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Abstract: A three-dimensional technique for modeling shock-wave processes both in fluids and solids and for 
modeling fluid-structure interaction problems is proposed. The technique is based on a modified Godunov's scheme 
of increased accuracy, which is the same for both fluids and solids, and uses Eulerian-Lagrangian multimesh 
algorithms. Improving the accuracy of the scheme is achieved only by changing the "predictor" step of the original 
Godunov scheme. A three-dimensional and time-dependent solution of Riemann's problem is used, which provides 
a second-order approximation in time and space in the domain of smooth solutions. Monotonicity in the domain of 
discontinuous solutions is ensured by the transition to the "predictor" step of the first-order scheme. A similar 
solution of the Riemann problem is used at the contact "fluids - solids”. For each body, three types of computational 
grids are used with an explicit Lagrangian choice of movable free and contact surfaces. The first type of mesh used 
is a Lagrangian surface mesh in the form of a continuous set of triangles (STL file), which is used both to set the 
initial geometry of an object and to accompany it in the calculation process, and two types of volumetric three-
dimensional meshes. These are the basic Cartesian fixed grid for each object, and auxiliary movable local Euler-
Lagrangian grids associated with each triangle of the surface Lagrangian grid. The results of numerical simulation 
of the processes of the impact of ice fragments on a titanium plate, acceleration by detonation products of 
deformable elastoplastic bodies of various shapes, and steel strikers piercing an aluminum plate are presented. 
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1   Introduction 
Godunov scheme, [1], and its most famous 
modifications, [2], [3], [4], [5], [6], are widely used 
for solving nonlinear dynamic problems of fluid 
dynamics (CFD) in Eulerian variables due to the 
ability to distinguish and describe discontinuous 
solutions without artificial viscosity. At present, 
various modifications of this scheme are also used 
to solve problems of the dynamics of a deformable 
rigid body (CSD) in Eulerian and Eulerian-
Lagrangian variables. The main problem of 
Godunov's scheme is the first order of 
approximation and, as a consequence, significant 
scheme viscosity, which leads to a fast decay of the 
solution. Numerous attempts to eliminate this 
drawback for CFDs, which are close in meaning to, 
[3], [4], [6], increase the difference stencil of the 
scheme and do not provide second-order accuracy 
in time in the domain of smooth solutions in the 

spatial case, and also create additional difficulties in 
the implementation of boundary conditions. In CSD, 
when modeling wave processes, the influence of the 
schematic viscosity is even more significant, and in 
many problems, it is necessary to use variants of the 
scheme with an approximation order of at least two.  
At present, for CSD, there are a large number of 
modifications of the Godunov scheme of increased 
accuracy, in particular, works, [7], [8], [9], [10], 
[11], [12], [13], [14], [15], [16], [17], [18], [19], 
[20]. In these works, modifications of the Godunov 
scheme of increased accuracy are developed, based 
on various versions of hyperelastic models of rigid 
body dynamics. These models are hyperbolic, 
invariant to the rotation of a rigid body, 
thermodynamically compatible, and can be written 
as a system of first-order differential equations in 
the form of conservation laws. The resulting 
modifications are laborious, are of more academic 
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interest, and have received limited distribution in 
computational practice and commercial packages. 
For hypoelastic CSD models, the solution to the 
problem of increasing the accuracy of numerical 
models was presented, [21], and further developed 
by him for various models of nonlinear material 
behavior in, [22]. It is shown that for hypoelastic 
models of media, including those describing 
irreversible deformations, and for “predictor-
corrector” schemes with splitting into physical 
processes, it is sufficient at the “predictor” stage to 
obtain a solution of the linearized equations in the 
elastic approximation with the second order of 
accuracy. The nonlinear behavior of the material is 
taken into account at the “corrector” stage. In this 
case, the second order of approximation of the 
system of equations as a whole is preserved. In, 
[23], [24], a modification of Godunov's scheme for 
CSD of the second order of accuracy, monotonic on 
discontinuities was proposed. In this case, the exact 
solution of the Riemann problem in the elastic 
formulation is used for the linearized equations of 
the theory of plastic flow by the approach, [21], in a 
two-dimensional formulation on a compact stencil. 
This modification solved the problem of the 
increased scheme viscosity and the problem of 
boundary conditions. The increase in accuracy is 
achieved due to the convergence of the areas of 
influence of the differential and difference problems 
of the Riemann problem, the monotonicity of 
solutions in the area of discontinuities is ensured by 
the transition to the “predictor” of the scheme of the 
first order of accuracy. At the "fluid-elastic body" 
contact, the exact solution of the Riemann problem 
is also used. In, [25], [26], [27], [28], this 
modification was generalized to a three-dimensional 
case and three-dimensional problems of shock-wave 
loading of elastoplastic bodies were solved. 
Modeling three-dimensional dynamic processes of 
fluid-solid interaction (FSI) in Eulerian variables 
also requires an adequate description of complex 
processes at moving contact boundaries. Therefore, 
it is desirable to highlight and accompany the 
moving boundaries in the process of calculations. 
Currently, there are two approaches to describe the 
spatial motion of free and contact boundaries in 
Euler variables. The first approach is (the Sharp 
Interface Method - SIM), and the second is (the 
Diffusive Interface Method - DIM). The SIM 
approach, [29], [30], [31], [32], [33], [34], [35], 
[36], [37], involves precise selection and tracking of 

