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Abstract: - In this paper, a solute transport problem with non-equilibrium adsorption in a non-homogeneous 

porous medium consisting of two zones, one with high permeability (mobile zone) and another one with low 

permeability (immobile liquid zone) are considered. In the mobile zone, there are two zones in both of which 

adsorption of solute with reversible kinetics occurs. The results of this approach are compared with known, 

traditional approaches. It is shown that this method of modeling the process gives a satisfactory result. By 

appropriate selection of the parameters of the source term, one can obtain results close to those of the well-

known bicontinuum approach. 
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1 Introduction 
Aquifers, oil, and gas reservoirs, as a rule, have a 

heterogeneous structure at the micro- and 

macroscale, [1]. Heterogeneous reservoirs on a 

macro scale consist of different zones with 

different, sometimes very strong, filtration-

capacitive properties, i.e. porosity, permeability, 

etc. Zones with well porosity and permeability are 

well conductors for liquids and various substances 

suspended or dissolved in fluids. A typical example 

of heterogeneous formations is fractured porous 

media (FPM), [2], [3], the structure of which is 

represented as a system of fractures surrounded by 

porous blocks. 

Colloidal particles suspended in a liquid can 

move relatively fast and travel longer distances in 

structured porous media than in media with a 

homogeneous structure, [8], [12], [14], [15], [39]. 

The reason for this is the presence of pathways 

conducive to the fast movement of substances. In 

the simulation of solute transport in FPM, it is 

usually assumed that the main ways for moving 

liquid and suspended solids (or dissolved 

substances) are fractures. Porous blocks in 

simplified models are considered impermeable to 

liquids, but particles or solutes can penetrate into 

them due to the diffusion phenomenon. Thus, two 

zones are formed in the medium, one with a mobile 

fluid (fractures) and the other with an immobile one 

(porous blocks). Between zones, mass transfer 

processes occur. The advanced solute transport in a 

porous medium can be the result of many factors. 

Therefore, there are certain difficulties in the 

mathematical modeling of this phenomenon. Some 

models in this direction were presented in [10], 

[17], [18], [19]. The two-zone approach noted 

above was used in these models. Mass transfer 

between zones is modeled by a first-order kinetic 

equation, [9], [20]. A slightly different approach 

combining kinetic and linear mass transfer between 

zones was proposed in [13]. A certain modification 

of the two-zone approach is an approach that takes 

into account fluid motion in both zones, but with 

different scales, [10], [17]. 

When colloidal particles are transported in a 

porous medium, they are usually deposited in 

pores, the causes of which are varied. Depending 

on the nature and location of the interaction of 

particles with the surface of the rock skeleton, 

deposition can be reversible or irreversible. Given 

these factors, transport models naturally become 

more complex. Solute transport in double porosity 

media taking into account reversible and 

irreversible deposition is described by such 

complex models. At the same time, it is important 

to take into account the texture of the medium in 

the models, [6],7], [21]. Mass transfer between two 

flow zones is considered as a function of the 

deposited volume of the solute in each zone, in 

addition, small pores may be excluded from the 

transport process, i.e. their locking due to the 

deposition of substances, [6], [11], [16]. 
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In [4] a transport model of colloidal substances 

in a medium with double porosity is presented, 

taking into account reversible and irreversible 

particle retention, as well as first-order mass 

transfer between fractures and porous blocks. The 

obtained analytical solution was used to describe 

experimental results, [5]. A good agreement was 

obtained between theoretical and experimental 

results. Dispersion and retention parameters were 

higher for larger particles; the intensity of 

reversible and irreversible particle retention was 

higher for a medium with relatively small pores. 

In [13] a transport model in a medium with 

double porosity was considered taking into account 

the reversible and irreversible deposition of colloid 

particles in both zones and the first-order 

equilibrium mass exchange between the zones. In 

each zona, i.e. in fractures and porous blocks, a 

reversible and irreversible deposition of particles 

with various characteristics occurs, described by 

linear equations. An analytical solution to the 

problem is obtained, which is used to describe the 

results of previous experiments, [6]. Coefficients of 

mathematical models are defined as the solution to 

the coefficient inverse problems (CIP), known as 

identification problems, [26]. It is assumed that the 

coefficients of the equation depend on the spatial 

coordinates and are independent of time. The 

statements of the problems are based on the use of 

uniqueness theorems for the solution of the CIP 

proved in [25], [29], [30], [33]. To obtain a unique 

solution of the CIP, it is required to set an 

overdetermined set of boundary conditions on the 

boundary of the zone: the function for which the 

equation is written or its normal derivative. 

