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Abstract. - The problem is solved with the help of a modified Prandtl equation applied to the case under study. 
This is a two-dimensional problem of flowing around a flat body when the essential factor is to take into account 
the limitation of its dimensions in the longitudinal and transverse directions. Thanks to the above Prandtl equation 
it was possible to reduce the problem to a self-similar equation. An analytical solution has been found. Thanks 
to this solution the shape of the body is analytically determined when the resistance is at its lowest. An analysis 
of the solution of the problem for different Reynolds numbers is carried out. The resulting equation is solved 
numerically for different values of its included parameters. With the help of a graphic illustration the different 
shapes of such contours are shown.   
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1    Introduction  
This article is devoted to the issue related to the 
analytical determination of the shape of bodies with 
the least resistance force.  

As it is known, [1], [2], [3], [4], [5], [6], [7], [8], 
[9], [10], [11], [12], [13], [14], [15], [16], [17], [18], 
[19], [20], [21], [22], [23], [24], [25], the shape of a 
raindrop also belongs to such bodies. This is quite 
understandable because due to the lack of turbulence 
in its tail section, the resistance force is greatly 
reduced. At the same time, we are not aware of any 
work where the drop shape would be described 
analytically.  

In this regard, we have set ourselves another task 
namely to find a body shape for which the resistance 
force will be significantly less compared to other 
bodies. As follows from this statement this is about 
the application of methods of the variational 
calculus. At the same time, the question comes to the 
fore: what should be chosen as the functional 
extremum we must findThe answer is obvious since 
the role of the desired function must be assigned to 
the resistance force. Let us start with its calculation.  

 
 
 
 
 
 
 

2 The Function of the Resistance Force 
We will represent the shape of the body in the form 
of a flat two-dimensional figure of finite thickness 
h  which corresponds to the longitudinal section of 
the spatial body similar to the task of N.E. 
Zhukovskiy on calculating the lift on the wing.  

To find the full resistance force value that it 
experiences the resistance force not only on the end 
part of the body must be taken into account but also 
on both side surfaces. Considering the body 
symmetrical concerning the direction of the 
streamline flow let us use a general expression for 
the resistance force which we will write in the form, 
[1]:  

k

i ik

S

F ds  , 

where S   is the body's total surface, ik   is 
the viscous stress tensor.  

Having expanded the integral we have  

0 1 0 12 2

k n

i ik iy in

S S S S

F ds dxdz ds  


     . 

Projecting this force onto the axis x  along 
which the flow is directed we will get  
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where    is the flow contour. Or  
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where the components of the viscous resistance 
tensor are  

vv vyx x
xy

y x y
  

  
   

   
              (2) 

v vx n
xn

nx x
 

  
  

  
     (3) 

where    is the dynamic viscosity.  

Note that a quite obvious condition was taken 
into account [1] in formula (2) v v ,y x a

The second inequality means that the typical 
variation range of the velocity argument along the 
axis y should be of the order   and along the axis 
z  it is the order of the average linear size of the 
body ab .  

The normal derivative can be calculated as 
follows 

v v vsin cosx x x

nx x z
 

  
 

  
        (4)  

Therefore we get the following from the 
expression (3)  

 
 

v v

v v v2 sin cos
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x n
xn

n
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x z
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
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  





  
   

  

    
    

   


  


   (4) 

Considering that  
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  (5) 

the functional (1) can be rewritten as follows:  

 
1

0

1

0

2

v4

vv v2 2 v

x

x
c

h
x y

x

xz z
x

x z

F x dx
y

h dx
x z x



 

  






  



     
       

     





 (6) 

To calculate the velocity distributions appearing 
in (6) we can use the modified Prandtl equation.  

Indeed, near the flow surface, the Navier–Stokes 
equation taking into account the finite dimensions of 
the body can be brought to the following equation 
(for a detailed analysis, [1])  

2 2

2 2

v v v v1v vx x x x
x z

P

x z x x z




    
     

     

   (7) 

where    is the kinematic viscosity, P  is 
the pressure,    is the fluid density.  

Equation (7) is valid if v vx z .  

It should be emphasized that equation (7) 
describes the flow around the end part of the body 
the thickness of which is h . The longitudinal 
dimensions of the body are finite and that is why 
both second-order partial derivatives had to be taken 
into account in the Laplace operator in contrast to 
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the equation solved by Blasius, [1], who considered 
the body semi-infinite. 

Further, it will be seen that it is the account of 
the two-dimensionality of the Laplace operator that 
allows us to find a self-similar solution that differs 
significantly from the solution found by Blasius. 

If we use the Bernoulli's principle  

2 2v
2 2

x U
P

 
 

               
  (8) 

and consider the velocity U  to be constant, 
equation (7) will be simplified, and using the 
continuity equation we come to the following 

2 2

2 2

v v vv ,

v v 0.

x x x
z

x z

z x z

x z


    

   
    

 

   

       (9) 

We will look for the solution of the continuity 
equation in the following form  

v ,

v .

x

z

u
z

x






  


  

 

       (10) 

where the function  ,x z   is to be found.  