the motion of the boundary surface. The best option 
is the coincidence of the computational grid with the 
boundaries of the body, which is not always 
possible in the case of large displacements and 
deformations, and, in practice, is possible only in 
one-dimensional and two-dimensional cases. 
Variants associated with the use of various 
algorithms for tracking the location of the contact 
surface within moving or stationary Euler grids, 
often using the subgrid mesh technique to improve 
the accuracy in the most interesting parts of the 
computational domain (Adaptive Mesh Refinement 
technology -AMR), are also complex and are 
successfully applied only to solve two-dimensional 
problems. In the 3D case, this approach causes 
significant difficulties associated with tracking and 
restoring the surface of the bodies itself, dynamic 
non-Lagrangian rearrangement of meshes, and the 
implementation of boundary conditions. In, [35], a 
SIM approach for the 3D case using volume 
fractions and solving the Riemann problem of a 
"fluid-solid" discontinuity to restore and move the 
contact boundary inside cells with a mixture was 
proposed. The approach is conservative and 
includes AMR, but due to its complexity, it did not 
receive further development, even though it 
indicated the way to solve the problem. In, [36], 
also a SIM variant for the 3D case was proposed. 
The authors solve the Riemann problem inside cells 
with a mixture by interpolating and extrapolating 
parameters from the surrounding cells without a 
mixture to formulate and solve the Riemann 
problem. Then this solution is used to move the 
contact boundary inside the cells with the mixture 
and to calculate the fluxes to the surrounding cells, 
cutting them by the volume fractions in the cells 
with the mixture. Several procedures are iterative. 
Also, due to the complexity, the method did not find 
further development and application. The work, 
[38], is indicative in this respect, evolution from 2D 
SIM, [29], [30], [31], [32], [33], to 3D DIM, [38], 
[39]. It concludes the practical inapplicability of 
SIM for 3D problems. The second DIM approach, 
[40], [41], [42], [43], [44], [45], [46], [47], [48], 
[49], [50], [51], [52], [53], which is used on 
Eulerian grids, does not imply an exact selection of 
the contact surface and allows the use of cells 
containing mixtures of substances.  With this 
approach, one has to construct an artificial non-
physical equation of state for the mixture. 
Accordingly, it is necessary to construct a solution 

WSEAS TRANSACTIONS on FLUID MECHANICS 
DOI: 10.37394/232013.2023.18.17

M. H. Abuziarov, E. G. Glazova, 
A. V. Kochetkov, S. V. Krylov

E-ISSN: 2224-347X 174 Volume 18, 2023



for the Riemann problem for the Godunov-type 
schemes or special algorithms for determining 
fluxes and contact parameters for other schemes. In 
the most complicated versions, [39], [43], [44], a 
multi-component mixture with dynamic equilibrium 
is assumed in the cell, with possible sliding of the 
mixture components inside the cell — a multi-
velocity continuum. This mixture must exhibit the 
properties of a deformable solid, passing 
continuously into a fluid or gas. The contact surface 
is not explicitly defined in this approach. This 
approach is convenient for solving 3D problems, but 
it has a significant numerical viscosity and does not 
have the required accuracy when describing 
complex contact phenomena such as friction, 
separation, cavitation, etc. In, [50], [51], similar 
approaches that have made it possible to solve 
several complex problems of the dynamic 
interaction of structural elements with gases in a 3D 
setting were developed. The multimesh approach 
proposed in, [25], [26], [27], [28], which is close in 
meaning to the gas dynamic numerical method 
"Chimera", [54], has no drawbacks associated with 
the difficulties in identifying and tracking contact 
surfaces and describing complex equations of state 
for dissimilar materials. This approach uses three 
types of computational meshes for each body and 
will be detailed below. The approach does not 
require complex three-dimensional mesh generators, 
it is enough to define the surfaces of bodies with 
STL files, which significantly speeds up the process 
of preparing data for calculation.  

 
 

2   Governing Equations 
The closed system of equations describing the 
deformation of a continuous medium in the 
approximation of a hypoelastic model of a 
compressible elastoplastic body in the Cartesian 
coordinate system has the following form, [21], 
[28]: 

 , ,
  0

i
t i x

u    (1) 

   , ,
 + 0

j
i i j ijt x

u u u     (2) 

 , ,
 0

j
t j i ij x

e eu u    (3) 

ij
ij

DS + S  2Dt t ije   (4) 

 = (p, )   , (5) 
 

Notation: t - time,  ix  - spatial coordinates, iu  - 

components of the velocity vector along the axes ix

respectively,   - density, )2/( iiuue   - total 
energy per unit volume,  - internal energy per unit 
mass, given by the equation of state (5), 

ij - 
which is represented as a ball and deviator parts, 
deviator of strain rate tensor

iiijijij pSp  3
1 ,  , ije - deviator of strain 

rate tensor
)(2/1  ,3

1
,, ijjiijijkkijij uuwheree   . The 

symbol Dt
D  denotes the Yaumann derivative, 

which takes into account the rotation of the stress 
tensor in Euler variables. 

