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Abstract: - In this paper, the flow of a micropolar fluid over a stretching or shrinking sheet is investigated under 
magnetohydrodynamic (MHD) conditions. Such a flow is described by highly nonlinear PDEs. Using the 
similarity transformation technique, the PDEs governing the flow are reduced to a system of nonlinear ODEs, 
which further allows a closed-form analytical solution.  The effect of the microrotation on the skin friction 
coefficient, the dimensionless forms of the velocity, and the temperature flow fields in the neighborhood of the 
stretching or shrinking sheet are discussed for various combinations of the dimensionless parameters. The 
numerical results reveal that the micropolar flow may accelerate or deaccelerate depending upon the numerical 
values of the mass transpiration and the permeability of the porous sheet. An increase in the tangential and the 
angular flow velocities is found to occur with an increase in the microrotation. Further, it is observed that the 
increase in the microrotation increases the skin friction coefficient. 
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1  Introduction 
Dynamics of boundary layer flow due to stretching 
or shrinking sheets has been the subject of active 
research for decades since these boundary layer 
flows have witnessed practical applications such as 
in the drawing of plastic sheets, films, wires, 
entropy generation, etc., [1]. The stretching sheet 
problem was first discussed by, [2], [3]. In, [4], the 
author extended recent work for Newtonian fluids 
varying from the slit. Inspired by this research, 
many investigations have been done concerning the 
flow and heat transfer problems under various 

physical conditions. In, [5], the authors have 
analyzed the combined effect of the heat source or 
heat sink parameter and the stress for both viscous 
as well as inviscid fluids along with the MHD 
conditions and chemical reaction parameters. In the 
presence of a porous medium, analytical solutions 
for the boundary layer flow for a variety of 
boundary conditions have been obtained by, [6]. In, 
[7], the authors discussed mass transpiration in 
nonlinear MHD boundary layer flow due to a porous 
stretching sheet. In, [8], the author investigated heat 
transfer enhancing features with the non-Fourier 
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Cattaneo Christov model. In, [9], the author 
investigated the electro-osmotic flow of a third-
grade fluid in a micro-channel in the presence of 
MHD. In, [10], the authors investigated the 
Cattaneo-Christov double diffusion and radiative 
heat flux in the bio-convective flow of Maxwell 
liquid. In, [11], [12], the authors investigated the 
stretching sheet problems for nanofluid boundary 
layer flows. In, [13], the authors analyzed the 
chemically reactive aspects of the flow of tangent 
hyperbolic material. Later, in the study, [14], the 
authors investigated the flow of a second-grade 
nanofluid in view of optimizing entropy generation. 
   A micropolar fluid is a fluid with microstructure. 
Such fluids belong to the class of fluids having 
asymmetric stress tensors. In this paper, we shall 
call them polar fluids. So, polar fluids include as a 
special case, the well-known classical fluids. In 
practice, a micropolar fluid is a suspension of rigid, 
randomly oriented (or spherical) particles in a 
viscous carrier, where the deformation of the 
suspended particles is assumed to be negligible. 
   The present research focuses on the flow problems 
related to viscous as well as inviscid fluids. Some 
researchers have shown interest to analyze 
stretching sheet problems in micropolar fluids. In, 
[15], the author is credited to have initiated the 
theoretical model of micro fluids. Eringen’s theory 
of micropolar fluids played a central role in the 
early analysis of the practical features of numerous 
complex flows. Micropolar fluids are a type of 
microfluid, and that has been studied by, [16].  
Further, [17], [18], have analyzed several flow 
problems considering micropolar fluids. 
   In the flow equation, micropolar fluids have both a 
vector of classical velocity as well as a vector of 
microrotation. The mass and momentum connection 
illustrates the effect of the couple stress, the spin-
inertia, and the microrotation on some 
characteristics of the fluid under consideration, [19], 
[20]. Several researchers have investigated the flow 
of micropolar fluids in the presence of MHD and 
porous medium. In, [21], the authors investigated 
the flow of a micropolar fluid due to a stretching 
sheet while taking into account the impact of the 
temperature-dependent viscosity and the variable 
surface temperature. Micropolar fluids and heat 
transmission caused by porous shrinking sheets have 
been studied, [22]. In, [23], the author used an 
analytical approach to study the effect of a 
micropolar fluid over a linear stretching sheet.  
   The micropolar fluid model as introduced by 
Eringen elegantly describes the dynamics of such 
fluids. Eringen’s model is a generalization of the 
existing Navier-Stokes model and has a much wider 

