[18] Lemonne, N., Connes, P., Romana, M., Vent-
Schmidt, J., Bourhis, V., Lamarre, Y.,
Increased blood viscosity and red blood cell
aggregation in a patient with sickle cell
anemia and smoldering myeloma, Am. J.
Hematol., 2012, vol.87, E129.
[19] Vandewalle, H., Lacombe, C., Lelièvre, J. C.,
Poirot, J.C., Blood viscosity after a 1-h
submaximal exercise with and without
drinking. Int. J. Sports Med., 1988, vol.09,
No.2, pp.104-107.
[20] Abbasi, M., Farutin, A., Ez-Zahraouy, H.,
Benyoussef, A., Misbah, C., Erythrocyte -
erythrocyte aggregation dynamics under shear
flow. Physical Review Fluids, 2021, vol. 6,
023602.
[21] Wu, Y., Hsu, P., Tsai, C., Pan, P., Chen, Y.,
Significantly increased low shear rate
viscosity, blood elastic modulus, and RBC
aggregation in adults following cardiac
surgery. Scientific Reports, 2018, vol. 8, No.
7173, pp. 1–10.
[22] Lee, CA. and Paeng, DG., Numerical
simulation of spatiotemporal red blood cell
aggregation under sinusoidal pulsatile
flow. Scientific Reports, 2021, vol. 11, No.
9977.
[23] Thomas, D.G., Turbulent disruption of flocs
in small particle size suspensions. AIChE J.,
1964, vol. 10. No. 4, pp. 517-523.
[24] Michaels, A.S. and Bolger, J.C., The plastic
flow behavior flocculated kaolin suspensions,
Industrial & Engineering Chemistry
Fundamentals, 1962. Vol. 1, No. 3, pp. 153-
162.
[25] Zimmermann, J., Demedts, D., Mirzaee, H.,
Ewert, P., Stern, H., Meierhofe, C., Menze,
B., Henne, A., Wall shear stress estimation in
the aorta: Impact of wall motion,
spatiotemporal resolution, and phase noise, J.
Magn. Reson. Imaging, 2018, 48, pp. 718-
728.
[26] Masutani, E.M., Contijoch, F., Kyubwa,
E., Cheng, J., Alley, M.T., Vasanawala,
S., Hsiao, A., Volumetric segmentation-free
method for rapid visualization of vascular
wall shear stress using 4D flow MRI, Magn.
Res. Med., 2018, 80(2), pp. 748-755.
[27] Szajer, J. and Ho-Shon, K., A comparison of
4D flow MRI-derived wall shear stress with
computational fluid dynamics methods for
intracranial aneurysms and carotid
bifurcations — A review, Magnetic
Resonance Imaging, 2018, 48, pp. 62-69.
[28] Shokina, N., Bauer, A., Teschner, G.,
Buchenberg, W.B., Tropea, C., Egger, H.,
Hennig, J., Krafft, A.J., MR-based wall shear
stress measurements in fully developed
turbulent flow using the Clauser plot method.
J. Magn. Reson., 2019, 305, pp. 16-21
[29] Chandra, K., Dalai, I.S., Tatsumi, K.,
Muralidhar, K., Numerical simulation of
blood flow modeled as a fluid- particulate
mixture. Journal of Non-Newtonian Fluid
Mechanics, 2020, vol.285, No. 104383, pp.1-
8,
[30] Yahaya, S., Jikan, S.S., Badarulzaman, N.A.,
Adamu, A.D., Chemical composition and
particle size analysis of kaolin, Int. Electronic
Scientific Journal, 2017, vol. 3, No. 10, pp.
1001-1004.
[31] Liepsch, D.W., Thurston, G., Lee, M., Studies
of fluids simulating blood-like rheological
properties and applications in models of
arterial branches. Biorheology, 1991, vol. 28
No. 1-2, pp. 39-52.
[32] Bartosik, A., Modelling of a turbulent flow
using the Herschel-Bulkley rheological
model. Chemical and Process Engineering,
2006, vol. 27, pp. 623-632.
[33] Wilson, K.C. and Thomas, D.G., A new
analysis of the turbulent flow of non-
Newtonian fluids. Can. J. Chem. Eng., 1985,
vol. 63, pp. 539-546.
[34] Thomas, D.G. and Wilson, K.C., New
analysis of non-Newtonian turbulent flow—
yield-power-law fluids, Can. J. Chem. Eng.,
1987, vol. 65, No. 2, pp. 335-338.
[35] Bartosik, A., Simulation and Experiments of
Axially-Symmetrical Flow of Fine- and
Coarse-Dispersive Slurry in Delivery
Pipelines; Monograph M-11; Kielce
University of Technology: Kielce, Poland,
2009.
[36] Bartosik, A., Application of rheological
models in prediction of turbulent slurry flow,
Flow, Turbulence and Combustion, 2010, vol.
84, No. 2, pp. 277-293.
[37] Wagner, C., Steffen, P., Svetina, S.,
Aggregation of red blood cells: From rouleaux
to clot formation, Comptes Rendus Physique,
2013, vol. 16, No. 6, pp. 459-469.
[38] Baskurt O.K. and Meiselman, H.J.,
Erythrocyte aggregation: basic aspects and
clinical importance. Clinical Hemorheology
and Microcirculation. 2013; vol.53, No. 1-2,
pp. 23-37 PMID: 22975932,
[39] Sandgren, T., Sonesson, B., Ahlgren, A.R.,
Lanne, T., The diameter of the common
WSEAS TRANSACTIONS on FLUID MECHANICS
DOI: 10.37394/232013.2023.18.2