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Abstract: This paper aims to present a comprehensive study of the dynamics of a bubble using the Volume of 
Fluid (VOF) model in Fluent software. The simulation of two-phase flows is carried out by calculating the 
terminal velocity, bubble flow contours at different column heights, and the evolution of bubble circularity and 
Reynolds number at different times. The calculation was carried out on an air bubble with a diameter equal to 
10 mm and zero introduction velocity by modifying the simulation parameters, such as the surface tension, to 
study their influence on the deformation of the bubble. This study will present four different shape regimes, 
which are obtained by varying the Bo (Bond number) and Mo (Morton number) values within the 
corresponding ranges of 1 < Bo < 103 and 5×10-8 < Mo < 102. In addition, simulations are performed using 
large density and viscosity ratios of 1000 and 100, respectively. The results are comparable with great precision 
to the numerical simulation and experimental data. 
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1  Introduction 
Bubble columns are used for different purposes 
because the process is simple to operate, has perfect 
mixing, has no moving parts and high mass transfer 
rates are achievable, along with the capability to 
accommodate a wide range of residence times by 
manipulating the gas and liquid flow rates, [1].    
They are of particular interest for research. Despite 
the widespread applications of bubble columns, the 
interactions between hydrodynamics, mass transfer 
mechanisms, chemical reactions, and yield and 
product quality are to date poorly understood. Two-
phase flows are ubiquitous in nature and industrial 
applications such as bioreactors, chemical industry, 
petrochemical, biochemical, metallurgical 
processes, solar energy, biogas energy nuclear 
engineering, etc. The physical mechanisms involved 
in these flows are fundamentally dependent on the 
separation surfaces between the different phases, 
which are called ''interfaces''. A moving bubble in a 
liquid medium deforms, which is of great interest. 
The problem of the rise of a bubble in a liquid at rest 
of infinite extension is complex because it involves 
very rich physics and coupled mechanisms.           

The dynamics of a single bubble rising due to 
buoyancy in an infinite liquid pool have been the 

focus of many experimental, [2], [3], [4] and 
numerical studies, [5], [6], [7]. We can cite the 
terminal velocity and shape of the bubble, the 
trajectory of the bubble and its stability, and the 
deformations of the bubble during the ascent. In its 
simplest configuration, a bubble column consists of 
a vertically arranged cylindrical column filled with 
liquid. The gas flow rate is introduced at the bottom 
of the column through a gas distributor.  The gas is 
supplied in the form of bubbles to either a liquid 
phase or a liquid-solid suspension. In this case, the 
solid particle size (typically a catalyst) ranges from 
5 to 100 μm. These three-phase reactors are referred 
to as slurry bubble columns.  

The liquid flow rate may be fed co-currently or 
counter-currently to the rising bubbles, or it may be 
zero. In the latter case, the column operates in batch 
condition. Bubble columns offer a significant 
number of advantages: excellent heat and mass 
transfer between the phases, low operating and 
maintenance costs due to the absence of moving 
parts, solids can be handled without any erosion or 
plugging problems, slow reactions can be carried 
out due to the high liquid residence time reasonable 
control of temperature when strongly exothermic 
reactions take place. However, the back-mixing of 
the liquid phase (the result of buoyancy-driven 
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recirculation) is a limitation for bubble columns: 
excessive back-mixing can limit the conversion 
efficiency. The reactor may be equipped with 
internals, baffles, or sieve plates, to overcome the 
back-mixing problem with an inevitable 
modification in the fluid dynamics. Bubble columns 
are extensively used in many industrial applications. 
They are of considerable interest in chemical 
processes involving reactions like oxidation, 
chlorination, alkylating, polymerization, and 
hydrogenation, as well as in the production of 
synthetic fuels via a gas conversion process 
(Fischer-Tropic process) in biochemical processes 
such as fermentation and biological wastewater 
treatment. 

This study aims to simulate the formation of 
various air bubbles in stagnant water within a 
vertical column with a constant section. The study's 
findings could help us comprehend the actual 
physical phenomena and water column design. 
Lastly, it suggests novel standards for selecting 
mesh and geometry combinations that accurately 
depict the actual phenomena. 

