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Abstract: - This paper is devoted to mathematical modeling and computational experiments of a flow with 
negative pressure. A previously unknown class of fluid flow under the action of counter-current centrifugal 
forces is in focus. Volumetric forces in a non-conducting fluid can arise from gravity, vibrations, or rotations. 
In this paper, we consider controlled variable volumetric forces in a system with two rotations around the 
vertical axis and the tangential axis of a horizontal disk rotating around the vertical axis. The study of the 
coordinate system during double rotation showed that the double rotation about two perpendicular axes, one of 
which moves along a tangential direction to the rotating horizontal disk, is equal to the rotation around the 
oscillating axis inclined at some angle to the vertical axis. 
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1   Introduction 
A boundary value problem is formulated for a 
system of partial differential equations (Navier-
Stokes), which describe the motion of fluid inside a 
turbine with the subsequent transition of its internal 
channel into the cavitation section, which has three 
parallel narrow slit cylindrical channels with curved 
walls and flow holes between channels (a patent of a 
Swedish company United Science and Capital 
Sweden AB, [1]). Then differential equation array is 
integrated across the narrow channel to simplify the 
equations. The resulting mathematical model 
allowed analyzing and creating the numerical 
method. 

Mathematical and computer simulations revealed 
an intense oscillating fluid flow in a curved gap with 
periodic regions of negative and positive pressure 
due to constant and variable centrifugal forces. In 
the cross section of the channel, there is an area 
close to the outside of the turbine (with cavitator), 
where at high speeds of double rotation there is a 
stretching of the fluid by significant opposite 
centrifugal forces. The latter provides the conditions 
for an intense cavitation phenomenon, but due to the 

negative pressure, other as yet unknown phenomena 
are also possible. Further development of the 
mathematical model is planned, as well as 
experimental study of these phenomena on the 
prepared device.  
 

 

2 Statement by Flow under Double 
Rotations and Negative Pressure  

2.1  Description of the System 
The device, [1], is based on the principle of the 
cavitation process inside the working chamber (with 
the turbine at the entrance or without it in another 
version) due to the two high-speed independent 
rotations in two perpendicular directions.  

The complex flow in the rotational channel 
placed on the rotating horizontal disk is considered 
according to the schematic in Figure 1, [1]. The first 
rotation is going around the z-axis as shown in 
Figure 1, with the rotation speed Ω. The other 
rotation has the rotation speed ω regarding the 
tangential axis to the main rotation circle, at the 
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distance R0 from the central axis z (x=y=0) of the 
device.  

 

 

 
Fig. 1: Double rotating coordinate system for the 
device below: around vertical axis z and in channel 
around tangential axis to a circle of radius R0 
 

3 cavitators are rotating with the rotation speed ω 
installed around the axis z on the distance R0 from 
the center, equally distributed by the circle of the 
radius R0. Their radiuses are r0.  

The centrifugal forces in the turbines (cavitators) 
shown in Figure 2 are due to the main rotation (red 
color), the forces direct in all points of the flow to 
the left in the picture (edge of the main rotation 
circle). The centrifugal forces due to the turbine 
rotation (black) act along the radius of the turbine. 
Therefore, in situation 1 the centrifugal forces act in 
opposite directions causing a strong stretch of liquid 
(condition for the cavitation). To the left in the 
picture (situation 2), both forces act in the same 
direction creating the highest pressure (condition for 
a burst of cavitation bubbles). In all other places 
(e.g. 3 and 4) liquid moves from point 1 to point 2 
counter-currently from the top and the bottom of the 
turbine. 

 
 

2.2  Cylindrical Coordinates in the Channel  
The rotating coordinate system has the vertical axis 
z or shifted from the central axis on some distance 
R0 as shown in Figure 1. The rotation is going 
around the vertical axis z and also around the axis 
tangential to the circle of the radius R0. Intensive 
rotation and mixing flow are fascinating phenomena 
and may be highly effective in several applications: 
engineering, technological, natural processes, [2], 
[3], [4], [5], [6].  

