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Abstract: - We present a new three-dimensional numerical model for the simulation of breaking waves. In the 
proposed model, the integral contravariant form of the Navier-Stokes equations is expressed in a curvilinear 
moving coordinate system and are integrated by a predictor-corrector method. In the predictor step of the 
method, the equations of motion are discretized by a shock-capturing scheme that is based on an original high-
order scheme for the reconstruction of the point values of the conserved variables on the faces of the 
computational grid. On the cell faces, the updating of the point values of the conserved variables is carried out 
by an exact Riemann solver. The final flow velocity field is obtained by a corrector step which is based 
exclusively on conserved variables, without the need of calculating an intermediate field of primitive variables. 
The new three-dimensional model significantly reduces the kinetic energy numerical dissipation introduced by 
the scheme. The proposed model is validated against experimental tests of breaking waves and is applied to the 
three-dimensional simulation of the local vortices produced by the interaction between the wave motion and an 
emerged barrier.  
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1 Introduction 
The three-dimensional numerical simulation of 
gravity wave motion can be carried out by 
numerically solving the Navier-Stokes Equations. In 
the numerical simulation of the Navier-Stokes 
Equations for free-surface flows, one of the most 
challenging problems is the calculation of the free 
surface elevation. In this context, some of the first 
numerical models proposed in the literature [1,2] are 
based on a technique called volume of fluid (VOF) 
method. The VOF method is used to simulate the 
motion of two fluids (air and water) by solving a 
momentum balance equation for the mixture of the 
two fluids on a fixed Cartesian grid. The volume 
fraction of the gaseous phase is calculated by its 
continuity equation, while the continuity equation of 
the liquid phase takes the form of the divergence of 
the velocity field equal to zero. In the computational 
cells occupied only by water, the volume fraction of 
the gaseous phase is zero, while the volume fraction 
of the liquid phase is equal to one. In the 
computational cells occupied only by air, the 
volume fraction of the gaseous phase is equal to 
one, while the volume fraction of the liquid phase is 

null. The free surface is located in the computational 
cells occupied by both air and water. The numerical 
solution of the continuity equation for the gaseous 
phase is used to calculate the volume fraction of the 
air and, thus, to calculate the position of the free 
surface. In the above method, the free surface is not 
sharply defined and its position does not coincide 
with the boundary of a computational cell. 
Consequently, by this method it is not 
straightforward to impose boundary conditions for 
the pressure and the kinematic boundary condition 
at the free surface [3]. Furthermore, the adoption of 
fixed Cartesian grids entails high computational 
costs that make the application of this method to 
real-scale numerical simulations of wave motion 
very expensive. A different kind of numerical 
models that are used to simulate free-surface flows 
is based on the Smoothed Particle Hydrodynamics 
(SPH) [4-6]. This approach can produce very 
accurate representations of the free-surface 
hydrodynamics but is usually limited to small-size 
flow problems because its high computational cost.   
In an alternative class of numerical models for the 
three-dimensional simulation of free-surface flows, 
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the Navier-Stokes Equations are written in a system 
of coordinates where the horizontal ones are 
Cartesian, while the vertical one is a moving 
coordinate (called 𝜎 − 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒) obtained by a 
time-dependent transformation [7-9]. The above-
mentioned numerical models have good dispersive 
properties that allow simulating the propagation of 
non-breaking waves by computational grids with 
less than ten nodes in the vertical direction. In 
Rouvinskaia et al. 2018 [10], a numerical model 
based on this method is used to simulate the internal 
wave impact on the pillars of hydraulic engineering 
constructions. In Zhang et al. 2021 [11] the same 
approach is used in a three-dimensional model for 
tsunami generation on irregular bathymetry.  
The generalization of such an approach to time-
varying physical domains characterized by an 
irregular shape has been proposed by [12], in which 
a contravariant integral contravariant formulation of 
the Navier-Stokes is written in time-dependent 
curvilinear coordinates. In [13-15] the above-
mentioned motion equations are numerically 
integrated by a second-order accurate Total 
Variation Diminishing (TVD) shock-capturing 
scheme commonly used in the literature [7,8], which 
adopts an approximate Harten, Lax and van Leer 
(HLL) Riemann solver. By using the above shock-
capturing scheme, a breaking wave is represented as 
a discontinuity in the numerical solution. It is 
known that, close to the discontinuities, the second-
order TVD scheme reverts to first-order locally and, 
thus, introduces significant numerical dissipation of 
kinetic energy in the numerical solution. 
Furthermore, the approximate Riemann solver 
assumes a simplified wave structure of the solution 
of the Riemann problem that can produce too 
dissipative solutions. As a consequence, the 
numerical simulations of breaking waves carried out 
by a second-order accurate TVD shock-capturing 
scheme and an approximate Riemann solver are 
affected by some errors: the increase in wave 
amplitude during the shoaling process and the 
maximum height of the waves are poorly predicted; 
the position of the wave-breaking point and the 
reduction of the wave height that take place after the 
wave breaking are not correctly simulated. The 
application of such low-order dissipative schemes 
for the numerical simulation of breaking waves and 
wave-induced currents requires very fine 
computational grids, which make them suitable 
mainly for simulations of laboratory-scale tests. 
In this paper, we propose a new conservative non-
hydrostatic shock-capturing numerical scheme for 
the numerical integration of the contravariant 
integral form of the Navier-Stokes equations 