 
 

2  Geometry and Flow Configuration 
The initial configuration for this numerical study 
corresponds to the study of the rise of an air bubble 
in the stagnant water. In this work, the single bubble 
diameter of D = 10 mm centred at (x, y) =      
(0.0056, 0) is studied. The dimensions of the 
column are a height of 100 mm and a width of 40 
mm, as presented in Figure 1. The wall boundary 
condition is used at the top and bottom boundaries 
and for the two lateral borders. This bubble at an 
initial speed of zero and the ratios of density and 
viscosity are fixed. In our simulation, we assume 
that there is no phase change and that the fluids are 
Newtonian. In our work with these conditions, we 
can consider that the density and the viscosity of the 
gas (air) contained in the bubble have negligible 
effects compared to those of the surrounding liquid 
(water). The bubble is subject only to gravitational 
forces. The flow is controlled by two dimensionless 
numbers: the Bond number (Bo =10), and the 
Morton number (Mo = 5×10-6). The parameters of 
the numerical simulation are chosen to obtain the 
same Bond and Morton number values as in some of 
the reference simulation, [8] and experiments, [9]. 
In this work, the primary phase is water (liquid) and 
the secondary phase is air (gas). The main physical 
properties are used to observe and describe the 
matter of the single air and water is tabulated in 
Table 1. 

 
Fig. 1: Schematic of column geometry with Initial 
configuration of bubble 
 

Table 1. Simulation parameters, [8] 
Time scale       g/D  
Nature of simulation 2D-Axisy. 
Regime Laminar 
Unsteady time step CFL< 0.25 
Density of the liquid, l 1000 [Kg.m-3] 
Air bubble density, g   1 [Kg.m-3] 
Liquid dyn. Viscosity, l 0.0266[Kg/m.s]] 
Air Dyn. viscosity, g 0.000266[kg/m.s] 
Interracial tension,  0.1[N.m-1] 
Gravity, g 10 [m.s-2] 
Bubble diameter, D 0.01m 
Morton's number, Mo 

   34 /  llgMo   
5×10-6 

 
Number of Bond, Bo

 /gDBo 2
l  10 

Density ratio 
gl  /  1000 

Viscosity ratio 
gl  /  100 

 
 
3  Governing Equations 
If we assume that the movement of each of the 
phases that make up the flow obeys the 
incompressible Navier-Stokes equations, it is 
possible to show that, under certain hypotheses, 
[10], the evolution of two-phase mixing can be 
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described on the à scale by the system of Navier-
Stokes equations: 
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Where P is the pressure, V is the velocity, g is the 
gravity,  is the interfacial tension,  and µ denoting 
for example the mass volume and the local dynamic 
viscosity of the mixture. In this bubble 
simulation,  n.



   represents the volumetric 

forces at the interface resulting from the surface 
tension force per unit volume. Where  the 
coefficient of surface tension and n is the 
surface normal which is estimated from the 
gradient of volume fraction,  n.  is the local 
surface curvature calculated as follows: 
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To arrive at equation (1), it is in particular 
necessary (a) to assume the absence of phase change 
and (b) to neglect the local deviations between the 
point values of the different quantities. The last 
equation constituting the model is: 

  0.. 



CV

t

C

   
                                        (4) 

The flow of two fluids is represented by a model 
with a single fluid that remains incompressible but, 
whose density and physical properties vary strongly 
when crossing the interfaces. The density and 
viscosity of the fluid are expressed, as a function of 
the properties of the two fluids (gas/liquid) and of 
the volume fraction C of one of the phases, as 
follows: 
 

  21 1.  CC                                                (5) 
  21 1.  CC                                                (6) 

 

3.1  The VOF Method 
The CFD Fluent code has a variety of models 
available to incorporate multiphase flow.               
The FLUENT, [11], code was utilized to solve the 
transport equations for two-phase flow, and the 
liquid-gas interface was monitored through the 
Volume of Fluid (VOF) method. The VOF method 
uses a discrete function ),,( tyxfC   that represents 

the volume fraction of one of the fluids in each 
control volume. For 1C  and 0C , the cell 
represents the vapor region (in bubble) and the 
water region (in liquid fluid), respectively. And for

10 C , the cell represents the interface region. 
The free surface of the bubble exists in the interface 
region. In this study, the bubble is defined as an 
aggregate composed of cells that have a volume 
fraction in the range of 5.0C . Therefore, the 
bubble volume is calculated by the summation of 
the vapor volume in each cell where the volume 
fraction is in the range of. And bubble surface area 
is calculated using the area of iso-surface which has 
a constant volume fraction. Figure 2 shows the 
governing equations in each cell, governing 
equations (Eq. 1 and Eq. 4) are solved for only gas 
and liquid phases, respectively. However, in the 
interface cell, governing equations are solved for the 
mixture phase assumed as 3rd phase. 
 