Many theoretical aspects have been studied for 
the diverse rotational flows. Nevertheless, it is still a 
problem to learn more in deep for many theoretical, 
as well as practical applications. The described 
system with double rotations is considered at first in 
the world. In the local cylindrical coordinate system 
( , , )r z  connected to the channel, the coordinate 
surfaces are cylinders r const , semi-planes 

const   and planes z const . The focus of the paper 
is on the flow regimes in the gap of two rotating 
channels, therefore the coordinate z is now directed 
along the axis of the cylinder.  

 

 
Fig. 2: Schematic of the centrifugal forces in the 
turbine 

 
In Figure 1, we used z coordinate only for a 

general illustration of the system under 
consideration. But in the equations for the flow 
inside the turbine, the axis z is directed along the 
axis of the turbine, which is tangential to the 
rotating disk in the Figure 1. 

 
2.3  Studies of Negative Pressure in Liquid 
From the above analysis, the liquid may get into 
stretching conditions in some localities, where 
unknown dramatic regimes with negative pressure 
and cavitation are available. Normally cavitation is 
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supposed to be under depressurization below the 
saturation level, due to which liquid starts 
vaporizing. Negative pressure corresponds to a local 
stretching of liquid that can break the bonds of 
molecules causing the cavitation process to be much 
less known. A stretched liquid is under negative 
pressure. This is the unstable, metastable state of a 
liquid, possibly due to the Van der Waals forces of 
attraction between the molecules of the liquid: both, 
between themselves and between them and the walls 
of the vessel.  

The gaseous state of a really existing substance, 
[7], is a gas that is not described exactly by the 
Clapeyron - Mendeleev equation, in contrast to its 
simplified model, hypothetical ideal gas. There is 
also another classification, according to which a 
highly superheated vapor is called a real gas, the 
state of which slightly differs from the state of an 
ideal gas. Superheated vapor, the state of which 
differs significantly from an ideal gas, and saturated 
vapor (two-phase equilibrium system liquid - vapor) 
does not obey the laws of an ideal gas, [7]. This 
phenomenon can be observed in the Torricelli 
experiment. Similarly, mercury in the medical 
thermometer, after the contact with the body has 
ceased, is in a stretched state. Moreover, it is in the 
maximum thermometer when the temperature 
begins dropping after the maximum, [8].  

It is available to stretch the thoroughly cleaned 
and degassed water. In experiments, the short-term 
tensile stresses of 23-28 MPa were achieved, [9]. 
Technically pure liquids containing suspended 
solids and the smallest gas bubbles cannot withstand 
even minor tensile stresses. Nevertheless, this is a 
method of raising liquid working in trees, [10]. The 
superheated (metastable) liquid heated above its 
boiling point causes such specific dynamic 
phenomena as explosive boiling due to a stored 
heat, instability of liquid-vapor interface, and 
formation of a phase transition front in several 
regimes, [11].  

Water is one of the substances that present 
density anomalies, [12], which may cause different 
unique phenomena, e.g. cavitation and abnormal 
behaviors. The negative pressure despite a long 
history of study is still a very little known 
phenomena, [13], [14],  [15], [16], [17], [18], [19], 
[20], [21], [22], [23], [24], [25], [26], [27], 
e.g. paper, [11], shows that a high average stress 
difference on the interface of phase change is due to 
the negative stresses in the interface because the 
water belongs to a class of substances with density 
anomalies.  

The negative pressure region of the phase 
diagram proves to be paramount in understanding 

the unusual behavior of this class of substances. 
Any condensed (solid or liquid) phase can exist in 
absolute negative pressure regimes, while the same 
is not true for gas phases. Theoretical arguments and 
experimental evidence demonstrated this. While in a 
gas phase pressure is proportional to density, this 
does not necessarily occur in condensed phases. It is 
convenient to extend the definition of pressure. In 
liquids and solids, pressure ought to be treated as 
3x3- tensor P, rather than scalar, [14]. The authors 
[12] have shown how the negative pressure region 
of the phase diagram proves to be paramount in 
understanding the unusual behavior of this class of 
substances and in liquids and solids.  

