[6] I. Zari, A. Shafiq, T. S. Khan and S. Haq,
Marangoni Convective Flow of GO-
kerosene- and GO-water-based Casson
Nanoliquid Toward a Penetrable Riga
Surface, Brazilian Journal of Physics, Vol.
51, 2021, pp.1747–1762.
[7] M. Y. Malik, K. Imad, H. Arif and T.
Salahuddin. Mixed convection flow of MHD
Eyring-Powell nanofluid over a stretching
sheet: a numerical study, AIP Adv., Vol. 5,
2015, 117118.
[8] Hanaa Abdel Hameed Asfour and M. G.
Ibrahim, Numerical simulations and shear
stress behavioral for electro-osmotic blood
flow of magneto Sutterby nanofluid with
modified Darcy's law, Thermal Science and
Engineering Progress, Vol. 37, No. 1, 2023,
101599.
[9] M. G. Ibrahim and Mohamed Abouzeid,
Influence of variable velocity slip condition
and activation energy on MHD peristaltic
flow of Prandtl nanofluid through a non-
uniform channel, Scientific Reports, Vol. 12,
No. 1, 2022.
[10] M. G. Ibrahim, Computational calculations
for temperature and concentration-dependent
density effects on creeping motion of Carreau
fluid: biological applications, Waves in
Random and Complex Media, Vol. 32, 2022.
[11] M. G. Ibrahim, N. A. Fawzy, Arrhenius
energy effect on the rotating flow of Casson
nanofluid with convective conditions and
velocity slip effects: Semi-numerical
calculations, Heat Transfer, Vol. 55, 2022.
[12] M. G. Ibrahim, Adaptive Computations to
Pressure Profile for Creeping Flow of a Non-
Newtonian Fluid With Fluid Nonconstant
Density Effects, Journal of Heat Transfer-
Transactions of the ASME, Vol. 144, No. 10,
2022, 103601.
[13] M. G. Ibrahim, Concentration-dependent
electrical and thermal conductivity effects on
magnetoHydrodynamic Prandtl nanofluid in a
divergent–convergent channel: Drug system
applications, Proc IMechE Part E: J Process
Mechanical Engineering, 2022: 0749.
[14] M. G. Ibrahim, Adaptive simulations to
pressure distribution for creeping motion of
Carreau nanofluid with variable fluid density
effects: Physiological applications, Thermal
Science and Engineering Progress, Vol. 32,
No. 1, 2022, 101337.
[15] L. Prandtl and Verhandlung des III
Internationalen Mathematiker Kongresses
(Heidelberg, 1904), pp. 484-491.
[16] S. A. Pasha, Y. Nawaz and M. S. Arif, A
third-order accurate in time method for
boundary layer flow problems, Applied
Numerical Mathematics, Vol. 161, 2021, pp.
13–26.
[17] M. Khan, M.Y. Malik and T. Salahuddin,
Heat generation and solar radiation effects on
Carreau nanofluid over a stretching sheet
with variable thickness: Using coefficients
improved by Cash and Carp, Results in
Physics, Vol. 7, 2017, 2512–2519.
[18] T. Salahuddin, A. M. Bashir, M. Khan and Y.
Elmasry, Activation energy study for
peristaltically driven divergent flow with
radiation effect, Case Studies in Thermal
Engineering, Vol. 27, 2021, 101172.
[19] Z. Shafique, M. Mustafa and A. Mushtaq,
Boundary layer flow of Maxwell fluid in
rotating frame with binary chemical reaction
and activation energy, Results in Physics,
Vol. 6, 2016, pp. 627-633.
[20] R. J. P. Gowda, R. N. Kumar, A. M. Jyothi,
B. C. kumara and L. E. Sarris, Impact of
binary chemical reaction and activation
energy on heat and mass transfer of
marangoni driven boundary layer flow of a
non-Newtonian nanofluid, Processes, Vol. 9,
2021, 702.
[21] D. Borah and M.K. Baruah, Proposed novel
dynamic equations for direct determination of
activation energy in non-isothermal
isothermal systems, Fuel processing
technology, Vol. 86, 2005, pp. 781-794.
[22] J. Wang, and R. Raj, Estimate of the
Activation Energies for Boundary Diffusion
from Rate-Controlled Sintering of Pure
Alumina, and Alumina Doped with Zirconia
or Titania, Journal of the American Ceramic
Society, Vol. 73, No. 5, 1990, 1172.
[23] A. Kiraci, H. Yurtseven, Temperature
Dependence of the Raman Frequency,
Damping Constant and the Activation Energy
of a Soft-Optic Mode in Ferroelectric Barium
Titanate. Ferroelectrics, Vol. 432, 2012, pp.
14–21.
WSEAS TRANSACTIONS on FLUID MECHANICS
DOI: 10.37394/232013.2022.17.21
M. G. Ibrahim, Hana Abdelhameed Asfour