 
Fig. 2: Governing equation in each cell 
 

The flow of the two fluids is represented by a 
model with a single fluid that remains 
incompressible, but whose density and physical 
properties vary strongly when crossing the 
interfaces. In various applications of multiphase 
flows, a fundamental understanding of the physics 
of the case of a bubble rising and deforming in a 
quiescent viscous liquid is essential. Herein, the 
bubble shapes tend to vary greatly, depending on 
where the bubbles lie within the different flow 
regimes. The bubble-rising behaviors can usually be 
correlated against four non-dimensional parameters 
such as the Morton number which is defined as: 
 

Bond number: 


 2Dg
Bo


                                 (7) 
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Morton number: 
23

4

l

lg
Mo




                              (8) 

Where, 
gl                                    

Bo is the ratio of the body forces                  
(effective gravitational forces) and the surface 
tension, but it could also be considered as a 
dimensionless size value of the bubble. Mo 
describes the properties of the surrounding fluid, 
mainly focusing on viscosity and surface tension. 
 
The Froud number is defined as: 

0

2
0

gd

U
Fr                                                            (9) 

And the Reynolds number is defined as: 

l

l
UD




Re                                                           (10) 

 
Where, D and d0, represent the diameter of the 
bubble and orifice diameter, respectively. The Bond 
number represents the contribution of the effects of 
surface tension and buoyancy, whereas the Morton 
number, which is sometimes referred to as the 
property group, measures the relative importance of 
viscosity and surface tension forces. Following a 
similar definition, the Reynolds number signifies the 
contribution between the inertia and viscous effects. 
 
3.2  Numerical Method 
Before being able to launch a numerical simulation, 
it is necessary to carry out several steps, including 
the construction of the geometry of the system and 
its spatial discretization (mesh), the choice of 
adequate boundary conditions, and the initial 
conditions.   A two-dimensional uniformly 
structured mesh is developed using GAMBIT, [12]. 

The mesh is shown in Figure 3. The domain 
presented in this figure is meshed into quad 
elements. The boundary conditions are symmetry on 
the axis (Ox) and walls on the horizontal and 
vertical boundaries (Figure 1). The time step was set 
to 10-4s. The initial position of the bubble is shown 
in Figure 3.  

The numerical simulation of a dynamic bubble is 
carried out using Fluent.  The geometries used are of 
the two-dimensional asymmetric type. The 
governing equations are solved using an 
incompressible approach (pressure-based solver) in 
the simulations for a water-air two-phase flow 
system. Water and air were selected as the primary 
and secondary phases, respectively. The simulations 
are carried out in the bubbly laminar unsteady 
regime. The finite volume method with an implicit 

scheme for iterations was used to solve the 
continuity, momentum, and volume fraction 
equations. The first-order scheme (upwind) was 
applied to the discretization of the flow equations 
(Navier-Stokes equations) and the volume fraction. 
The pressure-velocity coupling was carried out 
using the implicit scheme with the SIMPLE method 
and the discretization of the pressure using the 
Standard scheme. The convergence criterion is set to 
10- 4 for all equations. For the unsteady case, it is 
necessary to choose and adapt the time step for each 
case of the simulation.  

The standard Current-Friedrich-Lewy (CFL) 
number should ideally be kept below 0.25. Its value 
is reported in the fluent window. This Currant 
number is roughly the number of cells that 
converted information travels at the speed of the 
bubble in one time step:   

 
Dx

DttV
CFL

..
                                                      (11) 

 
Thus, it is from the terminal velocity noted in 

Figures 11, Figure 12, Figure 13, and Figure 14, and 
in order to ensure a CFL= 0.25 the time step 
proposed in Table 3 was calculated. 
 