ikjkjkikktij SSuS  





k

ij
,

ij
x

S
Dt

DS , where

)(
2
1 ,, ijjiij uu  ,   - is the material shear 

modulus, and the index after the comma denotes 
differentiation concerning the corresponding 
variable (hypoelastic model). As a criterion for the 
transition from the elastic to the plastic state, the 

von Mises yield condition 2

3
2

Sijij SS   under 

uniaxial tension is used, where 
S - the yield stress 

under uniaxial tension. The parameter   must 
remain positive during plastic deformation under the 

condition of fluidity 
22

3

S

ijij SS


  . The plastic flow is 

described by keeping the deviator on the surface of 
fluidity, [55]. The system of equations (1) – (5) is 
closed by equations of state with the corresponding 
parameters. In the absence of shear stresses, the 
system (1) – (5) goes over to the Euler equations for 
the motion of a compressible fluid or gas. 
 
 
3 Second order Godunov Modification 

for CFD in Euler Variables on 

Compact Stencil 
Assume all hydrodynamics parameters (primitive 
variables) to be linearly distributed in space 
between the cell centers for considered time steps. 
For example, for cell number i time step tn  in X 
direction, vector function U  with scalar 
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components 321 ,,,, uuup   has the following 
distribution, Figure 1. In this section, index “I” 
defines the number of cells. 
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Interpolating these primitive variables (for 
example, for cell number “ i “ with boundaries 
xi 2/1  and xi 2/1 ) into points 

 ii xx ,1  - values

)(),( 1


 ii xUxU  and into points 





1, ii xx  - values 

)(),( 1






ii xUxU  respectively. 
Riemann problem is solved like in the original 

Godunov method (exact Riemann solution ) but for 
the cell's boundary x i 2/1  between values 

)( and )( 1


 ii xUxU  and for the boundary 2/1ix  

between values )( and )( 1






ii xUxU   respectively. 
For the original Godunov method, these Riemann 
problems are solved for the boundary x i 2/1  

between )( and )( 1 ii xUxU   and for the boundary 

x i 2/1  between values )( and )( 1ii xUxU  
respectively. This is the main difference between 
this scheme and the original Godunov method. The 
coordinates of the points 

 ii xx ,1






1, ii xx  are not 
known yet. 

 

 
Fig. 1: Linear distribution of primitive parameters 
between cell centers 
 

Flux calculation and the corrector step 
(integration) are the same as in the original 
Godunov method.  

So now the integrated values at the time step 
1nt  are functions of primitive variables interpolated 

to these points 

 ii xx ,1






1, ii xx . For linearized Euler 
equations, it is possible to solve the Riemann 
problem explicitly  ( see APPENDIX 1 ) and obtain 
hydrodynamics parameters at the new time step as 
the explicit functions of coordinates of these points 
for interpolation of the primitive variables.  

Let's try to use the appropriate selection of these 
points to optimize our numerical scheme (for 
example, to exclude or introduce the required 
viscosity terms).  Let's analyze the one-dimensional 
linearized Euler equations (one-dimensional are 
considered only for simplicity, the analysis of three-
dimensional cases is in, [56]): 
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where 000
,, up  are points of linearization, 

),( 0000 pcc   sonic velocity, in our case as this 
point of linearization our integrating cell 

iii
up ,,  

can be taken. Using formulas for the solution of the 
modified Riemann problem from APPENDIX 1 
with expressions for interpolated values and for 
second order derivative of velocity in time from 
APPENDIX 2 for Godunov scheme formulas for 
these linearized Euler equations in APPENDIX 1, it 
follows from eq.6 the following modified equation: 
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So (7) are modified equations of (6) for our scheme 
and (7) have parameters to vary for obtaining a 
better scheme. The difference between (6) and (7) is 
the approximation error of our numerical scheme in 
simulating equations (6). 
In formulas (8-11) coordinates 

 ii xx ,1  and 





1, ii xx    

are taken relatively to ix ; this means 0ix . 

Further for simplicity 

 ii xx ,1  are used relative to 

2/1ix  (relative to the border of the left cell), and






1, ii xx  are used relative to 2/1ix  (relative to the 
border of the right cell’s boundary) respectively. For 
system (6) to have an approximation error of the 
first order of accuracy, it is necessary that: 
 

1;1 11  BA                                                 (12) 
 
From eq. (6-9) and (12) it follows that: 
  



  ii xx 1 ,  



  1ii xx                                       (13) 
 
So choosing the interpolated points according to 
(13) is sufficient for first-order accuracy. Now the 
difference between (6) and (7) is only in the right 
terms (7). For system (6) to have the second order 
of accuracy, it is necessary in addition to (12) to 
have:  
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Then it follows from (10 – 14) that: 
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Formulas (15-16) determine the coordinates of such 
points, interpolation to which provides an 
approximation error of the second order of accuracy 
of system (6) for an irregular mesh for a given 
numerical method. For an irregular grid, it follows 
from (15-16) that the resulting scheme is not 
conservative, since the coordinates of these points 
are functions of the length of the integrating cell and 
its left and right neighbors. But for the commonly 
used uniform mesh or arithmetic progression mesh, 
where   iiii hhhh 11 , it is conservative 
and formulas (15-16) take the following form: 
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It is obvious from (17-18) that for an irregular mesh 
there is a displacement to a larger cell. 
   Thus, the second-order approximation error 
algorithm for the 1D linearized Euler equation is the 
following:  
1. definition of coordinates of  points 

 ii xx ,1  and






1, ii xx   using formulas (15-16) or 17-18;  