proposed by [12]. The elements of novelty of the 
proposed numerical scheme are three. The state of 
the system is given by the field of the conserved 
variables, 𝐻 and 𝐻𝑢௞, in which 𝐻 is the total water 
depth and 𝑢௞ are the contravariant component of the 
three-dimensional flow velocity. The first element 
of novelty is given by the fact that, in the proposed 
numerical scheme, the time-advancing of the 
numerical solution is carried out by a predictor-
corrector procedure according to which an 
approximate field of the conserved variable ൫𝐻𝑢௞൯

∗
 

is corrected by the gradient of a potential scalar 
function 𝜑 that take into account the non-hydrostatic 
pressure component. Differently from [12], in the 
present scheme, the scalar function 𝜑 is calculated 
by numerically integrating an equation of Poisson-
type in which only the conserved variables ൫𝐻𝑢௞൯

∗
 

are used, instead of the primitive variables ൫𝑢௞൯
∗
. 

By this strategy, in the presence of discontinuities, 
the proposed conservative scheme can converge to 
the correct weak solution. The second element of 
novelty concerns the reconstruction of the point 
values on the cell faces of the computational grid. In 
the proposed scheme, such point values are carried 
out by a high-order reconstruction procedure, based 
on an original Targeted Essentially Non-oscillatory 
scheme which is designed for the simulation of 
breaking waves. The third element of novelty 
consist on the proposal of an exact Riemann solver 
for updating the conserved variables on the cell 
faces. The abovementioned modifications 
significantly reduce the kinetic energy numerical 
dissipation introduced by the scheme. Consequently, 
the proposed numerical scheme differs from the 
ones present in the literature, because allows us to 
correctly represent the complex fully three-
dimensional flow patterns, that take place around 
the coastal defence structures. 
The proposed scheme is validated against 
experimental tests of breaking waves and is applied 
to the simulation of the vortices produced by the 
interaction between the wave motion and an 
emerged barrier. The hydrodynamic phenomena that 
occur due to this interaction can induce significant 
modifications in the coastal sediment transport and 
local scouring around the barriers.  
 

2 The proposed numerical scheme 
In the proposed numerical scheme, the equations of 
motion are obtained by the contravariant integral 
formulation of the mass conservation and 
momentum balance equations written in a time-
dependent curvilinear coordinate system. The main 
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element of the mathematical procedure consists on 
the integration of the mass conservation and 
momentum balance equations in a moving control 
volume and the adoption of a time-dependent 
coordinate transformation by which the moving 
irregular control volume is converted in a fixed 
prismatic one. By omitting the mathematical details 
of the abovementioned procedure (that can be found 
in [12]), the resulting motion equations are 
 

𝑑

𝑑𝑡
න ൫𝑔෤⃗(௟) ∙ 𝑔⃗(௞)𝐻𝑢௞ඥ𝑔଴൯𝑑𝜉ଵ𝑑𝜉ଶ𝑑𝜉ଷ

∆௏బ

+ 

෍ ቊන ൫𝑔෤⃗(௟) ∙ 𝑔⃗(௞)𝐻𝑢௞(𝐻𝑢ఈ 𝐻⁄ − 𝑣ఈ) + 𝑔෤⃗(௟)