 
Fig. 3: A view of the bubble mesh in the middle of 
the column and around the bubble  
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4  Results and Discussions 
The results of air bubbles rising in water will be 
examined here and compared to numerical, [8] and 
experimental data, [9]. To be able to study the 
temporal evolution of the bubble speed in the 
vertical direction along the axis (Ox), it is necessary 
to calculate for each time step (t), the average axial 
speed (V (t): barycentric speed of the bubble) 
defined as: 
 

 

   

  













dt,xC

dt,xVt,xC
tV                            (12) 

In practice, we determine the Bond number (Bo) 
and the Morton number (Mo) and calculate the 
Reynolds number Re (t) using the simulation results. 

 
 

l

l DtV
t




Re

   
                                        (13) 

The first step is to determine the minimum 
number of calculation cells needed per initial bubble 
diameter to accurately describe its dynamics.          
To quantify this number, a bubble rise simulation is 
made for different spatial resolutions of grid1       
(Δx = Δy = d/50), grid2 (Δx = Δy = d/70) and grid3 
(Δx = Δy = d/90). The Reynolds number is 
compared for the different spatial resolutions in 
Figure 4. The terminal velocity converges to a 
single curve as the resolution increases. It has been 
observed that the terminal velocity of the bubble 
obtained from x = d/50 is only 5% lower than that 
obtained from x = d/90.  

In addition, there is a good correspondence 
between the numerical simulation and the 
experimental one, [8] and [9], the comparison of the 
temporal evolution of the speed of the bubble that 
we obtain shows a great resemblance. The results 
indicate that 50 computational cells per initial 
bubble diameter is an acceptable lower limit for 
accurately describing bubble dynamics in the regime 
considered here. In terms of terminal velocity, we 
obtain a Reynolds number of 96.5 very close to that 
found by, [8] (Re = 100) and Re = 98.53 by 
simulation, [9]. 

The deformation of the bubble in the fluid is 
determined by its acceleration. It appears when 
observing Figure 3 that the speed increases and 
reaches a maximum to return to its asymptotic 
speed, and we then notice that the speed has 
increased and will eventually stabilize. In other 
words, the bubble returns to its constant shape once 
the speed is stabilized. 

 

 
Fig. 4: Reynolds number (mean velocity) profile in 
different meshes 
 

That is to say, the bubble recovers its constant 
shape when the speed is stabilized. After having 
obtained the correct settings under Fluent, we will 
now proceed to the analysis of the results of the 
simulation. The procedure we use is similar to that 
of an experimenter. We therefore release a spherical 
air bubble with a diameter of 0.01 m and zero initial 
velocity in the water at rest. Figure 5a shows the 
evolution of the shape of the bubble over 
time. Under the effect of Archimedes' force, the 
bubble begins to rise and deform before acquiring 
its terminal speed and shape. The terminal shape we 
end up with is very similar to that obtained by, [9], 
by simulation (Figure 5b). In the first stage, the 
bubble widens at the back and the curvature 
becomes negative in this region. Then, still at the 
back, the curvature decreases, vanishes, and then 
becomes positive again. In the third stage, the part 
located near the intersection of the base and the 
upper dome rises. The bubble then changes from a 
spherical cap shape to a quasi-ellipsoidal shape 
close to front-back symmetry. In a last time, the 
front part flattens while the rear part hardly evolves 
anymore. This same evolution of the shape of the air 
bubble is observed by Blanco. It can be said that the 
back of the air bubble deforms more than the front 
because gravity and capillary forces combine. After 
having observed and compared the evaluation of the 
bubble, we can take an interest in its circularity. Its 
evolution is then traced (Figure 6). We then observe 
a sudden drop in the circularity of the bubble, which 
deforms during its ascent and then ends up 
stabilizing and reaching a constant value. We can 
therefore think that this reduction in circularity is 
caused by the acceleration of the bubble in the 
water, which deforms it. 

 To confirm this hypothesis, we then plot the rate 
of ascent of the bubble as a function of time.  
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Vectors may be used to illustrate how the velocity 
field impacts the bubble, as seen in Figure 7. The 
arrows represent the velocity field of the flow, 
which is colored according to the vorticity of the 
flow. By observing this figure, we see that the flow 
around the air bubble creates an acceleration of the 
fluid at the lateral ends, causing the creation of a 
vortex at the interface. These vortices then deform 
the bubble, thus creating a drop in the circularity of 
the bubble. 

