[11] I. Ali, A. R. Seadawy, S. T. R. Rizvi, M.
Younis, K. Ali, Conserved quantities along
with Painleve analysis and Optical solitons for
the nonlinear dynamics of Heisenberg
ferromagnetic spin chains model, International
Journal of Modern Physics
B, 2020;34(30):2050283.
[12] K. K. Ali, M. A. Abd El Salam, E. M.
Mohamed, B. Samet, S. Kumar, M. S. Osman,
Numerical solution for generalized nonlinear
fractional integro-differential equations with
linear functional arguments using Chebyshev
series, Advances in Difference
Equations, 2020;2020(1):1-23.
[13] M. A. Akbar, A. M. Wazwaz, F. Mahmud, D.
Baleanu, R. Roy, H. K. Barman, ... M. S.
Osman, Dynamical behavior of solitons of the
perturbed nonlinear Schrödinger equation and
microtubules through the generalized
Kudryashov scheme, Results in
Physics, 2022;43:106079.
[14] Y. Saliou, S. Abbagari, A. Houwe, M. S.
Osman, D. S. Yamigno, K. T. Crépin, M. Inc,
W-shape bright and several other solutions to
the (3+ 1)-dimensional nonlinear evolution
equations, Modern Physics Letters B,
2021;35(30):2150468.
[15] M. S. Osman, K. U. Tariq, A. Bekir, A.
Elmoasry, N. S. Elazab, M. Younis, M. Abdel-
Aty, Investigation of soliton solutions with
different wave structures to the (2+ 1)-
dimensional Heisenberg ferromagnetic spin
chain equation, Communications in Theoretical
Physics, 2020;72(3):035002.
[16] S. Malik, H. Almusawa, S. Kumar, A. M.
Wazwaz, M. S. Osman, A (2+ 1)-dimensional
Kadomtsev–Petviashvili equation with
competing dispersion effect: Painlevé analysis,
dynamical behavior and invariant
solutions, Results in Physics, 2021;23:104043.
[17] I. Siddique, M. M. Jaradat, A. Zafar, K. B.
Mehdi, M. S. Osman, Exact traveling wave
solutions for two prolific conformable M-
Fractional differential equations via three
diverse approaches, Results in
Physics, 2021;28:104557.
[18] D. J. Korteweg, G. de Vries, On the change of
form of long waves advancing in a rectangular
canal and on a new type of long stationary
waves, Philosophical Magazine
1895;39(5):422-43.
[19] J. Singh, D. Kumar, S. Kuma,r A reliable
algorithm for solving discontinued problems
arising in nanotechnology, Scientia Iranica
2013;20(3):1059-62.
[20] R. Saadeh, O. Ala’yed, A. Qazza, Analytical
Solution of Coupled Hirota–Satsuma and KdV
Equations. Fractal and Fractional
2022;6(12):694.
[21] M. Almazmumy, F. A. Hendi, H. O. Bakoda,
H. Alzumi. Recent Modification of Adomian
Decomposition Method for initial value
problem in ordinary differential equations. Am.
J. Comput. Math. 2012;2:228–34.
[22] H. O. Bakodah. Modified Adomian
decomposion method for the generalized fifth
order KdV equations. American Journal of
Computational Mathematics, 2013;3(1):53.
[23] Y. Khan. An effective modification of the
Laplace decomposition method fornonlinear
equations. Int. J. Nonlin. Sci. Numer. Simul.
2009;10:1373–6.
[24] A. Qazza, R. Saadeh, R. (2023). On the
Analytical Solution of Fractional SIR Epidemic
Model. Applied Computational Intelligence and
Soft Computing, 2023..
[25] Saadeh, R., Abbes, A., Al-Husban, A.,
Ouannas, A., & Grassi, G. (2023). The
Fractional Discrete Predator–Prey Model:
Chaos, Control and Synchronization. Fractal
and Fractional, 7(2), 120..
[26] R. Hirota. Exact solution of the Korteweg-de
Vries equation for multiplecollisions of
solitons. Phys. Rev. Lett. 1971;27:1192–4.
[27] Al-Husban, A., Djenina, N., Saadeh, R.,
Ouannas, A., & Grassi, G. (2023). A New
Incommensurate Fractional-Order COVID 19:
Modelling and Dynamical
Analysis. Mathematics, 11(3), 555..
[28] G. C. Wu, J.H. He, Fractional calculus of
variations in fractal spacetime, Nonlin. Sci.
Lett. A1 2010;3:281–7.
[29] A. M. Wazwaz, The extended tanh method for
new solitons solutions for many forms of the
fifth-orderKdV equations, Applied
Mathematics and Computation, 2007;184(2):
1002-14.
[30] H. Jafari, M. A. Firoozjaee. Homotopy analysis
method for solving KdV equations. Surveys
Math. Applicat. 2010;5:89–98.
[31] R. Saadeh, A. Qazza, A. Burqan, On the
Double ARA-Sumudu transform and its
applications. Mathematics 2022, 10(15), 2581.
[32] A. Qazza, A. Burqan, R. Saadeh, Application
of ARA-Residual Power Series Method in
Solving Systems of Fractional Differential
Equations. Mathematical Problems in
Engineering 2022, 2022.
WSEAS TRANSACTIONS on FLUID MECHANICS
DOI: 10.37394/232013.2022.17.22