range of applicability than the classical one, both in 
theory as well as in practice. Further, the micropolar 
fluid model is simple to apply, which makes it 
interesting and suitable for use by researchers. 
   Finding closed-form solutions for boundary layer 
flows regarding stretching or shrinking sheet 
problems is another challenge. In view of this, in, 
[24], [25], [26], the authors have obtained analytical 
solutions for some of the related flow problems.  
The most popular technique in dealing with closed-
form solutions of the boundary layer equations is to 
apply the similarity transformations. The present 
work is motivated by the earlier research, [27], [28], 
and it focuses on investigating micropolar fluid flow 
due to stretching, or shrinking sheet under mass 
transpiration.  Using the well-known method of 
similarity transformations, the PDEs governing the 
underlying boundary layer flow are transformed into 
a system of ODEs, which along with the appropriate 
boundary conditions lead to a two-point boundary 
value problem in ODEs. The resulting boundary 
value problem is solved analytically to obtain 
closed-form solutions. The closed-form solution can 
be unique, or exhibit dual behavior. The dual 
behavior is expected for the case of the shrinking 
sheet, which is also investigated numerically. The 
present and stated fluid, micropolar fluid flow, has 
several applications, particularly in the study of 
rheological complex fluids, such as colloidal fluids, 
polymeric suspension, liquid crystals, animal blood, 
etc. Micropolar fluid flows have practical 
applications in lubrication and flow through porous 
media.  

 

 
2 Nomenclature 
Variable Description SI Units 

a Constant 
    

(𝑠−1) 
C Permeability of 

porous medium 
(𝑚3𝑠−1) 

N Microrotation (𝑠−1) 
j Microrotation per 

unit mass 
(𝑘𝑔−1𝑠−1) 

S Suction/injection 
parameter 

(−) 

K Microrotation 
parameter 

(−) 

𝑓 Dimensionless 
transverse velocity  

(−) 

𝑓𝜂 
Dimensionless 
Tangential velocity 

(−) 

(𝑢, 𝑣)
 

Flow velocity in 
Cartesian 

(𝑚𝑠−1, 𝑚𝑠−1) 
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coordinates 
𝑣𝑤 

Stefan blowing 
velocity 

(𝑚𝑠−1) 

𝛼 
Stretching/shrinking 
parameter 

(−) 

𝛽 
Solution domain (−) 

𝛬 Porous medium 
parameter 

(−) 

m Vortex viscosity (𝑚3𝑠−2) 
𝜈 Kinematic viscosity (𝑚2𝑠−1) 
𝛾∗ Spin gradient 

viscosity 
      (ms)

 

𝜌 Fluid density (𝑘𝑔 𝑚−3) 
w Wall condition (−) 

B.Cs 
Boundary conditions (−) 

MHD Magnetohydrodyna
mics 

(−) 

ODEs Ordinary differential 
equations 

(−) 

PDEs Partial differential 
equations 

(−) 

 

 

3 Problem Formulation 
We consider a steady, incompressible two-
dimensional boundary layer flow of a micropolar 
fluid through a porous medium. The Cartesian 
coordinates 𝑥 and 𝑦 are taken along the surface and 
are normal to it with 𝑢 and 𝑣 as respective velocity 
components. The governing boundary layer 
equations are 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0,     (1)

    

𝑢
∂𝑢

∂𝑥
+ 𝑣

∂𝑢

∂y
= (ν +

m

𝜌
)

∂2𝑢

∂𝑦2 +
𝑚

𝜌

𝜕𝑁

𝜕𝑦
−

𝜇

𝜌𝐶
𝑢, (2) 

                              

