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Abstract: - The processes of the magnetic tape producing, wire adhering, as well as many other important 

technological processes, include preparing some special materials’ adhering to a product surface. For a surface 

withdrawn from the molten metal or the other liquid material there is a problem to determine a profile of a film 

surface. In this paper, the mathematical model developed for simulation of the adhering process of viscous liquid 

film to a slowly moving plate, which is vertically withdrawn from the molten metal or the other fluid capacity. 

The Navier-Stokes equations for a film flow on a surface of the withdrawn plate are considered with the 

corresponding boundary conditions, and the polynomial approximation is used for the film flow profile. The 

equations, after integration across the layer of a film flow, result in the system of partial differential equations for 

the wavy surface ζ(t,x) of a film flow, of flow rate q(t,x) and of flow energy Q(t,x).The derived equations are used 

for analysis of the nonlinear film flow that determines the quality of a fluid adhering on a surface of the withdrawn 

plate. 
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1 Introduction 
The problem of the surface coating by material with 

a thin liquid film has been considered for a long time 

in various practical problems, and then it has also 

gained interest theoretically. This is due to the need 

to apply uniform coatings of a given thickness, to 

estimate the entrainment of a liquid from the pool 

after removing the object from it, to determine an 

amount of a liquid on the walls of the container after 

pouring out the liquid from it, and many other 

practically important tasks.  

Also, many technological processes are doing 

some special materials’ adhering to a product’s 

surface. For example, this problem is important for 

the magnetic tape’s producing, wire adhering, etc. 

For the surface withdrawn from the molten metal or 

from the other liquid material there is a problem to 

determine the film surface profile as much as possible 

precisely and to control it. This is a subject of the 

present paper.  

The theory of the free coating of a Newtonian 

liquid on a plate was developed based on a scale 

analysis of the flow [1] with an analysis isolated on 

the flow in the apical part of the meniscus where the 

film is captured, and the bulk liquid is transported 

from the depths of the basin to the surface. The film 

thickness and the characteristic curvature of the 

meniscus were expressed in terms of the capillary 

number Ca=μu0/σ (viscous forces to capillary forces) 

and the dimensionless parameter Po=μ(g/ρσ3)1∕4. The 

first is the dynamic criterion and the second is the 

kinematic criterion (it is determined only by physical 

properties: gravitational, viscous and capillary). Here 

μ, ρ, σ are the dynamic viscosity coefficient, density, 

surface tension coefficient of the liquid, respectively, 

g is acceleration due to gravity; u0 is the characteristic 

velocity of a fluid flow.  

The authors [1] used two adjustable constants, 

determined by least-squares fitting with the 

experimental data [2], which were surprisingly 

“universal” for free-coating on a plate. For a range of 

Ca the film thickness was scaled to d0=(μu0/ρg)1/2 

asymptotes independent of Po. But in the small-

Ca limit the classical Landau-Levich law [3] is duly 

recovered.  

The roles of capillary, inertial, and gravity forces 

in the various regimes are playing depending on their 

ratio changing the regimes. The theoretical and 

experimental results are correlated well spanning 

over three orders of magnitudes both of Ca and Po. It 

is interesting to note that a non-monotonous 
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behaviour of the characteristic meniscus curvature 

scaled to the reciprocal film thickness, with a growth 

followed by a drop as a function of Ca, is predicted, 

in qualitative accordance with earlier experimental 

observations and computational results. 

 

 

2 Accomplishments and Challenges in 

the Film Coatings 
Derjaguin [4] proposed a "load" h, i.e. the thickness 

of the film for the liquid adhering to the plate 

h=(μu0/ρgsinα)1/2 (h=d0(sinα)1/2), assuming that the 

effects of inertia and surface tension are weak. In [2], 

an infinite plate (at an angle α to the horizontal at a 

constant velocity u0) is considered from an infinite 

pool of a viscous liquid, where the above formula 

obtained from the Stokes equations within the 

boundaries of small slopes of the plate (without this 

assumption, the formula is invalid).  

The problem was shown to have infinitely many 

stable solutions; all of them are stable but only one 

corresponds to the above formula. This stable 

solution can be distinguished only by comparing it 

with a self-similar solution describing the non-steady 

part of the film flow between the pool and the tip of 

the film. Although the area of the near-pool region in 

which the stable state is established expands with 

time, the upper non-steady part of the film (its 

thickness decreases to the tip) expands faster as it was 

shown. It occupies most of the plate; therefore, an 

average thickness of the film is 1.5 times smaller than 

the load. 