Coefficient inverse problems (identification 

problems) have become the subject of intensive 

study, especially in recent years. Interest in them is 

caused primarily by their important applications. 

They find applications in solving problems of 

designing oil reservoir development (determining 

the filtration parameters of reservoirs), [28], [30], 

[32], [34], [35], [36], solving environmental 

monitoring problems, etc. The standard CIP 

statement contains a residual function, which 

depends on the solution of the corresponding 

problem of mathematical physics, [34]. Methods 

for the numerical solution of CIP in connection 

with their applications in underground 

hydrodynamics were developed in [25], [26], [27], 

[29], [31]. 

In this paper, an inhomogeneous two-zone 

medium is considered a single-zone medium with a 

source (sink). The second zone is modeled through 

the source (sink). This approach is fundamentally 

new because, in fact, the bicontinual medium is 

presented as a mono-continual one. The validity of 

this approach is justified by the convergence of the 

results on the basis of the mono-continuous 

approach to the corresponding results of the 

bicontinuous approach. In the work, this is done by 

minimizing the residual function. In addition, it is 

assumed that in both parts of the first zone there is 

reversible adsorption of particles with the 

corresponding kinetic equations. Identification of 

parameters in the source (sink) term in the mass 

balance equation is carried out by solving the 

corresponding CIP using data from [4]. 
 

 
Fig. 1: Scheme of solute transport in a two-zone 

medium 

 

 

2 The Mathematical Model and Its 

Numerical Implementation 
An inhomogeneous porous medium is considered, 

consisting of well-permeable and relatively low-

permeable zones, the diagram of which is shown in 

Fig. 1. The parameters in the first zone are 

indicated by index 1. There are two sections in 

zone 1, in each of which the particle deposition 

with reversible nonequilibrium nonlinear kinetics 

occurs. It is believed that such processes also occur 

in the second zone, but we will not write equations 

and conditions for it. With the second zone, there is 

an exchange of substance, which we model by the 

fractional-order derivative in time of the solute 

concentration in the first zone. Consequently, in 

contrast to [4], the concentration field in the second 

zone is not considered. Note, that the fractional 

approach was previously used in [37], [38], [40]. 

The equations of solute transport in one-

dimensional case are written as 
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where t is time, s, x is distance, m, 1D  is 

longitudinal dispersion coefficient, s2m , 1v  is the 

fluid velocity, m/s, 1С  is volume concentration of 

the solute in the fluid, 1aS and 2aS are 

concentrations of deposited particles, kg/m3 , 1

is porosity, 
33 m/m ,   is medium density, 

3m/kg , 2a  is retardation factor related to the mass 

exchange between two zones, 
1s ,   is the order 

time derivative with respect to time, 10  . 

The deposition of particles in each of the 

sections of the first zone is reversible with the 

different kinetic equations  
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where 1ak , 2ak  are coefficients of solute 

deposition from the fluid phase to the solid phase, 

1s , ,1adk 2adk  are coefficients of substance 

detachment from the solid phase and transition into 

liquid, 1s . 

Let a fluid with a constant solute concentration 

0с  be pumped into the medium initially saturated 

with pure (without particles) liquid from the initial 

moment of time. Let us consider such time periods 

where the concentration field does not reach the 

right boundary of the medium, .x  Under the 

noted assumptions, the initial and boundary 

conditions for the problem have the form 
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The problem (1) - (6) although linear, obtaining 

an analytical solution is difficult because three 

concentration fields must be found at the same 

time. Therefore, to solve the problem, we use the 

finite difference method. In the considered region 
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where I is a sufficiently large integer chosen so that 

segment ],,0[ Ix  ,hixi   overlaps the area of the 

calculated change in the fields C1, Sa1, and Sa2. h is 

the grid step in the х direction.  

In the open grid area 
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equations (1), (2), (3) were approximated as 

follows 
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where 
j

iС )( 1 , 
j

iaS )( 1 , 
j

iaS )( 2  are grid values of 

functions ),(1 xtC , ),(1 xtSa , ),(2 xtSa  at a 

given point ),( ij xt .  