Several experiments made during the Royal 
Society Meeting, [15], did not provide any 
explanation for the experiment because adhesion 
and cohesion were not known for them yet. To 
generate a very high negative pressure in a liquid 
one ought to use extremely small amounts of 
sample, [16], [17], [18], [19], [20], [21], [22], [23], 
[24], [25]. The boiling of superheated and stretched 
liquids has been studied in a series of papers, [28], 
[29], [30], [31], [32]. The suppression effect for 
cavitation centers of a heterogeneous nature with 
low-boiling impurities was discovered 
experimentally. The effect of a pulsed electric field 
on the limiting overheating of liquid at negative 
pressures was revealed. It was shown that for short-
term exposure to an electric field that does not lead 
to the formation of a noticeable amount of 
electrolysis products, the tension field of 107 V/cm 
is not enough to change the temperature of the 
limited liquid overheating. 

 
2.4  Negative Pressure due Stretching Liquid  
The physical situation described above by Figure 1 
and Figure 2 revealed negative pressure oscillations 
due to a strong variation of the volumetric forces in 
a fluid flow by amplitude and direction. In the 
numerical simulation below, for the flow under 
double rotations, the amazing features (oscillations 
of flow parameters and pressure) from the high 
positive to the high negative values we revealed. 
 

 

3 Mathematical Modelling of the Flow  
 
3.1  Equations of Flow in Double Rotations 
The differential equation array for the fluid flow in a 
cylindrical coordinate system is as follows, [33]: 

( ) ( ) ( ) =0,u u v w

t r r r z

    



   
   

   
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. 
 
where z is directed along the axis of the turbine. 
Here are:  , , , , ,v u v w p T  - density, velocity 
vector, pressure, and temperature, respectively, and, 
µ, - dynamic viscosity and heat conductivity 
coefficients, cV- heat capacity, 

cQ - internal heat 
generation due to cavitation. 
 
3.2  Simplifications of the Model 
We consider flow in a thin gap surrounding the 
wavy channel of the turbine rotating around its axis 
with a frequency ω so that centrifugal force is acting 
by the radius of the turbine; r0 is the radius of the 
turbine. We neglect the width of the thin layer 
around the turbine in a narrow channel with wavy 
walls. The forces are projected on the coordinates r 
and φ, with account of the distance from the center 
of rotation.   
 

 

4 Correlations for Curvilinear 

Channel 
In the gap channel, we can simplify the equation 
array (1) due to small changes of the flow 

parameters across the thin layer, transforming the 
problem from 3D to 2D geometry. The integration is 
performed by radial coordinate r across the 
channel’s layer from one surface  1 0 sin rar k z   
to another surface 2 1 b   . Here r0 is the radius of 
the turbine without a curvilinear channel, a is the 
amplitude of the surface wave, b is the distance 
between the walls of the channel, 2 rdr  is the 
integrating element in the cylindrical coordinate 
system. 
 
4.1  Dimensionless Integral Correlations  
For numerical modeling and simulation, it is better 
to use the equations in dimensionless form 
accepting the following scales for the velocity, 
length and pressure, correspondingly:  

0r , r0,  
2

00.5 r  , 
From (1), the dimensionless equations are got, [33]: 
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4.2  The Parameters and Initial Conditions  
The Reynolds number for our conditions ( , 

, ) is , which 
means the highly developed turbulent flow, so that 
the turbulent viscosity must be accounted. If the 
“new Prandtl formula” is used, the above expression 
can be kept, with the turbulent viscosity coefficient.  

The following initial data are stated:  
 Ω=6000 rpm, γ =1/3, a=1.5 mm, b=3 mm, =0.05,  
β=3, α=60,  kr=103,  =162 kN/m2=162 
kPa= 1.62 Bar. The water is supplied to the turbine 
by flow rate 1.7 l/s or 1.7 kg/s, so that by 6000 rpm 
at the R0= 18 cm it creates the force 30.6 N, which 
is for the gap of the turbine by radius 6 cm and 
width 3 mm approximately P0=(30.6/1.13)103 
kN/m2=27.1 kPa. If the cross-section for the water 
supply is open only to the 10% of the total turbine 
cross-section, then P0=271 kPa, or 2.71 Bar. 
 
