[4]. Lissaman P.B. & Schollenberger C.A.,
Formation flight of birds. Science, Vol. 168,
1970, pp. 1003–1005.
[5]. Liao J.C., Beal D.N., Lauder G.V. &
Triantafyllou M.S., Fish exploiting vortices
decrease muscle activity. Science, Vol. 302,
2003, pp. 1566–1569.
[6]. Bill R.G. & Hernnkind W.F., Drag reduction
by formation movement in spiny lobsters.
Science, Vol. 193, 1976, pp. 1146–1148.
[7]. Weimerskirch H., Martin J., Clerquin Y.,
Alexandre P. & Jiraskova S., Energy saving in
flight formation. Nature, Vol. 413, 2001, pp.
697–698.
[8]. Fish F.E., Kinematics of ducklings swimming
in formation: consequence of position. J. Exp.
Zool., Vol. 273, 1995, pp. 1–11.
[9]. Badgerow J. P. & Hainsworth F.R., Energy
savings through formation flight? A
reexamination of the vee formation, J. Theor.
Biol., Vol. 93, 1981, pp. 41–52.
[10]. Cutts C.J. & Speakman J. R., Energy savings
in formation flight of pink-footed geese, J.
Exp. Biol., Vol. 189, 1994, pp. 251–261.
[11]. Hummel D., Aerodynamic aspects of
formation flight in birds, J. Theor. Biol., Vol.
104, 1983, pp. 321–347.
[12]. Maeng J.S. et al., Park J.H., Min Jang S., Han
S.Y., A modelling approach to energy savings
of flying Canada geese using computational
fluid dynamics, J. Theor. Biol., Vol. 320,
2013, pp. 76–85.
[13]. Magnan A., Perrilliat-Botonet C., Girerd H.,
Essais d’enregisterements cinémato-
graphiques simultanées dans trois directions
perpendiculaires dexu à de l’écoulement de
l’air autour d’un oiseau en vol, C. r. hebd.
Séanc. Acad. Sci. Paris, Vol. 206, 1938, pp.
462–464.
[14]. Spedding G.R., Hedenström A. & Rosén M.,
Quantitative studies of the wakes of
freelyflying birds in a low-turbulence wind
tunnel, Experiments in Fluids, Vol. 34, 2003,
pp. 291–303.
[15]. Spedding G.R., Rosén M. & Hedenström A.,
A family of vortex wakes generated by a
thrush night ingale in free flight in a wind
tunnel over its entire natural range of flight
speeds, Journal of Experimental Biology, Vol.
206, 2003, pp. 2313–2344.
[16]. Nafi A.S., Ben-Gida H., Guglielmo C.G.,
Gurka R., Aerodynamic forces acting on birds
during flight: A comparative study of a
shorebird, songbird and a strigiform,
Experimental Thermal and Fluid Science,
Vol. 113, 2020, p. 110018.
[17]. D. Michael., Animal locomotion: a new spin
on bat flight. Curr. Biol., Vol. 18, 2008, pp.
468-470.
[18]. Song J, Tobalske BW, Powers DR, Hedrick
TL, Luo H., Three-dimensional simulation for
fast forward flight of a calliope hummingbird,
R. Soc. Open sci., Vol. 3, 2016, p. 160230.
[19]. Liu T., Kuykendoll K., Rhew R.D., Jones S.,
Avian Wings, AIAA, 2004, pp. 2004-2186.
[20]. Shyy W., Berg M., Ljungqvist D., Flapping
and flexible wings for biological and micro air
vehicles, Prog. Aerosp. Sci., Vol. 35, 1999,
pp. 455-505
[21]. Usherwood J.R., Hedrick T.L., Biewener
A.A., The aerodynamics of avian take-off
from direct pressure measurements in Canada
geese (Branta canadensis), J. Exp. Biol., Vol.
206, 2003, p. 4051.
[22]. Malik K., Aldheeb M., Asrar W., Erwin S.,
Effects of Bio-Inspired Surface Roughness on
a Swept Back Tapered NACA 4412 Wing, J
Aerosp Technol. Manag., Vol. 11, 2019, p.
e1719.
[23]. Blocken B., Computational Fluid Dynamics
for urban physics: Importance, scales,
possibilities, limitations and ten tips and tricks
towards accurate and reliable simulations,
Building and Environment, Vol. 91, 2015, pp.
219-245,
[24]. Tucker V.A., Schmidt-Koenig K., Flight
speeds of birds in relation to energetics and
wind directions, The Auk, Vol. 88, 1971, pp.
97-107.
[25]. Funk G. D., Milsom W.K., Steeves J.D.,
Coordination of wingbeat and respiration in
the Canada goose. I. Passive wing flapping.
Journal of applied physiology, Vol. 73, n°3,
1992, pp. 1014–1024.
[26]. Fergus C., Canada goose. Wildlife Notes-20,
LDR0103, Pennsylvania Game Commission,
2010.
[27]. Gould L.L., Heppner F., The vee formation of
Canada geese, The Auk, Vol. 91, n°3, 1974,
pp. 494-506.
[28]. Hainsworth F., Induced drag savings from
ground effect and formation flight in brown
pelicans, J. Exp. Biol., Vol. 135, 1988, pp.
431-444.
[29]. Hedrick T.L., Tobalske B.W., Biewener A.A.,
Estimates of circulation and gait change based
on a three-dimensional kinematic analysis of
flight in cockatiels (Nymphicus hollandicus)
WSEAS TRANSACTIONS on FLUID MECHANICS
DOI: 10.37394/232013.2022.17.2
Beaumont F., Bogard F., Murer S., Polidori G. Matim