From the explicit grid equations (8), (9) we 

determine 
1

1)( j

iaS , 
1

2)( j

iaS  
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The grid equations (7) are reduced to the form  

,)()()()( 1

1

111

1

11

1

111

j

i

j

i

j

i

j

i FCECBCA  







 (12) 

where  

h

v

h

D
A





 11

2

11
1 ,  

)2(

2 1

211

2

11
11












a

h

v

h

D
B  

 
2

11
1

h

D
E


 ,  















































k

i

j

k

k

i

j

ia

j

ia

j

ia

j

ia

j

i

j

i

Сkjkj

Сkjkj

a
SSS

SC
a

F

))()()1((

))()()1((

)2(
))()(())(

)(())(
)2(

()(

1

11

1

0

1

1

11

2
2

1

21

1

11

1

2
11

 

 

The following procedure of computing is used. 

From (10), (11) 
1
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then we solve the system of linear equations (12) 

by Thomas’ algorithm in order to calculate 
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iC  Since 1, 11 bb qp , schemes (10), (11) are 

stable, and for (12) the stability conditions of the 

Thomas’ algorithm are satisfied.  

To assess the performance of the proposed 

model, it is important to compare the results with 

the corresponding results, [4]. To do this, we 

compare the source (stock) terms )( 12 СС   in 

[4] and 

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2  in (1). To quantify the proximity 

of the results based on the curves was calculated 
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for a given value of t, where L is the conditional 

boundary of the medium to which the concentration 
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The proximity of the terms 1I and 2 I  should 

guarantee the proximity of the concentration fields 

1С  determined using the proposed approach and the 

model, [4]. To estimate their proximity, we use the 

standard deviation (13), only for 1C  determined on 

the basis of two models, i.e. 
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1C – concentration field ),(1 xtC  for a 

given t, determined according to [4], and )2(
1C – the 

same as defined here.  

For other moments t  and  ,, 2а  different 

estimates can be obtained for 1  and 2 . In 

principle, to approximate the two models, it is 

important to set and solve the corresponding 

coefficient inverse problems by determining of 

,2а  for a given value of   or, conversely, 

determining of   for a given   and .  

 

 

3. Numerical Results and Their 

Analysis 
In the calculations following initial values of 

parameters are used: 
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Some results are shown in Fig.2. As can be seen 

from the figure, the outflow of particles into the 

second zone leads to a slow distribution of the 

solute concentration profiles in the mobile fluid. As 

a consequence of this phenomenon, delays are also 

observed in the concentrations of the adsorbed 

mass. From this, it is clear that with a decrease in 

the index of the fractional derivative   from 1, 

both in the solute concentration in the fluid and in 
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the concentration of the adsorbed solute in the well-

permeable zone, there is a delay in the distribution. 

For a certain set of parameters ,2a  and 

14 s10  , graphs 21  , II  are shown in Fig.3. 

As can be seen from the figure, the patterns of 

change in stock terms are similar, which indicates a 

qualitative agreement between the results of the 

proposed model and the results of the model, [4].  

After that, we minimize the functional 
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T L

dtdxIIaФ
0 0

2

212 ),(   , (14) 

that characterizes the standard deviation of 1I  

from 2 I  for the entire time period. The calculations 

show that the minimum value of ),( 2 aФ  is 

achieved at .8,0,0006,02 a   

The proximity of the terms 1I  and 2I  should 

guarantee the proximity of the concentration fields 

,1С  determined using the proposed approach and 

model, [4]. For this, the corresponding profiles are 

plotted for the data, obtained through minimization 

of ),( 2 aФ  (Fig. 4). As can be seen from the 

graphs, the solutions are close to each other.  

For a numerical estimation of their proximity, 

we use the standard deviation of the type (14), only 

for the one determined on the basis of two models, 

i.e. 
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dxdtCCaF
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where 
)1(

1C  is the concentration field ),(1 xtC  for a 

given t, determined according to [4]. )2(
1C  is the 

same as defined here. For the cases analyzed above, 

the following minimum value of ),( 2 aF  was 

obtained 76544520,00234738  for 

.8,0,0006,02 а  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Concentration profiles  C1 (а), Sа1 (b), Sa2 (c) 

at t=3600 s, 
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The analysis shows that the simpler model 

proposed here, with an appropriate choice of 

parameters, can satisfactorily describe the results of 

a more complex model, [4]. 