 
5  Solution of the Equation Array  
 
5.1  Statement of the Boundary Problem 
The equation array (2) was solved numerically by 
the following boundary conditions: 

       z =0,  0u =0,  0w =-0.042, 0v =1, p =1,          (3)    

satisfying the above considered physical situation. 
Now all terms in (2) are estimated and the small 

ones are omitted compared to the bigger ones, to 
simplify the equations. Zero indexes are removed 
together with the tildes over the dimensionless 
functions, just for simplicity. Then it yields: 
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where b  , 0.5a  .  

 
5.2  The Non-Viscous Approximation 
Because  by the estimation made, the 
non-viscous case (due to big inertia forces compared 
to the viscous ones) can be analyzed. For the stated 
parameters, neglecting   0.05 in (4) compared to 
the 1 and similar, simplifies the (4) as follows: 
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But 28
80

5
vu vu

v
z

 


 
 because u<<v, therefore, 

from the first equation (5), follows: 
2 23 cos 1/3cos / 20 / 45cosv v w       . 

Here / 20v  and / 45cosw   may be of the same order 
if w grows dramatically inside the turbine compared 
to v. But there are no reasons for this. At the 
entrance to a turbine, they are respectively 0.05 and 
-0.00093. Therefore, finally, it yields: 

 2 2/ 20 3 1/ 3cos cos 0v v       . 
 

The solution of this algebraic equation yields 
2

2 2 2

1 1 1 13 cos cos
40 1600 3 40

1 1 13 cos cos 2 2sin cos
3 40 2 3

v  


  

     

      
  (6) 

 
5.3 Phenomenon of Two Counter-Current 

Rotational Flows under Double 

Rotations 
As the correlation (6) shows, there are two counter-
current rotational flows with approximately the 
same velocities, which correspond to the analysis of 
physical processes, namely the action of the 
resulting centrifugal force from the line  =0 to the 
 =π from the top and from the bottom, both sides 
(as shown in Figure 2):  

2 n  , 
1 1.53
40

v  
; 2

n


  
, 

1 1.73
40

v  
;            

0 6r sm

18000rpm 
6 210 /m s 

6Re 1.08 10 

b
2 2

00.5 r

6Re 1.08 10 
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   2 1n   , 
1 2.08
40

v  
;                        (7) 

where 0, 1, 2, 3,...n      The plus-minus in (6), (7), 
and later on correspondingly to the counter-current 
flows going in the opposite directions from the 
plane  =0,  symmetrically pushing the fluid from 
=0 to  =π.  

This is a very unusual complex flow due to the 
double rotations, which cause centrifugal forces in 
the flow inside the turbine, when all the fluid is 
pushed in the cross-section from  =0 to  =π and 
along the symmetry axis to the exit of the turbine. 
All the time, due to the rotation of the turbine, the 
new portion of water is coming from  =0 to  =π.  

Then derivative /v    from (6) and put into (5): 

               
2 2

3sin sin 2
18 2 2sin cos

2 3

w

z

 




 



 

,              (8) 

 1
2 2

3sin sin 2 0.042+A
18 2 2sin cos

2 3

w z
 







 

 
,        

2 n  , 0.042w   ;  
2

n


   , 0.042 0.22w z  ;  

 2 1n   , 0.042w   ;        
where  1A  - an arbitrary function of φ computed 
from (3), 0, 1, 2, 3,...n       1A  =0 if no initial 
distribution by φ is stated for w. As seen from (8), 
the velocity of the component flow along the axis of 
the turbine is always in the same direction and the 
same amplitude as from the inlet 0.042w  . But at 
the upper and bottom points of the turbine ( / 2  

) it has two components: 0.042 0.216w z   , 
0.042 0.216w z   , respectively, which give at z=-1, 

correspondingly, 0.174w  and 0.258w  .  
 