For the case of thick films, the formula [4] has 

been given without strict derivation, showing that in 

this case the thickness of the layer is independent of 

a surface tension of a liquid. In [2]it was derived more 

in detail considered the profile of a liquid layer which 

remains on the wall of a vessel, inclined at an angle 

to the horizon, at a time t after the level of the liquid 

has begun to recede. It was supposed that the 

condition dh/dx<<1 for a thickness h of a film at the 

given point, is satisfied everywhere, except at the 

place, where the film goes over into the free volume 

of a liquid. Publication [4] was delayed due to the 

discovery of divergences from experiment, the 

explanation for which was found later. The 

experimental data [2] fully confirm the theory 

including the numerical coefficients. 

The work of Landau and Levich [3] (1942) 

initiated the fundamental theoretical, as well as 

experimental investigation of a flow of the thin liquid 

film entrained by a steady withdrawal of a flat plate 

from a liquid bath. The existing theories are based on 

a linearization of the problem and differ substantially. 

They give relationships between the film 

thickness h and the capillary number Ca. For 

example, the paper [5] demonstrated theoretically 

that different physical properties for the different 

liquids result not in a single function but in a family 

of the functions h(Ca). The complete set of previous 

experimental work fitted the family of curves, while 

the previous theories could satisfy just some of this 

experimental data. The solution was found applying 

the nonlinear theory [5]. The inertial terms and two‐
dimensional flow together with the parameter of 

liquid physical properties were accounted. The direct 

method of Galerkin was applied for solution of the 

nonlinear problem; therefore, the new theory has got 

an advantage of accurately determining the shape and 

size of the upper meniscus profile. With the complete 

set of the available experimental data achieved an 

excellent agreement with the theoretical results. The 

classical formula [4] was derived more in detail in 

[6]. For the case of thick films, it has been given 

without strict derivation, showing, in particular, that 

in this case the thickness of a layer does not depend 

on the surface tension of a liquid. 

The classical coating problem of determining 

the asymptotic film thickness on a flat plate, which is 

being withdrawn vertically from an infinitely deep 

liquid pool, has been examined through a numerical 

solution of the stationary Navier-Stokes equations 

[7]. For the creeping flow, the dimensionless load q 

was determined as a function of the capillary 

number Ca. For Ca<0.4, an agreement of the 

Wilson’s extension [8] with the Levich’s well-known 

expression was found. But for Ca→∞, q asymptotes 

to 0.582, below the value of 2∕3 by Deryagin and Levi 

[9]. For the finite Reynolds numbers Re≡mCa3∕2, 

where m is a dimensionless number involving only 

the gravitational acceleration g and the properties of 

the fluid, q was found independent of the m at a 

given Ca. Nevertheless, it was revealed correct only 

up to a critical capillary number Ca*, dependent 

on m, beyond which their numerical scheme failed.  

Similarly, the corresponding nondimensional 

flow rate qα≡q(cosα)1∕2 depends on both Ca and α 

for the creeping flows in case of the inclined plate (at 

an angle α to a vertical). Its maximum has been found 

to increase monotonically with α up to 2∕3 when 

α exceeds a critical angle αc∼π∕4, where the plate was 

inclined midway to the horizontal with its 

coating surface on the topside.  

Nonlinear free coating onto a vertical surface was 

studied theoretically in [10]. When a vessel of liquid 

has been emptied and put aside, a thin film of liquid 

clings to the inside and gradually drains down to the 

bottom under the action of gravity [11]. The layer 

being thin, the motion is very nearly laminar flow, 
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and the curvature of the surface in a horizontal 

direction may be ignored. Thus, the problem for a 

cylindrical vessel is reducible to that of a wet plate 

standing vertically. 

Experimental study [12] enhanced the 

fundamental understanding of the coating processes 

in a wide range of the varying parameters. They 

revealed the phenomena of the formation of an 

asymptotic meniscus profile leading to a 

development of a cusp at an interface. The 

dimensionless description of such phenomena 

allowed identification of the main parameters. And 

flow visualization revealed the entire flow structure 

with using a visible laser. The two phenomena of a 

free coating have been shown depending on the 

property number Po. By parameter Po over about 

0.5, the dimensionless final film thickness h0is 

constant up to the capillary number Ca of about 1. 

By Po less than 0.1, film thickness h0 depends 

on Ca and the Reynolds number Re but it becomes 

constant when the Weber number We=Ca Reis less 

than about 0.2. In both cases h0 is constant when the 

effect of a surface tension on the meniscus becomes 

weak. A cusp formation is caused by the inertia 

(Re). By large Re, the effect of applicator 

dimensions on h0 was investigated for flows too. 

The thin liquid sheet was transported by a vertical 

flat plate, which was stationary moving upwards 

under an action of gravity [13]. Some liquid flowed 

down, a trend that can be increased by blowing up the 

air jet on the side layer. The preformed analysis of 

possible solutions of the stationary flow led to the 

correlation of the thickness of final layer with the 

strength of a jet. For the testing of stability, the 

corresponding non-stationary flows have been 

investigated, which have shown that the stripped flow 

is resistant to the long-wave perturbations. 