2. definition of )( and )( 1


 ii xUxU  and

)( and )( 1






ii xUxU  respectively (Figure 1);  
3. solving the Riemann problems between 

)( and )( 1


 ii xUxU  for boundary 2/1ix  and 

between )( and )( 1






ii xUxU  for boundary 2/1ix  
respectively; 
4. flux calculation and corrector step (integration) as 
in the original Godunov method.  

Formulas (17) and (18) for obtaining the 
coordinates of interpolation points are very physical 
and have an obvious geometric interpretation. In 

WSEAS TRANSACTIONS on FLUID MECHANICS 
DOI: 10.37394/232013.2023.18.17

M. H. Abuziarov, E. G. Glazova, 
A. V. Kochetkov, S. V. Krylov

E-ISSN: 2224-347X 177 Volume 18, 2023



Figure 2 the coordinates of points 

 ii xx  and 1  for 

the cell’s boundary 2/1ix  are presented. The zones 
of influence on the solution of the Riemann problem 
for this boundary of this cell at 2/t  are restricted 
by these interpolation points. The total length of this 
zone is tc 0 . All possible variants are presented in 
Figure 2. It is quite obvious that for this scheme 
there is no difference in the Riemann problem for 
the case of Lagrangian or Eulerian variables - there 
is always a Lagrangian choice of the solution, there 
is no analysis of the plane of characteristics. There 
is also no difference between subsonic and 
supersonic cases. The algorithm is obviously 
extended for the case of moving meshes – the 
interpolation coordinates are calculated like the 
zone of influence of the moving boundary or the 
coordinates of interpolation are calculated for the 
position of the boundary 2/1ix  at time step level 

2/t . In other words, the coordinates of the zone of 
influence with the length tc 0  are calculated for 

the particle arriving at the boundary of the cell 2/1ix  
at the time step level 2/t . 

The “predictor” step of this scheme is 
practically the characteristics method for the time 
step level 2/t  for the interpolated values. For 
acoustic equations for Courant number 1 for regular 
meshes for 1D case, it is the exact characteristics 
method for the predictor step and the scheme 
elaborated in this case is equivalent to the original 
Godunov method and has the same second-order 
accuracy. In general case choosing the interpolation 
points in the cell’s centers changes this modification 
into the exact original Godunov method. Moving 
points of interpolation from values calculated by 
(17) or (18) one can introduce viscosity into this 
scheme, the value of this numerical viscosity can be 
regulated, by choosing the points of interpolation. 
The main advantage of this approach is that 3 cell 
stencil is enough for the second order accuracy, 
another very important thing – switching to the 
Riemann solution without interpolation (to the 
original Godunov method) provides the monotony 
of this modification on the same 3 cell stencil. 

The algorithm for the exact second-order 
accuracy for linearized Euler equations in 2D, [57], 
and 3D, [56], cases is the following:  

1. for each boundary of the cell it is assumed that 
the normal direction to the center of the surface of 
the boundary is X direction; 
2. the coordinates of these interpolation points are 
the same as for the 1D case;  
3. primitive variables at the cell's centers are to be 
corrected with the influence of the tangential 
gradients at 2/t ; 
4. interpolation of these corrected primitive 
variables to appropriate points;  
5. Riemann problem between these interpolated 
primitive variables; 
6. calculation of the velocities tangential to the 
boundary surface (Riemann solver for tangential 
velocities) with the higher order accuracy at 2/t  
like in the Lax-Wendroff scheme; 
7. flux calculation and integration as in the original 
Godunov's method. 
 

 
Fig. 2: Zone of influence on the Riemann solution at 
the cell boundary at 2/t  
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The scheme obtained has second-order accuracy 
and it is not monotone. It is possible to introduce the 
numerical viscosity into this scheme moving the 
points of interpolation from values calculated by 
(17) and (18) (zero viscosity points) to the 
appropriate cell’s centers – to the viscosity of the 
original Godunov scheme, which is enough for 
monotony. Analysis of the numerical results shows 
that the origin of nonmonotonicity is the big rate of 
the gradients. So the nonmonotonicity problems are 
coupled with the regions where the behavior of the 
solution mainly depends on the second-order 
derivatives. Physically these regions are at the top 
or the bottom of acoustic or shock waves, density 
discontinuities, and rarefaction waves. From the 
analysis of numerical results, obtained for this 
scheme, for the monotony of the numerical solution 
in such a problem-generating region it is enough to 
use the original Godunov predictor step for the one 
or two cell's boundaries. The main problem is how 
to detect such boundaries. It was suggested to use 
two parabolic splines, constructed from the 
primitive variables (pressure and density) in the 
vicinity of the analyzed cell’s boundary, using three 
points. The two points of the centers of the cells, are 
used for the Riemann problem, and the nearest point 
to the left for the left spline and the nearest point to 
the right for the right spline. Such parabolic 
functions represent more precisely the behavior of 
numerical results. For example, these spline 
functions can be not monotone in these appropriate 
intervals when the numerical ones are still 
monotone. So these spline functions can be used 
even to predict the nonmonotone behavior of the 
numerical one. If the coordinate of the maximum or 
minimum of this spline function is not in 
appropriate interval it is possible to use Riemann 
solver for zero viscosity. The advantage of such 
spline function analysis is that it does not depend on 
the absolute values, only the analysis of the 
coordinate of maximum or minimum is enough for 
the choice of interpolation points. In the regions of 
constant solutions, the behavior of these spline 
functions does not have meaning for switching, 
because in these regions it does not matter to use a 
first or second-order Riemann problem solver. In 
the regions of smooth solutions or even in the 
regions of big gradients these spline functions are 
monotone, but when there are regions of big rates of 
gradients, these spline functions are not monotone. 
 