5.4  Calculation of the Flow Pressure 
From the third equation of the system (5), where it 
is possible to neglect the term 2 /w v z   comparing 
to the 

2 /v    because w<<1 and / 0v z   , yields 
21 2 4(cos 3)sin sin

3 9 3 20 3
wp v u

  
 

   
      

    , 
As far as u w , we can neglect the term / 20u  in 

the above equation as the small one comparing to 
the / 3sinw  , and then omit 4 / 9sinw   comparing to 
2 / 3sin  (also because we have no part of the w in 
(8), which is responsible for the dependence of w on 
 ). Therefore, it results in  

21 2 (cos 3)sin
3 9

p v
 

 

 
   

  , 
where from follows after partial integration by angle 
coordinate  , with account of (6), (8): 

    
 

2

2 2

2
1

1 1 12 2sin cos
3 40 2 3

1 cos 0.67cos
9

p

C z




 

 
       

 

  
        (9) 

And the total pressure is got as total integral 
from the total differential:          

                   .p p
dp d dz

z




 
 
 

.                      (10) 

Therefore, let us compute also partial integral by 
coordinate z using the last equation of the system 
(5). 

The second partial integral (now it is by 
coordinate z) is got according to (10): 

2 2

4 2

2 2 1 1cos sin 2 2sin cos
45 3 40 2 3

cos cos 22.8 10
8 12

uz
p z

uz z


  

 

 
       

 

 
     

 

 3
3 2

2
2 2

4.7 10 3sin sin 2
1.04 10 ( )

12 2sin cos
2 3

z
z C r

 







  

    


 
+ 

    

 

 

2
4

2 2

2

2 2

3sin sin 2
4.2 10

12 2sin cos
2 3

3sin sin 216 0.042 .
15 12 2sin cos

2 3

z

z

 




 







 

 

 
 
  
 

  
 

        (11) 

2 ( )C r  is got from boundary conditions. Finally, 

     

2

2 2

2 2

1 1 12 2sin cos
3 40 2 3

2 1 1sin 2 2sin cos
3 40 2 3

p

z





 

 
       

 

 
      

         (12) 
2 4 22 1 cos cos 20.67cos cos cos 2.8 10

45 9 8 12
uz

uz z
 

     
        

 

 

 

2
4

2 2

2

3 2

2 2

3sin sin 2
4.2 10

12 2sin cos
2 3

3sin sin 216 0.042 1.04 10
15 12 2sin cos

2 3

z

z
z

 




 









 

 

 
  
      

 
  

   
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 

 
 

3

2 2

1 2
2 2

4.7 10 3sin sin 2
12 2sin cos

2 3
3sin sin 2 sin

0.055 ( )
12 2sin cos

2 3

z

z d C z C r

 




  





 
 

 


  

 


.   
The (9), and (11) were inserted into (10) yielding 

the total pressure distribution (12) by the 
coordinates z and φ. By the coordinate z,  1C z  is 
easily computed according to the boundary 
condition (3), while the pressure distribution at the 
inlet to the turbine 

2 ( )C r  is not so simple question, 
therefore, we put 

2 ( )C r =0. Then pressure 
distribution in the turbine flow is: 

        

2

2 2

2 2

1 1 11 2 2sin cos
3 40 2 3

2 1 1sin 2 2sin cos
3 40 2 3

p

z





 

 
       

 

 
      

           (13) 
2 4 22 1 cos cos 20.67cos cos cos 2.8 10

45 9 8 12
uz

uz z
 

     
        

 

 

 

2
4

2 2

2

3 2

2 2

3sin sin 2
4.2 10

12 2sin cos
2 3

3sin sin 216 0.042 1.04 10
15 12 2sin cos

2 3

z

z
z

 




 









 

 

 
  
      

 
  

   
   3

2 2 2 2

4.7 10 3sin sin 2 3sin sin 2 sin
0.055

1 12 2sin cos 2 2sin cos
2 3 2 3

z
z d

    


 
 

  
 

   


. 
 