∆஺బ
ഀశ

ଷ

ఈୀଵ

∙ 𝑔⃗(ఈ)𝐺𝜂𝐻൯ඥ𝑔଴𝑑𝜉ఉ𝑑𝜉ఊ 

− න ൫𝑔෤⃗(௟) ∙ 𝑔⃗(௞)𝐻𝑢௞(𝐻𝑢ఈ 𝐻⁄ − 𝑣ఈ) + 𝑔෤⃗(௟)

∆஺బ
ഀష

∙ 𝑔⃗(ఈ)𝐺𝜂𝐻൯𝑑𝜉ఉ𝑑𝜉ఊቋ = 

− න ൬𝑔෤⃗(௟) ∙ 𝑔⃗(௠) 𝜕𝑝

𝜕𝜉௠
𝐻ඥ𝑔଴൰ 𝑑𝜉ଵ𝑑𝜉ଶ𝑑𝜉ଷ

∆௏బ

 

+ ∑ ቄ∫ ቀ𝑔෤⃗(௟) ∙ 𝑔⃗(௞)
ோೖഀ

ఘ
𝐻ඥ𝑔଴ቁ 𝑑𝜉ఉ𝑑𝜉ఊ

∆஺బ
ഀశ −ଷ

ఈୀଵ

∫ ቀ𝑔෤⃗(௟) ∙ 𝑔⃗(௞)
ோೖഀ

ఘ
𝐻ඥ𝑔଴ቁ 𝑑𝜉ఉ𝑑𝜉ఊ

∆஺బ
ഀష ቅ   (1) 

 

𝑑

𝑑𝑡
න ൫𝐻ඥ𝑔଴൯𝑑𝜉ଵ𝑑𝜉ଶ𝑑𝜉ଷ

∆௏బ

 

+ ∑ ቄ∫ ቀ(𝐻𝑢ఈ − 𝐻𝑣ఈ)ඥ𝑔଴ቁ 𝑑𝜉ఉ𝑑𝜉ఊ
∆஺బ

ഀశ
ଷ
ఈୀଵ −

∫ ቀ(𝐻𝑢ఈ − 𝐻𝑣ఈ)ඥ𝑔଴ቁ 𝑑𝜉ఉ𝑑𝜉ఊ
∆஺బ

ഀష ቅ = 0  (2) 

 
where 𝐻 and 𝐻𝑢௞ are the conserved variables, given 
by the water depth 𝐻 and its product by the 
contravariant components of the flow velocity, 𝑢௞;  
𝜂 = 𝐻 − ℎ is the free-surface elevation; ℎ is the still 
water depth; 𝐺 is the acceleration due to gravity; 𝜌 
is the water density; 𝑝 is the dynamic pressure; 𝑅௞ఈ 
are the contravariant components of the tensor of the 
stresses devoid of the pressure term. 𝜉௟ is the 𝑙 − 𝑡ℎ 
curvilinear coordinate, which is expressed as a time-
dependent function of the Cartesian coordinates, 𝑥௟, 
𝜏 = 𝑡, 𝜉ଵ = 𝜉ଵ(𝑥ଵ, 𝑥ଶ, 𝑥ଷ),  𝜉ଶ =

 𝜉ଶ(𝑥ଵ, 𝑥ଶ, 𝑥ଷ),𝜉ଷ = ൫𝑥ଷ + ℎ(𝑥ଵ, 𝑥ଶ)൯ 𝐻(𝑥ଵ, 𝑥ଶ, 𝑡)⁄ . 
In such coordinate transformation, 𝜉ଷ is a moving 
coordinate that changes over time according to the 
variations of the water depth and assumes values 

between 0 (at the bottom) and 1 (at the free surface). 
In Eq. (1) and (2), 𝑔⃗(௞) = 𝜕𝜉௞ 𝜕𝑥⃗⁄  and  𝑔⃗(௞) =