 

 
(a)                                 (b)   

Fig. 5: A two-dimensional air bubble rising in a 
low-viscosity liquid (

gl  / =103, 
gl  / =102, 

Mo=10, Bo=5×10-6). (a) Simulation,                      
(b) Experiments, [9]. 
 

   
Fig. 6: Evolution of bubble circularity (case: Bo=10, 
Mo=5×10-6, =1.0) 

 
Fig. 7: Representation of the axial velocity field 
around the bubble in red (time = 0.032 s) 
 

One can also observe the evolution of the 
streamlines in a frame linked to the air bubble in 
Figure 8. The shape of the bubble not only 
influences its terminal ascent velocity but also plays 
an important role in determining the rate of heat and 
mass transfer. We notice in Figure 5 that, following 
their moving interface, the bubbles deform when 
they undergo external flow fields until there is 
equilibrium between the normal and shear stresses 
at the interface. Generally speaking, the shapes 
observed during the rise of the air bubble in the 
following figure can be divided mainly into two 
categories. At the beginning of the evolution, the 
shape of the bubble is spherical, and for a certain 
moment, the air bubble deforms and takes on an 
ellipsoidal form. The shape of the bubble is 
flattened with a convex interface (seen from the 
inside). We can conclude that the forces of surface 
tension and viscosity, which are dominant in this 
research configuration, are responsible for the shape 
change of the bubble. The interface of the bubble 
can be considered rigid; it plays the role of a 
membrane, and the movement of the bubble is 
purely vertical. This part deals with the case of 
bubbles deforming a lot but evolving at 
Reynolds numbers of the order of ten and the 
case of bubbles that deform little but for which 
the Reynolds number is of the order of a 
hundred. To compare our results with those of, [8], 
and, [13], we conducted a series of simulations in a 
range of Morton numbers (5×10-8, 5×10-6, 10, and 
104) and a Bond number range (1, 10, 100 and 
1000). This corresponds a posterior to a Reynolds 
number range Re = 10 and 100. Now let's look at 
how the surface tension of the water/air fluid affects 
the air bubble's rising dynamics. 
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Fig. 8: The vertical axial velocity field of the bubble 
refers to a frame moving with the bubble 
 

To do this, we fix l/g and l/g (1000, 100), 
respectively, and we choose four pairs of values 
(Bo, Mo). Table 2 shows the combinations to 
choose among the values of viscosity, surface 
tension, and the corresponding time step for the 
simulation. We note that the validation of our 
numerical simulation is based on the shape map 
developed by, [13]. These shape maps show the 
shape of bubbles for most conditions of practical 
interest and are based on dimensionless numbers 
(Re, Mo, and Bo); Figure 9. 
 

Table 2. Parameters for the simulation 
(All in S.I. units) 

case 1 2 3 4 
l 0.04729 0.0266 0.1778 0.05623 
 1 0.1 0.01 0.001 
t 1×10-4 1×10-4 2×10-4 5×10-4 
Mo 5×10-8 5×10-6 10 102 
Bo 1 10 102 103 

 
Fig. 9: Bubble regimes, according to, [13]. 
 

The four series of Figures 9a, 9b, 9c, and 9d make 
it possible to appreciate the decisive influence of the 
tension of the surface between the two fluids (water 
and air) on the rise time of the bubble. The first 
remark that can be drawn from these figures is that a 
low surface tension '' allows a greater deformation 
of the bubbles. The shape of the bubble not only 
influences its terminal ascent velocity but also plays 
an important role in determining the rates of heat 
and mass transfer. According to these figures, the 
bubbles deform when they experience external flow 
fields until there is equilibrium between the normal 
stress and the shear stress at the interface. Bubble 
shapes are limited in number due to interfacial 
forces. The observed forms of rising bubbles in our 
numerical simulation using the VOF method fall 
primarily into three groups. 

 
 Spherical bubbles: at stationary Reynolds 

number Re = 100 and surface tension                
= 1.0 N/m2. Note that surface tension forces 
and viscous forces govern the shape of the 
bubbles, which deviate very little from the 
spherical shape; see the bubble shape of our 
simulation in Figure 10a and the experimental in 
Figure 9. 

