of a micropolar
fluid due to a porous stretching sheet and heat
transfer, Int. J. Non-linear. Mech., 83, 2016,
p.59-64. ISSN: 0020-7462.
[20] M. Turkyilmazoglu, Mixed convection flow
of magnetohydrodynamic micropolar fluid
due to a porous heated/cooled deformable
plate: exact solution, Int. J. Heat and Mass
Trans., 106, 2017, p.127-134. ISSN: 0017-
9310.
[21] M.M. Rahman, M.A. Samad, M.S. Alam,
Heat transfer in a micro polar fluid along a
non-linear stretching sheet with a
temperature-dependent viscosity and variable
surface temperature, Int. J. Therm. Phys., 30,
2009, p.1649-1670. ISSN: 1572-9567, 0195-
928X.
[22] M. Turkyilmazoglu, A note on micropolar
fluid flow and heat transfer over a porous
shrinking sheet, Int. J. Heat Mass Transf., 72,
2014, p.388-391. ISSN: 0017-9310.
[23] U.S. Mahabaleshwar, Combined effect of
temperature and gravity modulations on the
onset of magneto-convection in weak
electrically conducting micropolar liquids, Int.
J. Eng. Sci. 45, 2007, p.525-540. ISSN: 0020-
7225.
[24] G. Bognár, Analytical solutions to the
boundary layer problem over a stretching
wall, Computer and Mathematics with
Applications, 61(8), 2011, p.2256-2261.
ISSN: 0898-1221.
[25] G. Bognár, M. Klazly, K. Hricźo, Nanofluid
flow past a stretching plate, Processes 8(7),
2020, p.827. ISSN: 2227-9717.
[26] G. Bognár, K. Hricźo, Series solutions for
Marangoni convection on a vertical surface,
Mathematical Problems in Engineering, 2012,
Article ID 314989. ISSN: 1024-123X, 1563-
5147.
[27] Z.H. Khan, M. Qasim, I. Neema, W.A. Khan,
Dual Solutions of MHD boundary Layer Flow
of a Micropolar fluid with weak concentration
over a stretching/shrinking sheet, Commun.
Theor. Phys. 67, 2017, p.449-457. ISSN:
0253-6102.
[28] T.C. Chaim, Magneto hydrodynamic heat
transfer over a non-isothermal stretching
sheet, Acta Mechanica, 122, 1997, p.169-179.
ISSN: 1619-6937, 0001-5970.
WSEAS TRANSACTIONS on FLUID MECHANICS
DOI: 10.37394/232013.2023.18.3
Rishu Garg, Jitender Singh,
U. S. Mahabaleshwar, Okhunjon Sayfidinov, G. Bognar