𝜕𝑥⃗ 𝜕𝜉௞⁄  are the contravariant and covariant base 
vectors, respectively; 𝐻ඥ𝑔଴ = 𝐻𝑘ሬ⃗ ∙ ൫𝑔⃗(ଵ)⋀𝑔⃗(ଶ)൯ is 
the specific expression assumed by the coordinate 
transformation’s Jacobian, which is obtained 
multiplying 𝐻 by the scalar product between the 
vertical unit vector 𝑘ሬ⃗  and the first two covariant 
base vectors; ∆𝑉଴ is the volume of a computational 
cell in the transformed space; ∆𝐴଴

ఈା and ∆𝐴଴
ఈି 

indicate, respectively, the area of the face of the 
computational cell on which coordinate 𝜉ఈ is 
constant that is placed at larger and lower values of 
𝜉ఈ; 𝑣ఈ is the contravariant component of the 
velocity vector that express the movements of the 
generic coordinate 𝜉ఈ.  
In this paper, Equations (1) and (2) are numerically 
integrated by an original predictor-corrector finite-
volume scheme where the state of the system is 
defined by the conserved variables 𝐻𝑢௞. In the 
predictor step, a simplified form of Eq. (1), where 
the dynamic pressure is omitted, is discretized by a 
shock-capturing finite-volume scheme in which, at 
the faces of each computational cell, a couple of 
point values of each conserved variable is 
reconstructed by an original high-order targeted 
essentially non-oscillatory (TENO) procedure; these 
couples of point values of the conserved variables 
are assumed as initial values of the Riemann 
problem. In the present numerical scheme, the 
solution of each local Riemann problem is 
calculated by extending to the three-dimensional 
equations of motion the exact Riemann solver 
proposed by [16]. In this way, the complete 
structure of the wave solution is taken into account, 
removing the simplifications adopted by the 
approximate Riemann solvers proposed in [12-15]. 
The exact Riemann problem solution is used to 
calculate a predictor field of the conserved 
variables, ൫𝐻𝑢௞൯

∗
, that correspond to an 

approximated three-dimensional velocity field with 
non-zero divergence.  
In the corrector step, by using exclusively the 
predictor field of the conserved variables, we define 
a Poisson equation which is written in the 
curvilinear coordinate system,  
 
డቀு௚ሬ⃗ (ೖ)∙௚ሬ⃗ (ೝ)ങക

ങೝ 
ඥ௚బቁ

డకೖ = −
డ൫ு௨ೖ൯

∗
 ඥ௚బ

డకೖ        (3) 

 
in which the unknown variable is a scalar function 
φ.  Eq. (3) is solved by a numerical iterative solver 
in which the convergence is accelerated by a 
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multigrid method. The final field of the conserved 
variables is obtained by adding the gradient of φ 
(multiplied by 𝐻) to the predictor field   
 

𝐻𝑢௞ = 𝐻𝑔⃗(௞) ∙ 𝑔⃗(௥) డఝ

డ௥ 
+ ൫𝐻𝑢௞൯

∗
   (4) 

 
After the correction of the field of the conserved 
variables, the position of the free surface is updated 
by numerically solving the continuity equation 
integrated over the vertical coordinate 𝜉ଷ, between 
0 and 1. 
The second element of novelty of the proposed 
numerical concerns the reconstruction procedure in 
the predictor step. Following the approach proposed 
by [17], we define a convex combination of three 
second-order interpolant polynomials, a function of 
the smoothness of the numerical solution and a 
dynamic threshold for choosing how many 
polynomials participate in the given reconstruction. 
If all the three polynomials are used, the value of 
𝐻𝑢௞ on a given the cell face is calculated by a high 
order approximation that significantly limits the 
dissipation of kinetic energy due to the numerical 
scheme. If only one or two candidate interpolant 
polynomials participate to the reconstruction, 𝐻𝑢௞ 
is calculated by a low order approximation that 
introduces numerical dissipation of kinetic energy 
and avoids spurious unphysical oscillations in the 
numerical solution. In the proposed procedure, 
differently from the existing TENO schemes [17], 
the value of this dynamic threshold depends on two 
factors: the smoothness of the numerical solution 
and the steepness of the front of the wave. During 
the numerical simulations, in the instants and in the 
grid nodes in which the front of the wave becomes 
so steep to be considered a breaking wave front, the 
dynamic threshold assumes its minimum values and, 
consequently, is reduced the tendency of the 
procedure to exclude one or two polynomials from 
the reconstruction. Thus, at the wave breaking fronts 
we obtain the maximum order of accuracy of the 
reconstructions and minimize the dissipation of 
kinetic energy introduced in the numerical solution 
by the numerical scheme. By this strategy, we 
entrust mainly to the turbulence model the task of 
representing the wave breaking energy dissipation 
and we leave mainly to the numerical scheme the 
task of avoiding the unphysical oscillations at the 
tail of the wave and at non-breaking fronts (where 
the turbulence model is less effective). Below, we 
describe the main mathematical aspects of the 
proposed procedure. 
The point value of a given conserved variable on a 
face of the computational cell, ൫𝐻𝑢௞൯