Both velocity components in (10) must satisfy 
two conditions  

vx u ,   (11) 

v 0z  .   (12) 

If we now substitute formula (10) into the upper 
equation of system (9) we get  

2 2 2

2 2 2 0
x z z x z

  

     

   
     

      (13) 

With the introduction of a dimensionless 
function 

u ab


 

               
  (14) 

equation (13) is brought to the form:  

2 2 2

2 2 2R 0
x z z x z

       
   

     
      (15) 

 where R u ab


  is the Reynolds number. 

It is easy to see that equation (15) admits a self-
similar solution. Indeed, if a new argument is 
entered 

z

x
              (16) 

then equation (15) is brought to the following 
equation  

 2 1 4 2 R 0             
   

 
(17) 

According to (10) we have as a result  

v 1 ,

v .

x

z

ab
u

x

u ab

x






  
      







   (18) 

If a notation that reduces the order of the 
equation is entered  

G          (19) 

we will get  

 2 1 4 2 R 0G G G GG       
    

 
(20) 

Or  

 2 1 R 0G GG
    

 
. 

The first integral is 

 2 2
1

R1
2

G G С
   

          
 (21) 

where 1C   is the constant of integration.  

Assuming 1 0C   we come to Bernoulli's 
equation the solution of which can be represented as 
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   (22) 

where 2С   is another dimensionless constant 
of integration.  

Thus the velocity distribution for arbitrary 
values of the Reynolds number according to (10) and 
(22) can be represented as follows  
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z
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


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

  
     

  


 
   
         




 



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




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 (23) 

Taking into account solutions (23) functional (6) 
eventually becomes as follows 

 

 
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G
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a x

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 
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 
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
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  





(24) 

By introducing an abbreviated notation for the 
second integral 2cF  we obtain the following for it as 
a result of simple transformations 

1

0

2 2
x

c

x

F hu ab Hdx  ,   (25) 

where the sub-integral function is  

 

2

2 2

2

1 2 1

2 1
z x

H G G G
x x x

x a
G G

x a x


 







   
        

   

 
    

  

 (26) 

And thus for functional (25) the Euler-Poisson 
equation (see [21]) has the form:  

2

2 0d d
H H H

dx dx
       (27)  

leads us to the equation  

2

2

3 1 22 1

0
z

G G

x x G x x x G


   




     
              


 (28) 

The solution of equation (28) allows us to find 
out the shape of the contour  x  we are interested 
in.  

 
 
3 The Solution of Equation (28) 
With the accordance decision (22) at R 1 we 
have  

 
 2

2

1
1

G
C







 

It means that equation (28) is somewhat 
simplified and brought to the following  

2 2
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
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  (29)  

where it is taken into account that 
2 2

2 2

3G x x

G x



 

  
  

  
 

Due to substitution  

f
x


    (30) 

equation (29) is transformed into the 
following  
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    (31) 

Its stationary solution ( 0f f   ) leads to 
four "fixed points":  

2 5 17
4

f


 ,    (32) 

The numerical solution of equation (31) 
according to (30) is shown in Fig. 1-3.  

 

Fig. 1: The contour shape for the case 
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5 170,01

4
f


  

 

Fig. 2: The contour shape for the case 

 2
5 170,01

4
f


  but on a larger scale 

 

Fig. 3: The flow contour shape in the case when 

 1
5 170,01

4
f


  

As can be seen in these figures the shape of a fish is 
one of the possible well-streamlined bodies.  
 
 
4    Arbitrary Reynolds numbers  
In this case, solution (22) and equation (28) can be 
written as a system  
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(33) 

Where 

 
2

2,dG d G
G G

d d 
   .  
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x


  . After differentiation 

of the function G  we find the following expression 

 
2

1 2 2

1 2

2R, q q qG
p

G q q


 
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
,     (34) 

where the functions are  

   

 

2 2
1 2

2 1 2

R1 1 ,
4
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Therefore the lower equation in system (33) 
according to the replacement x   is brought to 
the form  

     2 2R, 1 R, 0x xp p          

,   (36) 

where  R,p   is given by formulas (34), (35).  

The asymptotic behaviour of the function 
 R,p   is the following.   

If it is 0x  then it is 
0

3lim
x

p

x

   and if it 

is x   then it is lim
x

p b

x 

  where  

2 2
2

2

R 4
R
C

b
C




 
           (37) 

The numerical solution of equation (36) is 
shown in Fig. 4-7. The boundary conditions were 
assumed as follows  

 
   0 1, 0 0G G                (38) 

 

 
Fig. 4: The contour shape for arbitrary Reynolds 
numbers and in the case when 
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4
f


 (small scale) 

 
Fig. 5: The same as in Fig. 8 that is, with 

 1
5 170,01

4
f


  but in a more distant 

coordinates of the abscissa 
 
 

 
Fig. 6: The flow contour shape for the case 

 2
5 170,01

4
f




 
 

 

Fig. 7: The count shape for  2
5 170,01

4
f


  

with the abscissa axis prolongation 
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5   Conclusion  
1.  A mathematical model is described that allows 

analytically determining the most optimal type of 
contour of a well-streamlined body;  

2.  A numerical solution of the problem for arbitrary 
Reynolds numbers is obtained. 

3.  In the next paper we will considering in more 
detail the influence of the Prandtl number.   
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