𝑢
𝜕𝑁

𝜕𝑥
+ 𝑣

𝜕𝑁

𝜕𝑦
=

𝛾∗

𝜌𝑗

𝜕2𝑁

𝜕𝑦2 −
𝑚

𝜌𝑗
(2𝑁 +

𝜕𝑢

𝜕𝑦
),                 (3)                                                                         

where 𝜌 is the fluid density, 𝜈 is the kinematic 
viscosity, 𝑁 is the microrotation or angular velocity, 
𝑗 = (𝜈 𝑐)⁄  is the microinertia per unit mass, 𝛾∗ =
(𝜇 + 𝑚 2)𝑗⁄  and 𝑚 are the spin gradient viscosity 
and the vortex viscosity, respectively.  
 

3.1 Boundary Conditions 
The boundary conditions for the proposed model are 
the following: 
𝑢 = 𝑢𝑤(𝑥) = 𝑐𝑥, 𝑣 = 𝑣𝑤 at 𝑦 = 0; 

𝑢 → 0  as    𝑦 →  ∞,    (4) 

𝑁 = −𝑛
𝜕𝑢

𝜕𝑦
   at   𝑦 = 0;     

𝑁 → 0  as  𝑦 →  ∞,    (5) 

 
where 𝑣𝑤 is the surface mass transfer velocity with 
𝑣𝑤 <  0 for the case of suction and 𝑣𝑤 > 0 for the 
case of injection. Here, 𝑁 denotes the microrotation 
or angular velocity. The boundary parameter n in 
Eq. (5) satisfies 0 ≤  𝑛 ≤  1. Here n = 0 
corresponds to the situation when microelements at 
the stretching sheet are unable to rotate and denotes 
weak concentrations of the microelements at the 
sheet. The case n = ½ corresponds to the vanishing 
of the anti-symmetric part of the stress tensor and it 
shows weak concentration of microelements. 
Finally, the case n = 1 is for turbulent boundary 
layer flows. 
 
3.2 Similarity Transformations  
In order to transform the governing PDEs into a 
system of non-linear ODEs, we introduce the 
following dimensionless and similarity variables for 
Eqs. (2) and (3): 

𝜂 = (𝑎 𝜈)⁄
1

2 𝑦,     𝑢 = 𝑎𝑥𝑓′(𝜂),    

𝑣 = −(𝑎𝜈)
1

2𝑓(𝜂),  𝑁 = (𝑎/𝜈)
1

2𝑎𝑥𝑔(𝜂),                (6)
        

where 𝑎, is constant. Using Eq. (6) in Eqs. (1)-(3), 
we get the following ODEs: 

(1 + 𝐾)𝑓′′′ + 𝑓𝑓′′ − (𝑓′)2 + 𝐾𝑔′ − Λ2𝑓′ = 0, (7)                    
                     

(1 +
𝐾

2
) 𝑔′′ + 𝑓𝑔′ − 𝑓′𝑔 − 2𝐾𝑔 − 𝐾𝑓′′ = 0,    (8) 

where the primes denote differentiation with respect 
to 𝜂, 𝛫 is the microrotation parameter, and Λ  is the 
porous medium parameter. These parameters and 
dimensionless numbers are defined as follows: 

𝛫 =
𝑚

𝜇
 ,  Λ =

𝜇

𝜌𝑎𝐶
.             (9) 

The transformed boundary conditions (4)-(5) 
become 

𝜂 = 0,    𝑓(0) = 𝑆,   𝑓′(0) = 𝑐 𝑎 = 𝛼,⁄   

𝑔(0) = −𝑛𝑓′′(0),                                  (10)       

𝜂 → ∞,     𝑓′(𝜂) → 0,    𝑔(𝜂) → 0,                    (11) 
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where 𝑆 is the suction/injection parameter, and 𝛼 is 
the stretching/shrinking parameter. 

The local skin friction coefficient is given by 

𝐶𝑓𝑥 = [(𝜇 +  𝑚)
𝜕𝑢

𝜕𝑦
 +  𝑚𝑁] 𝑦=0  / (ρ 𝑢𝑤

2 ) .      (12) 

In the dimensionless form, the local skin friction 
coefficient can be expressed as 

R𝑒𝑥
1/2𝐶𝑓𝑥  = [1 + (1-n)K] 𝑓′′(0),                    (13)      

where R𝑒𝑥 = a𝑥2/ ν denotes the local Reynolds 
number. 
 