ி
, is calculated 

by a convex combination of interpolant polynomials 
of second order, 𝑓௣ (with 𝑝 = −1,0,1),  
 
൫𝐻𝑢௞൯

ி
=  ωିଵ𝑓 ଵ + ω଴𝑓଴ + ωଵ𝑓ଵ    (5) 

 
where ω௣ are the so-called nonlinear weights of the 
combination, which are defined as  
 

ω௣ =  
ஔ೛୐೛

∑ ஔ೛୐೛
భ
೛సషభ

      (6)  

 
In Eq. (6), δ௣ are coefficients that can be 0 or 1 and 
are used to exclude or not polynomials 𝑓௣ from the 
combination; L௣ are the linear weights and are 
calculated to obtain fifth-order accuracy if no 
polynomial is excluded from the combination. We 
indicate by χ௣ (with 𝑝 = −1,0,1)  a normalized 
function that provides a measure of the smoothness 
of the second-order polynomial 𝑓௣ and indicate by 
𝐶் a dynamic threshold value for χ௣. At every 
instant of the numerical simulation, χ௣ are compared 
with 𝐶், in order to assign 0 or 1 to coefficient δ௣ 
of Eq. (6), 
 
δ௣ = 0, if  χ௣ < 𝐶்  
δ௣ = 1, if  χ௣ > 𝐶்     (7) 
 
The values of the dynamic threshold 𝐶்  are given 
by 
  
𝐶் = 10ି௡       (8) 
 
where exponent 𝑛 depends on two fixed parameters, 
𝐴௠ and 𝐴ெ, and two functions θ and θଶ 
       
𝑛 = 𝐴௠ + (θ + 𝜃ଶ)(𝐴ெ − 𝐴௠)     (9) 
 
In Eq. (9), 𝐴௠ and 𝐴ெ are, respectively, the 
assigned minimum and maximum for exponent 𝑛; 
functions θ and 𝜃ଶ can range between 0 and 1, and 
their sum can be at most 1. Function θ depends on 
the smoothness of the numerical solution [17]. 𝜃ଶ is 
an original function that we express as a function of 
the wave front steepness 
 

𝜃ଶ = ቀ
డఎ

డ௧
ቁ ቀ

డఎ∗

డ௧
ቁ − 1ൗ , if  

డఎ

డ௧
>

డఎ∗

డ௧
 

𝜃ଶ = 0, if  
డఎ

డ௧
<

డఎ∗

డ௧
                (10) 

 
where 𝜕𝜂 𝜕𝑡⁄  is the rate of change of the free-
surface elevation and  𝜕𝜂∗ 𝜕𝑡⁄  is a threshold value 
behind which the wave is considered as a breaking 
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wave. By Eq. (10), function 𝜃ଶ is different from 0 
only at the front of a breaking wave and increases as 
the steepness of the wave front increases. The 
proposed original reconstruction ensures high-order 
of accuracy at the front of the breaking waves, 
where kinetic energy dissipation is mainly 
demanded to the turbulence model. At the wave tails 
and non-breaking fronts (where 𝜃ଶ is null), exponent 
𝑛 depends only on θ, that is a function of the 
smoothness of the numerical solution. In these 
regions, where the turbulence model is less 
effective, the ability of the proposed numerical 
scheme to reduce the spurious (unphysical) 
oscillations is maximum. 
Unlike the second-order TVD reconstructions 
adopted by [12-15], the proposed numerical scheme 
ensures good non-oscillatory properties, without 
introducing excessive numerical dissipation in the 
numerical solution.  
 