4 Second-order Godunov Modification 

for CSD in Euler variables on 

Compact Stencil 
In, [21], it was showed that for numerical modeling 
of dynamic elastoplastic equations with a second 
order of approximation for schemes of the 
"predictor-corrector" type at the "predictor" stage, it 
is sufficient to solve elastic equations 0t with a 
second order of approximation using linearized 
equations (1) - (5 ). In this case, the plastic behavior 
of the medium is taken into account at the 
“corrector” stage after the integration of the 
linearized equations and is reduced to the “landing” 
of deviators on the yield surface, [21]. Let us denote 


 )(
1  ; )(2

p

f
p

c s










, as a result, after 

linearizing the energy equation in the system of 
equations (1) - (5) and excluding the terms 
containing derivatives with respect to 2x  and 3x  
(splitting in spatial variables is performed), we 
obtain a one-dimensional system of equations: 

0  1,11,1,  uut                                               (19) 
0*/1*/1 1,111,1,11,1  Spuuu t                    (20) 

0*/1+ 1,121,21,2  Suuu t                                     (21) 
0*/1+ 1,131,31,3  Suuu t                                       (22) 

0
)(

1,11,3131,212

1,111
2

,





puufSufS

ufScp t                                      (23) 

011,31,24/3- 1,1113121,1,11  SuuSuSuS t                  
(24) 

0 -3/2 1,2211,2121,1,22  SuuSuS t                             (25) 
0 -3/2 1,3311,3131,1,33  SuuSuS t                             (26) 

00.5 )0.5(2 1,1211,3231,22211,12  SuuSuSSS t      (27) 
0)0.5(2 0.5 1,1311,333111,223,13  SuuSSuSS t      (28) 

00.5 -0.5 - 1,2311,3121,213,23  SuuSuSS t
               (29) 

 
In matrix form, equations (19-29) are: 
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U
A

t

U  

 
where )],,,,,,,,,,[( 231312332211321 SSSSSSpuuuU   
A  
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In the case of constant coefficients of matrix A 

(linearized case), the system is hyperbolic and can 
be written in the form of 11 transport equations (in 
invariant form), [23], [24]. 

 

11,,1  ,0 
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R
c

t

R l
l

l ,                   

 
Where lR   are Riemann invariants constant for the 

corresponding characteristic velocity lc . In the 
formulas below and Figure 3, the index "1" for the 
velocity 1u  and coordinate 1х   is omitted. 
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In the plane, tх ,1 the trajectories of 

discontinuities (characteristics) are depicted by rays 
emanating from the point x = x0, and divide the half-
plane t> 0 into 8 zones. 

 
Fig. 3: Riemann solution zones for an elastic case, 1 
order. 
 
The ratios on these characteristics 11,1, lRl  have 
the following form: 
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Here, the values in square brackets are the 

linearization coefficients determined from the 
averaged parameters in the cells. For a scheme of 
the first order of accuracy, for the zone where the 
solution is sought (where the corresponding face of 
the cell is located), the corresponding invariants are 
determined and the primitive parameters necessary 
for calculating the fluxes are determined from them. 
For a second-order accurate scheme, in contrast to 
the equations of gas dynamics, the Riemann 
invariants, [23], [24] obtained from primitive 
parameters are interpolated from the centers of the 

cells and are to be corrected with the influence of 
the tangential gradients at 2/t . The coordinates 
of the interpolation points are determined as the 
boundaries of the areas of influence of the 
corresponding invariants on the position of the 
boundary face at the time 2/t , where w  edge 
velocity (indicated by a dotted line in Figure 4) is as 
follows:    11,..,1   ,
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Fig. 4: The coordinates of interpolation points of 
Riemann invariants for a second-order accurate 
scheme 
 

The obtained values of the Riemann invariants 
are used to determine the primitive parameters and 
"stream" values. The stage of numerical integration 
of the equations ("corrector" step) remains 
unchanged (as for the first-order scheme by, [21]). 
The solution according to the second-order scheme 
will experience dispersive oscillations at the 
discontinuities. To ensure monotonicity, it is 
necessary to construct the solution in a hybrid 
manner - in the regions of smoothness according to 
the relations providing the second order of 
approximation, and on discontinuities - according to 
the relations of the first order scheme. For 
elastoplastic flows, in contrast to the problems of 
gas dynamics, where it is necessary to analyze the 
pressure and density fields, to obtain monotonic 
solutions, it is sufficient to analyze the normal stress 

m
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field and use the obtained viscosity as a relative one 
to determine the interpolation coordinates of the 
remaining invariants, [23], [24]. 
 