 
6  Computer Simulation  
 
6.1 Analysis of the Terms in Solution and 

Simplification of the Model 
In the equation (13), the following terms may be 
omitted as the small ones comparing to the other 
similar terms:  

  2
4

2 2

3sin sin 2
4.2 10 ,

12 2sin cos
2 3

z 









 

  42.8 10 ,uz


  

3 21.04 10 z


 
  



,   3

2 2

4.7 10 3sin sin 2
12 2sin cos

2 3

z 




 


 

. 

Then the equation (13) is simplified as follows: 

2

2 2

2

1 1 11 2 2sin cos
3 40 2 3

1 20.67cos cos cos
9 45

p

u




  

 
       

 


   



                   

           
2 2

2 2

2 1 1sin 2 2sin cos
3 40 2 3

3sin sin 20.022
12 2sin cos

2 3


 

 




 
      

 




 

        (14)             

 

 

2 2

2
2

2 2

3sin sin 2 sin
0.055

12 2sin cos
2 3

3sin sin 2cos cos 2 1.07 18 12 2 2sin cos
2 3

d z

z

  





  






 


  


 
 

   
  
 

 . 

 
6.2 Preliminary Analysis of Flow 

Peculiarities  
The obtained correlation (14) describes the pressure 
distribution in the two flows: up and down of the 
turbine from its right side to its left side. At the 
entrance there is about 25% loses comparing to the 
pressure in front of the turbine. The turbine is 
rotating but the liquid is flowing counter-currently 
from φ=0 to    from the top and to     from 
the bottom of the turbine due to the double 
centrifugal forces, which move the liquid both sides 
of the turbine to the region    , where from it is 
pressurized and pushed along the axis to the exit of 
turbine.  

The upper sign in the “plus-minus” expressions 
of (13) correspond respectively to the upper and 
down flows in the turbine. Therefore, we assume 
that at the plane φ=0, where the pressures are 
subtracting each other and velocities are counter-
current, the liquid is stretched by plus and minus 
forces, so that cavitation may happen. But at the 
meeting point of the two counter-current flows at 
the plane    , the pressure is doubled due to a 
meeting of two opposite flows. Thus, according to 
the above, from the (13) yields the following 
pressure difference at φ=0: 

 
 1/ 30 7 / 3 0.05p p       

 
Here, the pressure is 0.56 and the total pressure 

(with an account of dynamic pressure) is 2.9. The 
dynamic pressures are the same acting in counter-
current directions resulting in zero. Thus, the 
opposite flows and negative pressure are good 
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condition for the cavitation. At the upper and 
downsides of the turbine / 2   , the pressure is 0 
and the total pressure is 3.0. At the external part of 
turbine,    , the pressure is -4.11 and the total 
pressure, with account of the two meeting counter-
current flows with the dynamic pressures 4.32, is 
4.53!  

As seen from the above estimation, due to the 
counter-current flow by the coordinate φ, the flow 
pressure in the turbine is substantially decreased 
(depressurized flow) to the side of turbine φ =0, 
while it is increased (pressurized) to the opposite 
side of the turbine (  ). Then up and down of the 
turbine ( / 2   ), it is symmetrically prone to a 
slight pressurization.  

The pressure difference between the sections 
/ 2   , φ=0 is 0.56p   , and between the 

sections    and / 2    it is 4.11p   , so 
that flow is intensively accelerated in the last semi-
sphere. We estimate dependence of the pressure on 
longitudinal coordinate z, which is negative due to a 
liquid flow opposite to the turbine movement by 
tangential to the main rotation circle. For the z=-1, 
from (14) follows: 

2

2 2

2

1 1 11 2 2sin cos
3 40 2 3

1 20.67cos cos cos
9 45

p

u




  

 
       

 

   
 

        

2 2

2 2

2 1 1sin 2 2sin cos
3 40 2 3

3sin sin 20.022
12 2sin cos

2 3


 

 




 
      

 


 

 
     (15) 

 

 

2 2

2

2 2

3sin sin 2 sin cos0.055
812 2sin cos

2 3
3sin sin 2cos 2 1.07 .112 2 2sin cos

2 3

d
   






 





 

 


 

 


 

Neglecting the small terms in (15) yields  

2 2 21 1 1 1 cos 22sin cos 0.79cos cos
3 3 2 3 9 12

p
 

  
 

       
 

 
2

2 2

2 2

3sin sin 22 1sin 2 2sin cos 1.07 13 2 3 2 2sin cos
2 3

 
 





   

 
 

and calculation gives:  

φ=0: p=0.82; / 2   : p=-1.97;    : p=-1.43. 