 

 

4 Conclusions 
In contrast to [4], a new model is proposed where 

the presence of the second zone of an 

inhomogeneous medium is taken into account in 

the form of a source (sink) term in the transport 

equation written out for the first zone. The stock 

term is presented as a fractional time derivative of 

the concentration of the substance in the first zone 

with a certain coefficient. Thus, this approach is 

mono-continuous, while the bicontinual approach 

was used in [4]. The model was implemented 

numerically and the effect of mass transfer to the 

second zone on the transport characteristics in the 

first zone was estimated. It is observed that with a 

decrease of the order in the fractional derivative   

from 1, both in the concentration of the particles in 

the mobile fluid and of the adsorbed substances in 

the mobile zone, the dynamics of distribution delay. 

A problem of approximation of the results 

according to the proposed model with the 

corresponding results, [4] was solved. For this, 

values of parameters in the stock term, which 

ensures close results, are obtained using a 

variational approach that minimizes the residual 

function. It is shown that for certain values of 

parameters 
2

a  and   a good convergence can be 

achieved. Thus, the fundamental possibility of the 

proposed mono-continuum model to describe the 

results of the corresponding bicontinuum model is 

shown. In addition, as it is shown in [22], the 

heterogeneity of porous media can be a cause of 

anomalous phenomena in filtration and transport 

processes. It is known, [23], [24], fractional time in 

filtration and transport laws can model anomalous 

phenomena. Therefore one can expect that the 

proposed here model can be used to study 

anomalous transport phenomena in non-

homogeneous porous media. 
 

 

References: 

[1] Barenblatt G.I., Entov V.M. and Ryzhik 

V.M. Theory of Fluid Flow Through Natural 

Rocks. Kluwer Academic, Dordrecht, The 

Netherlands 1990, 396 p. 

[2] Van Golf–Racht T.D. Fundamentals of 

Fractured Reservoir Engineering, 

Fig. 3: Comparison of source members 

,0001,02 a  3,0 (а),    ,0002,02 a 5,0 (b), 

,0004,02 a 7,0 (c),     ,0006,02 a 8,0 (d),  

  

Fig. 4: Comparison of concentration profiles obtained 

 on the basis of two models ,0006,02 a  8,0 ,  

. 

WSEAS TRANSACTIONS on FLUID MECHANICS 
DOI: 10.37394/232013.2022.17.18

Khuzhayorov B. KH, 
Mustafokulov J. A., Dzhiyanov T. O., Zokirov M. S.

E-ISSN: 2224-347X 186 Volume 17, 2022



Developments in Petroleum Science, 

Elsevier,  Vol.12, 1982, 732 p. 

[3] Sahimi M. Flow and Transport in Porous 

Media and Fractured Rock, From Classical 

Methods to Modern Approaches. Second, 

Revised and Enlarged Edition. WILEY–VCH 

Verlag GmbH&Co. KGaA (Weinheim, 

Germany), 2011. 

[4] Leij F.L., Bradford S.A. Colloid transport in 

dual–permeability media, Journal of 

Contaminant Hydrology, 150, 2013, pp. 

65−76. 

[5]  Bradford S.A., Bettahar M., Simunek J., van 

Genuchten M.Th. Straining and attachment 

of colloids in physically heterogeneous 

porous media, Vadose Zone Journal, Vol 3, 

2004, pp. 384–394. 

[6]  Bradford S.A., Simunek J., Bettahar M., van 

Genuchten M.T., Yates S.R. Modeling 

colloid attachment, straining, and exclusion 

in saturated porous media, Environmental 

Science & Technology, 37, 2003, pp. 2242–

2250. 

[7] Bradford S.A., Torkzaban S., Simunek J. 

Modeling colloid transport and retention in 

saturated porous media under unfavorable 

attachment conditions, Water Resources 

Research, 47, W10503, 2011. 

[8] Cey E.E., Rudolph D.L. Field study of 

macropore flow processes using tension 

infiltration of a dye tracer in partially 

saturated soils, Hydrological Processes, 23, 

2009, pp. 1768–1779. 

[9]   Coats K.H., Smith B.D. Dead–end pore 

volume and dispersion in porous media, 

Society of Petroleum Engineers Journal, 4, 

1964, Pp. 73−84. 