 

4 Analytical Solution 
For weak concentration, that is, for 𝑛 = 1 2,⁄  Eqs. 
(7)-(8) along with boundary conditions (10)-(11) 
have the exact solution of the form 

𝑓(𝜂) = 𝑆 +
𝛼

𝛽
(1 − 𝑒−𝛽𝜂),    𝑔(𝜂) =

𝛼𝛽

2
𝑒−𝛽𝜂 ,    (14)                                             

Substituting Eq. (14) in Eq. (7), we get a quadratic 
equation for 𝛽: 

(𝐾 + 2)𝛽2 − 2𝑆𝛽 − 2(𝛼 + 𝛬) = 0.                   (15)                                                                 

Solving Eq. (15) we get  

𝛽 =
1

𝐾+2
(𝑆 ± √𝑆2 + 4𝛬 + 4𝛼 + 2𝐾(𝛬 + 𝛼)).         

                             (16) 

Thus, the closed-form solutions of Eq. (7)-(8) 
subject to the boundary conditions (10) -(11) are 
given by 

𝑓(𝜂) = 𝑆 + 
𝛼(𝐾 + 2)

𝑆 ± √𝑆2 + 4𝛬 + 4𝛼 + 2𝐾(𝛬 + 𝛼)
 

×  (1 − 𝑒𝑥𝑝 [−𝜂
𝑆±√𝑆2+4𝛬+4𝛼+2𝐾(𝛬+𝛼) 

𝐾+2
]) ,  

                (17)               

𝑔(𝜂) =
𝛼

2
 
(𝑆 ± √𝑆2 + 4Λ + 4𝛼 + 2𝐾(Λ + 𝛼))

𝐾 + 2
 

           × (𝑒𝑥𝑝 [−𝜂
𝑆±√𝑆2+4Λ+4𝛼+2𝐾(Λ+𝛼) 

𝐾+2
]) .     (18) 

The velocity profile is determined after 
differentiating Eq. (17) once, and we have 

𝑓′(𝜂) = 𝛼 𝑒𝑥𝑝 [−𝜂
𝑆±√𝑆2+4Λ+4𝛼+2𝐾(Λ+𝛼) 

𝐾+2
].     (19)                                                          

The skin friction coefficient in closed form is given 
by 

𝑅𝑒𝑥
1/2𝐶𝑓𝑥 =  − (1 + K/2)𝛼𝛽.                              (20)                                                          

 

 

5 Results and Discussion 
Figure 1a shows the solution domain in the (S,𝛽)-
plane for a fixed parametric value of 𝛬=0.2. The 
solid and dotted lines in the Figure 1a correspond to 
K=0, and K=1, respectively. The black and red 
portions of the curves correspond to the upper and 
lower branches of the dual solution, wherein 
different curves have been drawn for seven different 
values of 𝛼 =  −1, −0.5, −0.1, 0, 0.1, 0.5, 1. We 
observe that the upper branch of the solution domain 
shifts upwards in the (S, 𝛽)-plane by increasing the 
values of 𝛼.  We note that for 𝛼 =  −1, the solution 
exists only for 𝑆 < −2, or 𝑆 > 2. For the other 
considered values of 𝛼, the solution exists for all 
values of S. The effect of shifting the curves 
reverses in the case of the lower branch of the 
solution domain. Further, it is observed that the 
solution domain shifts downwards in the (S, 𝛽)-
plane on varying microrotation parameter𝐾 from 0 
to 1.  
   The behavior of the solution domain in the (K, 𝛽)-
plane is shown in Figure 1b for Λ =0.5. The solid 
and dotted lines in the Figure 1a correspond to S =5, 
and S S=-5, respectively. The black and red portions 
of the curves correspond to the upper and lower 
branches of the dual solution. The different curves 
have been drawn for four different values of 𝛼 =-5, -
4, -3, -2. Here, the solution domain in the (K, 𝛽)-
plane increases by increasing the values of 
stretching/shrinking parameter 𝛼 for the upper 
branch solution but the effect reverses in the case of 
the lower branch solution. Also, it is observed that 
the solution domain occurs for a larger value of 𝛽 in 
the suction case as compared to the injection case.  
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(a) 

 
(b) 

Fig. 1: The solution domain for 𝛽 as a function of 
(a) mass transpiration S and (b) microrotation 
parameter 𝐾. 