3 Results 
Emerged barriers are commonly used in coastal 
engineering. The interaction between the incoming 
waves and an emerged barrier can produce velocity 
and pressure fluctuations and very complex 
instantaneous three-dimensional flow patterns 
characterized by quasi-periodic vortices. These 
vortices usually occur downstream of the edge of 
the barrier and can produce the resuspension of solid 
particles from the sea bottom and local scour 
phenomena. In this section we apply the proposed 
model to the simulation of the quasi-periodic vortex 
formations that take place downstream of a vertical 
barrier that interacts with breaking waves. A 
rectangular 15 𝑚 × 3 𝑚 coastal area is discretized 
by a computational grid shown in Fig.1, where 
incoming cnoidal waves are produced at x = 0, 
propagate from left to right on a 1:35 bottom slope, 
and interacts with a 2 𝑚 long and 0.5 𝑚 wide 
emerged barrier that is placed at 𝑥 = 7.1 𝑚 (red line 
in Fig. 1). In both the x and y directions, the size of 
the computational cells ranges between 0.025 𝑚 
and 0.05 𝑚; in the z-direction the water depth is 
discretized by 9 moving layers. During the 
simulation, the first calculation node is placed at an 
average distance from the bottom equal to 𝑧ା = 30 
(where 𝑧ା = 𝑧𝑢∗ 𝜈⁄  is a dimensionless distance 
calculated by the friction velocity 𝑢∗ and the water 
viscosity 𝜈). The remaining grid nodes in the 

vertical direction are uniformly distributed along the 
water column. The boundary on which 𝑦 = 1 𝑚 is 
treated as a reflecting boundary, on which the 
normal velocity component is assumed equal to 
zero, while a zero normal derivative is assumed for 
the remaining quantities. The opposite boundary 
(𝑦 = 4 𝑚) is treated as an open boundary, on which 
the normal derivative of every quantity is assumed 
equal to zero. As input boundary conditions we 
impose 0.125 𝑚 high cnoidal waves, whose wave 
period is equal to 2 𝑠. The eddy viscosity is 
expressed by a Smagorinsky turbulence model in 
which the Samgorinsky coefficient 𝐶௦ ranges 
between 0.05 and 0.2. On the left boundary, at x = 0 
m, a cnoidal wave with period 𝑇 = 2 𝑠 and wave 
height 𝐻 = 0.125 𝑚 is imposed. Such a wave is 
equal to the one experimentally reproduced by [18] 
on a channel with the same initial water depth and 
1:35 sloping beach (without the emerged barrier). In 
Fig. 2 we show the comparison between the 
experimental result of [18] and the numerical results 
obtained by the proposed model. The wave height 
obtained with the numerical model is in very good 
agreement with the experimental results, as shown 
in Fig. 2. The breaking point is located around 𝑥 =
6.5 𝑚 as the one obtained by experimental 
measurements. In order to quantify the agreement 
between the numerical and the experimental results, 
we compare the free-surface elevation by using the 
mean absolute percentage error (MAPE) [19] 
 

𝑀𝐴𝑃𝐸 =
∑

หೃ೐ೣ೛೔షೃ೙ೠ೘೔ห

ೃ೐ೣ೛೔

೙
೔సభ

௡
× 100             (11) 

 
where 𝑅𝑒𝑥𝑝௜ and 𝑅𝑛𝑢𝑚௜ are respectively the 
experimental and numerical measurements. 
 

MAPE 4.85% 
Table 1 Mean absolute percentage error for the free-
surface elevation. 
 
The very low relative error between the proposed 
model and the experimental results (less than 5 per 
cent) demonstrates that the proposed model is able 
to correctly simulate the wave shoaling, the 
maximum wave height, the wave breaking point and 
the wave height reduction in the surf zone. 
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Fig.1. Computational grid (one grid line out of every three is drawn). The red line indicates the position of the 
emerged barrier. 

 

Fig. 2. Breaking wave. Maximum free-surface elevation, mean water level and minimum free-surface 
elevation. Circles: experimental measurements by [18]; lines: proposed model numerical results. 