 

5   Riemann Solver for FSI 
The solution of the contact problem between fluid 
and solid is realized at the "predictor" stage of the 
Godunov scheme (at the stage of solving the 
Riemann problem). From the side of the deformable 
body, 8 invariants arrive at the boundary and 3 
boundary conditions are used. On the fluid side, 
three relationships are used for nonlinear 
compression and rarefaction waves. To improve the 
accuracy in the domain of smooth solutions, 
extrapolation of parameters from the boundary and 
boundary cells is used. An iterative algorithm for 
obtaining a joint solution, in the general case, looks 
like this: 
1. for the fluid parameters, boundary conditions of 
the movable "rigid wall" type are realized, the 
normal velocity of which is equal to the velocity in 
the adjoining cell of the deformable body; as a 
result, we obtain the pressure at the "fluid - 
deformable body" interface. 
2. for obtaining the parameters of the boundary cell 
of a deformable body, the following equations are 
used: Riemann invariants number 1,3,5,7,8,9,10,11 
are taken from the center of the boundary cell, 
possibly with interpolation from inside the body to 
improve accuracy, instead of the Riemann invariant 
number 2 the normal stress equal to pressure with 
the opposite sign, obtained in item 1, is used, and 
instead of Riemann invariants number 4 and 6 - zero 
tangential stresses or stresses taking into account 
friction are used. 
3. The new normal boundary speed defined in item 
2 is used cyclically in item 1 as the normal velocity 
of the rigid wall. The process continues until the 
convergence of this normal velocity. As a rule, 3-4 
iterations are sufficient until convergence with a 
relative accuracy of 0.01. 
 
 
6 Multimesh SIM for 3D Nonmoving 

Euler Mesh 
This SIM approach is multimesh and uses three 
types of computational meshes, [25]. The first type 
of meshes is Lagrangian meshes in the form of STL 
files that define and accompany the deforming 

surfaces of bodies. Fixed regular Euler meshes with 
cubic cells are used inside homogeneous regions. 
The third type of grid is auxiliary local movable 
Euler-Lagrangian meshes associated with the 
surfaces of bodies. In general, the algorithm for 
calculating the contact interaction of fluids and 
solids in nonmoving Euler consists of a sequence of 
the following steps: 

1) Fluids and solids are specified in the form of 
surfaces from sets of triangles with the required 
precision - in the form of STL files containing 
external normals and coordinates of triangle 
vertices. In Figure 5 such objects are marked in red 
and blue. 

 

 
Fig. 5: STL surfaces of touching objects and local 
meshes 

 
2) Each computational domain (fluid, solid) 

with curved boundaries is enclosed in a bordering 
rectangular parallelepiped and covered with a 
Cartesian mesh. Figure 6 shows a cross-section of 
such a computational domain (black solid curve)  
with a bordering parallelepiped. We get four types 
of cells for the computational domain, the first type 
- cells cut by triangles of the surface or boundary 
cells, are colored green, the second type - is cells 
outside the surface, the third and fourth types - are 
cells inside the surface, for which there are enough 
(brown) or not enough to integrate (marked with 
black dots) of a difference stencil of whole cells 
located inside the surface. 

 
Fig. 6: Cross-section of the 3D computational 
domain 
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3) On each triangle of the surface, inside the 
volume along the normal for this surface, an 
auxiliary local Cartesian grid 3 * 3 * 3 is built , in 
Figure 5 these meshes are yellow. The cell sizes of 
this local three-dimensional mesh are taken close to 
the cell sizes of the inner mesh. In case of contact 
with another subdomain or boundary conditions that 
require additional parameters, the local mesh is 
symmetrically completed in this subarea from the 
plane of the triangle, in Figure 5 this completed 
mesh is marked in green. Figure 7 shows this 
auxiliary mesh for one triangle. 

 
Fig. 7: Local mesh for one triangle of STL mesh  

 
Figure 8 shows one triangle and the adjacent 

central cells of the auxiliary mesh, the centers of the 
edges of these cells coincide with the center of the 
triangle. 

 
Fig. 8. Triangle and two adjacent cells of the local 
mesh. 

 
Parameter values in the generated local mesh 

are determined by interpolation of parameters from 
the previous local mesh and parameters from the 
main mesh. This stencil is sufficient to integrate the 
central cells (in Figure 7 it is highlighted in dark and 
in Figure 9 these cells are shown separately and 

marked with crosses) adjacent to the Lagrangian 
contact surface, with increased accuracy according 
to the modified Godunov scheme. For the central 
cells from Figure 8, the Riemann problem at the 
contact boundaries of the media is solved. Its 
solution results in velocities and forces at a half-
time level in the center of the corresponding 
triangle. We move this contact boundary with 
normal speed and get a local mesh on a new time 
layer. Figure 9 shows these center cells before (left 
side) and after moving the contact boundary (right 
side). We carry out the standard integration of the 
parameters of these central cells in movable meshes 
(ALE integration). Since the motion of the local 
grid is one-dimensional, the volume and surface 
integrals over the cells are calculated exactly in this 
case. 