[10] Gerke H.H., van Genuchten M.T. 

Macroscopic representation of structural 

geometry for simulating water and solute 

movement in dualporosity media, Advances 

in Water Resources, 19, 1996, pp. 343–357. 

[11] Ginn T.R., Wood B.D., Nelson K.E., Scheibe 

T.D., Murphy E.M., Clement T.P. Processes 

in microbial transport in the natural 

subsurface, Advances in Water Resources, 

25, 2002, pp. 1017–1042. 

[12] Jarvis N.J. A review of non–equilibrium 

water flow and solute transport in soil 

macropores, principles, controlling factors 

and consequences for water quality,  

European Journal of Soil Science, 58, 2007. 

pp. 523–546. 

[13] Leij F.J., Bradford S.A. Combined physical 

and chemical nonequilibrium transport 

model: analytical solution, moments, and 

application to colloids, Journal of 

Contaminant Hydrology, 110, 2009. pp. 87–

99. 

[14] Pang L., McLeod M., Aislabie J., Simunek 

J., Close M., Hector R. Modeling transport of 

microbes in ten undisturbed soils under 

effluent irrigation, Vadose Zone Journal, 7, 

2008, pp. 97–111. 

[15] Passmore J.M., Rudolph D.L., Mesquita 

M.M.F., Cey E.E., Emelko M.B. The utility 

of microspheres as surrogates for the 

transport of E. coli RS2g in partially 

saturated agricultural soil, Water Research, 

44, 2010, pp. 1235–1245. 

[16] Ryan J.N., Elimelech M. Colloid 

mobilization and transport in groundwater, 

Colloids and Surfaces A, Physicochemical 

and Engineering Aspects, 107, 1996, pp. 1–

56. 

[17] Selim H.M., Ma L. Physical Nonequilibrium 

in Soils, Modeling and Applications, Ann 

Arbor Press, Chelsea, MI. 1998. 

[18] Simunek J., van Genuchten M.Th. Modeling 

nonequilibrium flow and transport processes 

using HYDRUS, Vadose Zone Journal, 7, 

2008, pp. 782–797. 

[19] Toride N., Leij F.J., van Genuchten M.Th. 

The CXTFIT code for estimating transport 

parameters from laboratory or field tracer 

experiments. U.S. salinity laboratory 

agricultural research service, U.S. 

department of agriculture riverside, 

California, Version 2.0,  Research Report. 

137,1995. 

[20]  Van Genuchten M.Th., Wierenga P.J. Mass 

Transfer Studies in Sorbing Porous media. I. 

Analytical Solution, Soil Science Society of 

America Journal, Vol.40, N.4, 1976, pp. 

473−480. 

[21] Silliman S.E. Particle transport through two–

dimensional, saturated porous media: 

influence of physical structure of the 

medium, Journal of Hydrology,  167, 1995, 

pp. 79–98. 

[22] Khuzhayarov B.Kh. Filtration of non-

homogeneous liquids in porous media, 

Toshkent. “FAN” Publisher. 2012, 280 p. 

[23] Caputo  M. Models of flux in porous media 

with memory, Water Resources Resesrch, 

Vol.36, No 3, 2000, pp. 693–705. 

[24] Fomin S. A., Chugunov V. A. and Hashida 

T. Non–Fickian mass transport in fractured 

porous media, Advances in Water Resources, 

Vol. 34, No 2, 2011, pp. 205–214.  

WSEAS TRANSACTIONS on FLUID MECHANICS 
DOI: 10.37394/232013.2022.17.18

Khuzhayorov B. KH, 
Mustafokulov J. A., Dzhiyanov T. O., Zokirov M. S.

E-ISSN: 2224-347X 187 Volume 17, 2022



[25] Alifanov O.M. Klibanov M.V. Uniqueness 

conditions and method of solution of the 

coefficient inverse problem of thermal 

conductivity, Journal of engineering physics, 

Vol. 48, No 6, 1985, 730–735 pp.   

[26] Alifanov O.M. Inverse heat transfer 

problems. Springer–Verlag, New–York, 

1994, 280 p.    

[27] Alifanov O.M. Artyukhin E.A. and 

Rumiantsev S.V. Extreme methods for 

solving III–posed problems with applications 

to inverse problems, Begell House, New–

York, 1995.   