The pressure difference between the sections 
/ 2    and φ=0 is 2.79p   , between the 

sections    and / 2    it is 0.54p  , so that 
the water flow is shifted to a middle section of the 
turbine    close to the axis at the exit. 
 
6.3  Computer Simulation of the Flow 
The approximate models (6), (8), and (13) were also 
implemented for the computer simulation in a wide 
range of parameters using the prepared FLEX PDE 
computer program. This is compared to the full 
model.  

As numerical simulations showed, the above 
approximate mathematical model is unique in the 
point that it allowed revealing the counter-current 
flow in a rotational turbine while direct numerical 
simulation on the computer does not allow this 
because the numerical solution cannot treat 
simultaneous flow in two opposite directions (two 
different solutions at the same time!). A 
combination of the detailed analysis of the 
approximate analytical solution and direct computer 
simulation is important because it allows revealing 
all possible regimes of the device functioning. 

In a curvilinear channel, the radial velocity can 
be estimated through the following correlation 
taking into account the form of the channel: 

sinr b a kz  . Thus, / cos /u r t ak kz z t      =
cosak kz w , which yields for a=1.5 mm, k=628, 

210 2k 

 ,                one wave on 1 cm length of 

the channel, the following estimation: cosu w kz .  
Now, accounting (5), and (6), with this 

estimation for the radial oscillating velocity, let us 
take approximate pressure from (14) neglecting the 
estimated small terms and considering separately the 
solutions for the upper and the down parts of the 
turbine, correspondingly: 

2 2 12 3 (cos 3)sin 4 sin
3 20 3

w
v v p u

w
z

  
 

    
      

    

, 

2 2 2

2

1 2 1 1sin 2 2sin cos
3 3 2 60 2 3

2 20.67cos cos cos cos
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p

w
kz

 


  

     


   



 

      

2 2

2 2

2 1sin 2 2sin cos
3 2 3

3sin sin 20.022
12 2sin cos

2 3

z


 

 




   



 


  


                 (16) 
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 
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3sin sin 2cos cos 2 1.07 18 12 2 2sin cos
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

 
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 

, 
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3 20 3
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3sin sin 20.022
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           (17) 
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2

2 2

3sin sin 2cos cos 2 1.07 18 12 2 2sin cos
2 3

z
  




 
 

   
  
 

, 

2 21 12 2sin cos
40 2 3

v


    . 

The equation arrays (16) and (17) for the upper and 
down parts of the turbine were solved numerically.  
 
6.4  The Results of Computer Simulation 
The results of calculations for regions  0 ≤  ≤ π ,  
−π ≤  ≤ 0  and a few cross-sections of the 
channel in the range  −3 ≤ 𝑧 ≤ 0 are given below. 
By the upper part of the channel according to (16) 
are presented in Figure 3, Figure 4 and Figure 5 (x is 
assigning the variable   in the graphs).  

Thus, flow in the channel at section z=-0.5 is 
along the axis of the channel only in a vicinity of 
φ=0. In the main volume, it oscillates decreasing the 
flow rate along the axis. What is more, with an 
account of the sharp pulses close to the opposite 
side of the channel (φ=π) it may be concluded that 
at this cross-section, at the distance z=-0.5, the flow 
rate is nearly zero (just shaking along the axis). 
 
 
 
 
 
 
 
 

 

    

 
Fig. 3: Initial data w,v,u,p at turbine’s entrance (z=0) 
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Fig. 4: Flow parameters w, v, u, p at z=-0.5 
depending on 0 ≤  ≤ π (in radians, from 0 to 
3.14) 
 

The rotational velocity v has every positive 
direction being substantially oscillating. Flow 
pressure oscillates a lot being negative in half of the 
cross-section. 