 
   Figure 2a portrays the effect of various values of 
stretching/shrinking parameter 𝛼 = 0, 0.1, 0.5, 1, 
𝐾 = 𝑆 = 1, 𝛬=0.2 on the tangential velocity 
component𝑓𝜂(𝜂). From these graphs, we observe 
that the tangential velocity component 𝑓𝜂(𝜂)

 
increases with an increase in the value of 𝛼. Apart 
from the usual behavior of a decrease in 𝑓𝜂(𝜂) with 
η, we observe that the rate of decrease of 
𝑓𝜂(𝜂)with η increases sharply as the parameter 𝛼 is 
varied from 0 to 1.      
   Similar variations of the profile 𝑓𝜂(𝜂) with η are 
found to occur on varying K, which have been 
depicted in Figure 2b for K= 0, 0.1, 0.5, 1, 𝛼= S =1, 
Λ=0.2.  

 
(a) 

 
(b) 

Fig. 2: The velocity profiles 𝑓𝜂(𝜂) for various values 
of (a) stretching/shrinking parameter 𝛼 and (b) 
microrotation parameter 𝐾. 
 
   Figure 3a shows the effect of various values of 𝛬= 
1, 2, 3, 4, 𝛼 = 𝑆 = 1, K=0.2 on the profile of  𝑓𝜂(𝜂). 
Clearly the profile of 𝑓𝜂(𝜂)

 shifts upwards on 
incrementing 𝛬 from 1 to 4.  
   Similar variations in the profile of 𝑓𝜂(𝜂) can be 
observed from Figure 3b when S is incremented 
from -1 to 1 for α = 𝛬 = 1, K=0.2. 
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(a) 

 
(b) 

Fig. 3: The tangential velocity profiles 𝑓𝜂(𝜂) for 
various values of (a) porous medium parameter 𝛬 
and (b) mass transpiration S. 

 
   Figure 4a shows the effect of various values of 
𝛼 = 0, 0.1, 0.5, 1, on the profile of the angular 
velocity 𝑔(𝜂)for fixed parametric values of 𝐾 =
𝑆 = 1, and 𝛬 = 0.2. We find that 𝑔(𝜂) is an 
increasing function of 𝛼.  
   On the other hand, when the parameter K is 
incremented from 0 to 3, the variations in the profile 
of 𝑔(𝜂) are dramatic, which can be observed from 
Figure 4b, for the fixed parametric values of 𝛼 =
𝑆 = 1, 𝛬 = 0.2. Here, 𝑔(𝜂)increases on 
incrementing K at any fixed location near the slit, 
while 𝑔(𝜂) decreases with K at a location 
sufficiently away from the slit.  

 
(a) 

 
 

(b) 
Fig. 4: The angular velocity profiles 𝑔(𝜂) for 
various values of (a) stretching/shrinking parameter 
𝛼 and (b) microrotation parameter 𝐾. 
 
  Figure 5a shows the effect of various values of 
𝛬 = 0, 1, 2, 3, on the profile of the 
microrotation𝑔(𝜂) for the fixed parametric values of 
𝛼 = 𝑆 = 1, K=0.2. Clearly 𝑔(𝜂)increases with an 
increase in the values of 𝛬 for small values of 𝜂 and 
decreases with 𝛬 for all sufficiently large 𝜂. So, 
microrotation is favored by the porosity of the 
medium near the slit while the microrotation is 
hindered by the porosity of the medium away from 
the slit.  
   A similar variation of the profile of 𝑔(𝜂)

  by 
varying S which has been shown in Figure 5b for the 
fixed parametric values of 𝛼 = 1, 𝐾 = 𝛬 = 0.2. 
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(a) 

 
(b) 

Fig. 5: The angular velocity profiles 𝑔(𝜂) on 
similarity variable 𝜂 for various values of (a) porous 
medium parameter 𝛬 and (b) mass transpiration S. 