 

 
Fig. 9: Central cells before and after integration 
with the motion of the contact boundary in the 
normal direction (ALE integration). 
 

4) Using the velocities in the center of each 
triangle obtained from solving the Riemann problem 
in step 3), we calculate the velocities at the vertices 
of the triangles in the STL file with weights 
proportional to the areas of the triangles. With these 
speeds, we move the vertices and get the position of 
the surface on a new time layer (the new position of 
the STL file). 

5) We rebuild the bordering parallelepiped with 
the possible addition or reduction of layers of cells 
by the new position of the STL file. The cross-
section of this surface with a bordering 
parallelepiped is shown in Figure 10. The red curve 
corresponds to the position of the computational 
domain on the new time layer. To the cells of the 
fourth type, which remained in the computational 
domain on a new temporary layer (marked with 
crosses on a white background), add non-integrated 
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cells captured during surface movement (marked 
with crosses on a green background). 

 

 
Fig. 10: New STL surface position with additional 
non-integrated cells. 
 

6) In the cells of the fourth type (marked with 
crosses on a white and green background), we 
interpolate the parameters from the integrated cells 
of the third type and the integrated cells of the local 
meshes, thus completing the calculations. 

 
 

7 Modeling the Interaction of Ice 

Impactors with a Clamped 

Titanium Plate 
The problem statement is shown in Figure 11. An 
ice ball on the left and a cylinder on the right hit the 
titanium plate. It is required to describe in a coupled 
formulation the processes of interaction of ice 
projectiles with an elastoplastic deformable plate. 
Plate dimensions from the origin (embedment 
plane): length along the X-axis 150 mm, width 
along the Y-axis 50 mm, height along the Z-axis 5 
mm, the plate is rigidly fixed in the plane X = 0, 
material - VT6 titanium, [58], with mechanical 
characteristics: density 4.51 g/cm3, the bulk 
compression modulus is 112 GPa, the shear 
modulus is 41GPa, yield strength 1.45 GPa. At the 
moment of impact, the coordinates of the point of 
contact between the ball and the axis of symmetry 
of the cylinder are X = 134 mm, Y = 25 mm, and Z 
= 5 mm. An ice ball has a diameter of 28 mm, a 
cylinder - diameter of 17.1 mm, height of 50 mm; 
weights are the same as 10.35 g, mechanical 
characteristics of ice: density 0.9g / cm3, the bulk 
compression modulus is 9.196 GPa, the shear 
modulus is 3.5263 GPa, yield point 5.2 MPa. The 
initial vertical velocity of the impacters in both 

cases is 350 m/s. At the outer boundaries of the 
metal barrier and ice impacters, the conditions are 
fulfilled as at the “free boundary” with a given 
pressure p = 0.1 MPa. The dimensions of the cells 
along the ice and the obstacle were taken 0.5 mm, 
which required about six hundred thousand cells of 
the main grid. In the process of impact, the hailston 
and the plate undergo significant displacements and 
deformations, and the destruction of the hailston 
occurs. Figure 12 and Figure 13 also show the 
positions of the bodies and the computational mesh 
in the longitudinal plane of symmetry along the ball 
and cylinder at an instant of 800 μs. Figure 14 
shows the velocities of the plate versus time on the 
axis of symmetry of the sphere, marked in red, and 
of the cylinder, marked in green, from the beginning 
of the interaction to 120 μs. Figure 15 shows the 
same parameters from the beginning of the 
interaction to 800 μs. The difference in the initial 
moment is due to the larger initial interaction area 
for a cylindrical object. In the process of interaction, 
the strikers spread out over the plate, completely 
losing their shape, and starting from the moment of 
120 μs, the influence of the initial geometry ceases 
to affect the movement of the plate. 

 
Fig. 11: Initial position of impactor and plate  
 

 
Fig. 12: Shapes of objects 800 μs after impact 
 

 

 
Fig. 13: Computational mesh for spherical and 
cylindrical impactors, a cross-section along the X 
axis, 800 μs after impact 
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Fig. 14: The vertical velocity of the plate at the 
point of impact versus time, red for the ball, green 
for the cylinder (0-120 μs) 
 

 
Fig. 15: The vertical velocity of the plate at the 
point of impact versus time, red for the ball, green 
for the cylinder (0-800 μs) 
 