Figure 5 shows a similar tendency by z=-1 but 
the axial velocity has a lower peak close to φ=0 
(w=-3.6) but a big negative peak at φ =0.86π (w=-
6).  

 

 

 

 
Fig. 5: Flow parameters w, v, u, p at the cross-
section z=-1 depending on angle 0 ≤  ≤ π 

Mostly it oscillates in range (-2, 3), and 
integrally very little flow rate along the axis, 
prevailing oscillation. The rotational velocity v has 
everywhere positive direction being even more 
oscillating than before, with increase of the 
amplitude from φ =0 to φ =π. 
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Fig. 6: Axial and rotational flow velocities in 
channel by z,φ (y,x in figure) 

 

 
Fig. 7: Cross-sectional velocity-pressure by z,φ (y,x) 

 
The flow pressure is higher than at z=-0.5 and 

the negative pressure region is bigger (more than 
half of the whole section and up to p=-4 around φ 
=0.68π). The general tendency of the longitudinal 
and rotational velocities is given by both 
coordinates in the region in Figure 6, where from is 
seen that the most impressive anomalies are at the 
end of the channel. 

Similarly, the cross-sectional velocity and 
pressure in the region are presented in Figure 7, 
where it is obvious that the region of negative 
pressure is mostly approximately after a distance of 
one radius of the channel. It is quite big and the 
highest values are at the end of the channel from 
φ=π/2 to φ=3π/4. At the beginning of the channel, 
the negative pressure is absent. The highest positive 
pressure is in the range of approximately φ=0 to 
φ=π/4 in the whole channel. 

The flow parameters at the exit from the channel 
are given for the presented simulation in Figure 8. 

 

 

 
Fig. 8: Flow parameters w,v,u,p at exit (z=-3) 

 
 

7   Conclusion 
The developed mathematical model and the 
computer simulation have shown the peculiarities of 
the thermal hydraulic processes inside the device 
under double rotations. The governing parameters 
are all interconnected and are sensitive to variation. 
After obtaining the first experimental data it is 
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possible to solve the problem of optimization of the 
main parameters of the processes and device. This is 
the base for the calculation of the optimal 
parameters in further industrial construction. 

The control parameters are the speed of rotation 
and flow rate. As it is seen from the data obtained, 
in the turbine, there is an available pressure increase 
of up to 5 times compared to the entering pressure to 
the turbine. Using the developed models and 
computer programs it is possible to perform detailed 
calculations and optimization of the processes based 
on the experimental data. Express analysis of the 
requested parameters is available even in a 
notebook. 

The most remarkable is that the abrupt increase 
of the pressure locally due to the cavitation process 
does not influence the whole region but just locally 
as a concern to pressure. The velocity components 
are growing substantially and oscillating a lot. This 
means that such intensive spatial variation of the 
flow parameters creates the conditions for the 
production of the cavitation bubbles in the internal 
part of the turbine where a huge decrease of the 
pressure happens, while in the opposite part of the 
turbine, the dramatic increase of pressure leads to 
explosion of the bubbles causing the intensive fluid 
heating.  

The mathematical model allows studying the 
main regularities of a new class of problems related 
to the flow in channels under the influence of 
double rotations, in which volumetric variable 
centrifugal forces arise. The centrifugal forces create 
significant oscillations of the flow parameters, 
including areas where the forces are opposite, 
resulting in fluid stretching and, as a result, negative 
pressure and strong cavitation with a break of the 
molecules. This may produce hydrogen from water 
or be used for water desalination or purification of 
the sewage waters.  

For the US&C facility, it was possible to find 
simplification of the mathematical model, which 
allowed obtaining the numerical-analytical solution 
of the problem for further optimization of the 
parameters. The future theoretical and experimental 
research of the described new direction is focused 
on the regimes with dynamic negative pressure and 
their influence on the fluid as concerned to 
cavitation and disintegration of its molecules in a 
flow. 

The considered flows may cause different unique 
phenomena with applications in energy, chemical 
technology, etc. 
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