 
   Figure 6 shows the variation of the skin friction 
𝑅𝑒𝑥

1/2𝐶𝑓𝑥  with 𝛼 for various values of 𝑆 =

 −0.4, −0.3, −0.2, and the fixed parametric values 
of 𝛬= 0.01, K = 1, 𝑛 =  0.5. For a fixed value of S, 
the black and red parts of the corresponding graph 
represent the respective upper and lower branches of 
the dual solution. For the upper branch of the dual 
solution, 𝑅𝑒𝑥

1/2𝐶𝑓𝑥 increases with an increase in 𝛼 
for −0.03 ≤  𝛼 ≤ 0, and 𝑅𝑒𝑥

1/2𝐶𝑓𝑥 decreases with 
𝛼 for 𝛼 > 0. On the other hand, in the case of the 
lower branch of the solution curve, 𝑅𝑒𝑥

1/2𝐶𝑓𝑥 is a 
decreasing function of 𝛼 for 𝛼 ≤ 0, and 𝑅𝑒𝑥

1/2𝐶𝑓𝑥 
increases with 𝛼 for 𝛼 > 0. These observations 
show that the skin friction may decrease or increase 
depending upon 𝛼. 

 
Fig. 6: The effect on 𝑅𝑒𝑥

1/2𝐶𝑓𝑥 of 𝛼 for various 
values S. 
 
   Figure 7a and Figure 7b show the variations of the 
skin friction parameter 𝑅𝑒𝑥

1/2𝐶𝑓𝑥 with the 
microrotation parameter 𝐾 for both stretching and 
shrinking cases, respectively for the fixed 
parametric values of 𝛬 = 0.25, n=0.5, and various 
values of 𝛼 = −3, −2, −1. For a fixed value of 𝛼, 
the black and the red parts of the graph correspond 
to 𝑆 = 5 and 𝑆 = −5, respectively. Clearly, in the 
case of stretching, the skin friction 𝑅𝑒𝑥

1/2𝐶𝑓𝑥 is 
greater for suction and smaller for injection but the 
effect reverses in the case of the shrinking sheet, 
that is, 𝑅𝑒𝑥

1/2𝐶𝑓𝑥 increases with 𝐾 for both 
stretchings as well as shrinking cases.  
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(b) 

Fig. 7: The effect on 𝑅𝑒𝑥
1/2𝐶𝑓𝑥 of 𝐾 for various 

values of suction/injection parameter 𝛼 for (a) 
shrinking and (b) stretching cases. 
 
 

6 Conclusion  
A micropolar fluid flow with a porous stretching or 
shrinking sheet in the presence of mass transpiration 
is investigated analytically and numerically. The 
highly nonlinear PDEs governing the flow field are 
transformed into a system of highly nonlinear ODEs 
by using similarity transformations. The parametric 
domain for the existence of the unique as well as the 
dual solutions are investigated. The unique solution 
is observed at the stretching sheet and dual behavior 
is observed at the shrinking sheet. Based on the 
results, the following conclusions can be drawn: 
 The solution domain for 𝛽 increases by 

increasing the values of the stretching/shrinking 
parameter 𝛼 for the upper branch solution but 
the effect is reversed in the case of the lower 
branch, that is, the solution domain for 𝛽 
decreases by increasing the values of the 
stretching/shrinking parameter 𝛼 for lower 
branch solution as a function of both mass 
transpiration S and microrotation parameter 𝐾. 

 The solution domain for 𝛽 is wider for fewer 
values of microrotation parameter 𝐾. 

 Each of the tangential and the angular velocity 
components is an increasing function of the 
stretching/shrinking parameter 𝛼 and the 
microrotation parameter 𝐾. 

 Each of the tangential and angular velocity 
components is found to decrease with an 
increase in the value of the porous medium 
parameter 𝛬 and the mass transpiration S. 

 The skin friction coefficient increases with an 
increase in microrotation parameter K. 
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