 
8 Interaction of Elastic-Plastic Bodies 

with the Product of Detonation 
In Figure 16 the statement of the problem is given. 
Charge of TNT-RDX TR 8530 of the spherical 
shape, radius 5 cm, the source of initial detonation 
was set in a region of radius less than 0.2 cm. The 
cross-section passes through the center of the charge 
and the centers of the cubes. In the charge and the 
air, the main mesh was used with the side of the 
cubic cell 0.15 cm. For the explosive, the 
parameters of the equation of state of the JWL type 
are taken from, [13], as A=708.6056 GPa, 
B=13.16457 GPa, C=1.058238 GPa, r1=4.94, 
r2=1.35,  =0.28. The same state equation is used 
for air, air is assumed like the product of detonation 
for Euler simulation without tracking the interface 
"detonation product" – "air". Three steel cubes with 
sides 1 cm are marked with red color, the density is 
7.8 g/cm3, the bulk compression modulus is 175 
GPa, the shear modulus is 80.77 GPa, the hardening 
modulus is 240 MPa, and the yield strength is 340 
MPa, weight 7.8 grams. The step of the main grid in 
cubes is 0.7 mm. In Figure 16 the grids for steel and 
TNT are given. In Figure 17 the density distribution 

is presented at the moment of 55 μs. The cubes are 
strongly and irreversibly deformed, the streams of 
detonation products move much faster, and gas jets 
are formed around the cubes. In Figure 18 the shape 
of the cubes, respectively, at the initial moment and 
for 13 and 55 μs. By 13 μs the fragments practically 
acquired a residual form by slightly changing their 
position. Figure 19 shows the velocity versus time 
on the surface of the cube, accelerated in the vertical 
direction, the lower curve corresponds to the center 
of the upper surface (far from the charge), 
respectively, the upper curve - to the center of the 
lower surface of the cube (near to the charge). 
Figure 20 shows the velocity of the center of mass 
versus time for the cube, accelerated in the vertical 
direction, marked by "1" and for the cube, 
accelerated in a 45-degree direction, marked by "2".  
Dashed lines indicate these dependencies, calculated 
in an elastic formulation. Taking into account the 
plastic deformation of the bodies increases the 
maximum velocity of the body by more than 20 
percent. The maximum velocity of a body strongly 
depends on its shape and position relative to the 
surface of the charge. 
 

 
Fig. 16: Statement of the problem. Mesh for steel, 
TNT, and air 
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Fig. 17: Density distribution at 55 μs 
 

 
Fig. 18:  Shape of the cubes, respectively, at the 
initial moment, at 13 and 55 μs   
 

 
Fig. 19: Velocity versus time on the bottom and top 
of the cube 

 
Fig. 20: Velocity of the center of mass versus time, 
initial positions in vertical and 45-degrees. Dashed 
lines show the calculations of the elastic setting. 
 
 
9  Perforation of Aluminum Plate with 

Ogive Nose Steel Rod at Oblique 

Impact 
Figure 21 shows the formulation of the problem of 
punching with a steel impactor, velocity of 400 m / 
s, with an aluminum plate, [59], at an angle of 30 
degrees. The surfaces (STL files) of the impactor 
and target are shown in detail in Figure 22. Steel, 
the density is 7.85 g/cm3, the bulk compression 
modulus is 175 GPa, the shear modulus is 80.77 
GPa, the yield strength is 3.4 GPa and the hardening 
modulus is 2.4 GPa. Aluminum, the density is 2.71 
g/cm3, the bulk compression modulus is 67.64 GPa, 
the shear modulus is 26 GPa, the ideal plasticity, 
and the yield strength is 0.262 GPa. The dimensions 
of the main mesh in both bodies are 0.01 cm In the 
experiment, [59], the plate is 55x55x2.63 cm; in the 
calculations, the slab of smaller dimensions is 
10x10x2.63 cm with free boundaries, rests along the 
perimeter on a rigid frame (Figure 23) with a width 
of 1 cm. In Figure 24 and Figure 25, there are 
computational grids at 200 and 540 μs, respectively. 
Figure 26 shows the punched plate in the direction 
of the initial velocity vector of the impactor at the 
moment of 540 μs. The Figure 27 shows the shapes 
of the striker at the moment of 40 µs, with a 
deflection with a tendency to ricochet, and at the 
moment of departure 540 µs with the opposite 
deflection, which was noted in experiments, [59]. 
The numerical values of the residual velocity of the 
impactor vary in the range from 195 to 205 m / s 
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due to elastic vibrations, which is close to the 
measured average values - 200 m / s, [59].  

 
Fig. 21: Oblique impact, rod velocity 400 m/s. STL 
surfaces 
 

 
Fig. 22: Part of STL surfaces 

 

 
Fig. 23: Rigid frame supporting the aluminum plate 
 

 
Fig. 24: Computational mesh at 200 μs 
 

 
Fig. 25: Computational mesh at 540 μs 
 

 
Fig. 26: Perforated aluminum plate at 540 μs 
 

 
Fig. 27: Steel rod at 40 and 540 μs (STL surfaces) 
 
 
10    Conclusions 
The multimesh numerical technique developed and 
described in this article for solving three-
dimensional problems of propagation of wave 
processes in fluids and solids and the interaction of 
the fluid with elastoplastic deformable bodies at 
large displacements and deformations allows 
obtaining reliable results with sufficiently high 
accuracy. The results of numerical studies are in 
good agreement with the known experimental data. 
The use of STL files for constructing all types of 
meshes and describing the motion of Lagrangian 
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contact and boundary surfaces within the framework 
of this multimesh approach, as well as the use of 
regular fixed Euler mesh, makes it possible to 
dramatically simplify the preparation of initial data 
for solving complex problems and to increase the 
efficiency and accuracy of calculations by 
eliminating distortions and rebuilding of 
computational meshes in traditional Euler-
Lagrangian techniques. 
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