 

 
Fig. 3 shows three instants of the simulated free-
surface elevation given by the interaction between 
the cnoidal waves and the emerged barrier. In such 
figures, the emerged barrier is not drawn and its 
basis is represented by the blue color. From Figs. 
3(a) - 3(c) it is possible to see the wave height 
reduction produced by the breaking of the waves 

that approach the barrier and the reflection caused 
by the wave collision with the barrier. The spatial 
variations of the wave height caused by the 
interaction with the barrier produce currents which 
can be highlighted by averaging over time the 
instantaneous flow velocity components. 
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Fig. 3(a)-(c). A sequence of three instantaneous views of the simulated wave field 

 
Fig. 4 shows the numerical results of the currents 
induced by the wave-structure interaction at three 
different depths: a) close to the seabed; b) at middle 
depth; c) close to the water surface. Fig. 4 shows 
that the interaction between the incoming waves and 

the barrier produces, at the onshore side of the 
barrier, a large eddy which turns in a clockwise 
sense and increases its intensity as the distance from 
the bottom increases.  

(a) 
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(b) 

(c) 

Fig. 4. Plan view of the simulated circulation patterns: (a) close to the seabed; (b) at middle depth; (c) close to 
the water surface. 

In Fig. 5 the quasi periodic vortices that take place 
near the barrier and propagate in the direction of the 
waves are visualized by the so-called Q-method for 
the vortices identification [20], according to which 
positive values of the second invariant of the 
velocity gradient tensor (denoted by Q) indicate the 
presence of a vortex. Fig. 5 shows that vortices 
characterized by a vertical axis take place close the 

barrier edges, starting from the seabed; as the 
distance from the barrier edges increases, the 
orientation of these vortices changes and tends to 
the direction of the propagation of the waves. These 
vortex structures can put into suspension the solid 
particles from the seabed and produce local erosion 
phenomena near the barrier.   

WSEAS TRANSACTIONS on FLUID MECHANICS 
DOI: 10.37394/232013.2022.17.13

Francesco Gallerano, Federica Palleschi, 
Benedetta Iele, Giovanni Cannata

E-ISSN: 2224-347X 136 Volume 17, 2022



(a) 

(b) 

(c) 

Fig. 5. Vortex structures identified by the Q-method (𝑄 = 3.5). 
 

4 Discussion 
The proposed numerical model differs from the ones 
present in the literature; this model significantly 
reduces the kinetic energy numerical dissipation 
introduced by the scheme and allows us to correctly 
represent the complex fully three-dimensional flow 
patterns, that take place around the coastal defence 
structures. By the simulation of the vortices 
produced by the interaction between the wave 
motion and an emerged barrier, it can be notice that 

the proposed numerical model correctly represents 
the hydrodynamic phenomena that can induce 
significant modifications in the coastal sediment 
transport and local scouring around the barriers.  

 
5 Conclusion 
A numerical model for the three-dimensional 
numerical simulation of wave-structure interactions 
has been presented. The equations of motion at the 

WSEAS TRANSACTIONS on FLUID MECHANICS 
DOI: 10.37394/232013.2022.17.13

Francesco Gallerano, Federica Palleschi, 
Benedetta Iele, Giovanni Cannata

E-ISSN: 2224-347X 137 Volume 17, 2022



basis of the numerical model are expressed in a 
moving coordinate system and are integrated by an 
original conservative shock-capturing numerical 
scheme. The main element of originality of the 
proposed numerical scheme is given by an original 
TENO scheme specifically designed to simulate the 
breaking of the waves; the local Riemann problem 
produced by the TENO reconstruction procedure is 
solved by an exact Riemann solver. By the proposed 
numerical scheme, the three-dimensional flow 
structures produced by the interaction between 
trains of breaking waves and a coastal defence 
structure parallel to shoreline has been simulated. 
The results obtained by the proposed numerical 
scheme show that by this approach it is possible to 
represent both the large scale hydrodynamic 
phenomena, like the wave-induced circulation 
patterns downstream the barrier, and small scale 
flow structures, like the quasi periodic vortices that 
take place near the barrier’s edges, close to the 
bottom. Both the hydrodynamic phenomena are 
fully three-dimensional and can induce significant 
modifications in the coastal sediment transport and 
local scouring around the barriers.  
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