[28] Golubev G.V. Danilayev P.G. Tumashev 

G.G. Determination of hydroconductivity of 

inhomogeneous oil reservoirs by nonlocal 

methods, Kazan, Kazan university, Published, 

1978, 168 p. (In Russian).  

[29] Lavrentiev M.M., Romanov V.G., Vasiliev 

V.G. Multidimensional inverse problems for 

differential equations.  Springer–Verlag 

Berlin, Heidelberg, New York, 1970, 59 p.  

[30] Makarov A. M.,  Romanovskii M. R. 

Solution of inverse coefficient problems by 

the regularization method using spline 

functions, Journal of Engineering Physics, 

Vol. 34, No.2, 1978.   

 [31] Romanov V.G. Inverse Problems of 

Mathematical Physics. VNU Science Press, 

1987,  239 Pp.  

[32] Chavent G. Une methode de resolution de 

probleme inverse dans les equations aux 

derivees partielles, Bulletin de l' Academie 

Polonaise des Sciences, Serie des Sciences 

Techniques, V. XYIII, № 8, 1970, pp. 99–

105. 

[33] Danilaev P.G. On the filtration non–

homogeneous porous stratum parameters 

identification problem, The International 

Symposium on Inverse Problems in 

Engineering Mechanics (ISIP'98),  March 

24–27, 1998, Nagano City, Japan. 

[34] Kravaris Costas, Seinfeld John H. Distributed 

parameter identification in geophysics–

petroleum reservoirs and aquifers, In 

«Disributed Parameter Control Systems», (S. 

Tzafestas, Ed.). New York: Pergamon, 1982. 

P. 367–390. 

[35] Kravaris Costas, Seinfeld John H. 

Identification of parameters in distributed 

parameter systems by regularization, SIAM 

Journal on Control and Optimization, 1985. 

V.23, No. 2. 1985, pp.217–241. 

[36] Kravaris Costas, Seinfeld John H. 

Identification of spatially varying parameters 

in distributed parameters systems by discrete 

regularization, Journal of Mathematical 

Analysis and Applications, V. 119, 1986, pp. 

128–152.  

[37] Schumer R. and Benson D.A. Fractal 

mobile/immobile solute transport, Water 

resources research, Vol. 39, No. 10, 2003. 

pp. 1296. 

 [38] Fomin S.A.,  Chugunov V.A.  and  Hashida T. 

“The effect of non-Fickan diffusion into 

surrounding rocks on contaminant transport in 

a fractured porous aquifer”, Proceedings of 

The Royal Society A Mathematical Physical 

and Engineering Sciences,  461,  2005, pp. 

2923-2939. 

[39] Khuzhayorov B., Mustofoqulov J., Ibragimov 

G., Md Ali F., and Fayziev B. Solute 

Transport in the Element of Fractured Porous 

Medium with an Inhomogeneous Porous 

Block, Symmetry, 2020,12(6), 1028. 

[40] Khuzhayorov B.Kh., Dzhiyanov T.O. and 

Eshdavlatov Z.Z. Numerical Investigation of 

Solute transport in a non-homogeneous 

porous medium using nonlinear kinetics, 

International Journal of Mechanical 

Engineering and Robotics Research, Vol. 11. 

No. 2, 2022, pp. 79–85. 

 

 
Creative Commons Attribution License 4.0 

(Attribution 4.0 International, CC BY 4.0) 

This article is published under the terms of the 

Creative Commons Attribution License 4.0 

https://creativecommons.org/licenses/by/4.0/deed.e

n_US 
 

WSEAS TRANSACTIONS on FLUID MECHANICS 
DOI: 10.37394/232013.2022.17.18

Khuzhayorov B. KH, 
Mustafokulov J. A., Dzhiyanov T. O., Zokirov M. S.

E-ISSN: 2224-347X 188 Volume 17, 2022

https://www.researchgate.net/scientific-contributions/78685161_A_M_Makarov
https://www.researchgate.net/scientific-contributions/79275372_M_R_Romanovskii
https://www.researchgate.net/journal/0022-0841_Journal_of_Engineering_Physics
https://www.google.co.uz/search?hl=ru&tbo=p&tbm=bks&q=inauthor:%22Vladimir+Gavrilovich+Romanov%22&source=gbs_metadata_r&cad=4
https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US