 Ellipsoidal Bubble (Ellipsoidal): As shown in 
Figure 10b, ellipsoidal bubbles are defined as 
bubbles that have flattened and a convex 
interface encircling the entire surface. These 
bubbles undergo periodic expansion or rotational 
movement. 

 The spherical cap bubble or ellipsoidal cap 
(Dimpled ellipsoidal cap): bubbles (Figure 10c); 
these bubbles look like segments cut from the 
spheres by both sides of the bubble. 
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 For the case =1 [N/m2] (Figure 10d), the rising 
bubble in a Newtonian fluid behaves like a rigid 
sphere and follows Stokes' law in its motion. 

 
The terminal velocities of ascent for the four 

bubbles as a function of time are shown in Figure 
11, Figure 12, Figure 13 and Figure 14. These 
figures show that the Reynolds number of the 
bubble plays an important role, i.e., with an increase 
in these values, the bubble will change from one 
shape to another. The time course of the Reynolds 
number of the four bubbles in cases 1 to 4 shown in 
Figure 11, Figure 12, Figure 13 and Figure 14 is 
quite different because the repulsive irrotational 
effect acts in region t/(D/g)0.5 < 3.  

Table 3 compares the Reynolds number in the 
stationary case of the air bubble rising in a water 
column between our simulation study and that of, 
[8]. 

 

    
 =0.1 
[N.m-2] 

(a) 

 =0.01  
[N.m-2] 

(b) 

 =0.001 
 [N/m2] 

(c) 

 =1.0  
[N.m-2] 

(d) 
Fig. 10: Simulation results of the single bubble with 
a 10 mm diameter rising at four different 
configurations ( = 0.1, 10-2, 10-3, and 1.0 [N.m-2]) 
 
 
 
 

Table 3. Comparison of Reynolds number with the 
reference 

case (a) 
 

(b) 
 

(c) 
 

(d) 
 

 = 0.1 0.01 0.001 1 
Simulation 96.55 94.34 9.22 96.56 
Exp. [8] 98.53 95.61 9.56 98.64 

 

 
Fig. 11: Time history of the Reynolds number of 
bubbles (case: Bo=10 and Mo=5×10-6) 
 

 
Fig. 12: Time history of the Reynolds number of 
bubbles (case: Bo=100 and Mo=10) 
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Fig. 13: Time history of the Reynolds number of the 
bubble (case: Bo=103 and Mo=104) 

 

 
Fig. 14: Time history of the Reynolds number of the 
bubble (case: Bo=1 and Mo=5×10-8) 
 
 
5  Conclusion 
A CFD simulation of the hydrodynamics of             
a gas-liquid bubble column has been simulated 
using Fluent by employing the VOF approach. We 
can conclude that in a viscous fluid (water), the 
bubbles go through well-known shapes: spherical 
shape, ellipsoid of revolution crushed vertically, 
flattening of the rear part of the bubble until 
obtaining, for larger volumes, a helmet-shaped 
spherical shape. This helmet or spherical cap 
flattens as the volume of the bubble increases. In the 
fluid Newtonian, whatever their size, the bubbles do 
not have a tail but present, from a certain volume, 
the shape of a parachute like a depression at the 
back of the bubble.   
 
 
 
 

Our numerical validation was concluded for a 
series of rising bubbles, in a stagnant fluid. We 
obtained a good agreement with the experimental 
data available from, [9]. The objectives of this study 
are: 
 Integrating the VOF approach with a 

computation code (FLUENT) and evaluating 
the output CFD scheme's performance against 
several experimental and numerical examples; 

  Use our algorithm to create a new computer 
model that simulates the VOF method; 

 A column with a constant vertical section can 
be used to simulate the rising dynamics of a 
bubble. For this, a variety of validations of the 
resulting model will then be carried out in the 
form of test cases; 

  Work with the UDF to change an important 
commercial code to meet our study goals. 

 
This work remains a modest contribution to the 

field of understanding phenomena and the 
characterization of the physical parameters linked to 
the bubble. For our future research, we can cite 
some perspectives that it would be interesting to 
develop, among which we cite some: 
1. The impact of temperature on the bubble's 

dynamics;  
2. An examination of the necessary development 

of the heat transfer model, which takes into 
account the microlayer region underneath the 
bubble 

3. Examining the three-dimensional movement of 
bubbles using fluid code. 
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