The size and shape of meniscus profiles, which 

were enlarged by flow, have been measured 

experimentally [14] and photographically for a range 

of flow conditions. The free coating of flat sheets 

withdrawn from a pool of wetting liquids was 

studied. The withdrawal speeds were varied over 

several capillary numbers Ca below 1 using and oil 

with viscosity 0.194 Ns/m2 (194 cP). The deformed 

profiles were modeled by three-parameter analytical 

expression. The parameters may be used to study 

influence of Ca, coating speed, surface tension, 

viscosity, density on the profile size and shape. 

Influence of Re on the profile was noted at Re above 

2. 

By withdrawn of a body from a liquid bath a liquid 

film is kept on a surface of the body. In a review [15], 

after recalling the predictions and results for pure 

Newtonian liquids coated on the simple solids, an 

analysis of the deviations to this ideal case was done 

exploring successively three potential sources of 

complexity: the liquid-air interface, the bulk 

rheological properties of the liquid and the 

mechanical or chemical properties of the solid. For 

these different complex cases, the significant effects 

on the film thickness were observed experimentally 

and summarized the theoretical analysis from the 

literature. 

The propagation of hydrodynamic modes on the 

surface of agarose gels in the frequency range 101–

103Hz has been studied [16] using the electrically 

excited surface waves; and rheometry determined the 

bulk rheological behavior in the frequency 

range 10−2–102 Hz. Propagation of the two surface 

modes, the capillary and the elastic one, was 

observed at low frequencies, while the regular 

capillary behavior was detected above a well-defined 

crossover frequency. Both, theoretical analysis, as 

well as the measured bulk viscoelastic properties 

revealed an excellent agreement with the 

experimental data. 

From the recent study of the new soft-micro 

technologies, the hydrodynamic theory of surface 

waves propagating on viscoelastic bodies enforced 

this field of technology with the interesting 

predictions and the new available applications [17]. 

Presently many soft small objects, deformable meso- 

and micro-structures, and macroscopically 

viscoelastic bodies fabricated from colloids and 

polymers are produced. Therefore, the new soft 

products fabricated by functional dynamics based on 

the mechanical interplay of the viscoelastic material 

with the medium through their interfaces. In this 

review, the author recapitulated the field from its 

birth and theoretical foundation in the latest 1980s up 

today, through its flourishing in the 90s from the 

prediction of extraordinary Rayleigh modes in 

coexistence with ordinary capillary waves on the 

surface of viscoelastic fluids, a fact first confirmed in 

experiments with soft gels [16]. With this 

observational discovery at sight, it was not only 

settled the theory previously formulated, but mainly 

opened a new field of applications with soft materials 

where the mechanical interplay between surface and 

bulk motions matters.  

Also, the new unpublished results from surface 

wave experiments performed with soft colloids were 

reported in this contribution, where the analytic 

methods of wave surfing synthesized together with 

the concept of coexisting capillary-shear modes were 

claimed as an integrated tool to insightfully scrutinize 

the bulk rheology of soft solids and viscoelastic 

fluids.  
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Considerable work has been done on coating 

films, summarized in the review articles [18-20]. 

Work on coating flows includes [12, 21]. They found 

that the final film thickness depends on the 

physicochemical properties of the liquid and the 

withdrawal rate. Pre-metered coating processes 

attempt to overcome the limitations of free coating. 

Within certain operating limits, the size of the final 

film thickness becomes an independent parameter 

[22-26]. Other experiments on coating flows are 

available [14, 27, 28]. Based on those studies much 

is known about the final film thickness and 

the interfacial profile over a wide range of capillary 

number.  

The main interest of work [2] was dip coating at 

high Reynolds number. Although some investigators 

analyzed coating flows at high capillary and 

Reynolds number by approximate methods, e.g. [29, 

30], no systematic experimental studies have been 

performed in the past under those conditions. By the 

high Reynolds number, the flow in the film and in the 

coating applicator becomes important. Schweizer 

[31] has experimentally determined the two-

dimensional flow field for a slide-coating device at a 

maximum capillary number of 0.25. No detailed 

study of the flow field in dip coating is available. 

While numerous authors have studied falling thin 

films, studies by [30] show that rising films are 

uniquely different. 

The submersible coating is to immerse the 

substrate in a reservoir containing a film forming 

fluid, and then withdraw from the bath to produce a 

film. The purpose of [32, 33] was a development of a 

mathematical model for the hydrodynamic process of 

immersion, given that the film-forming fluid behaves 

as a generalized Newtonian fluid. An analytical and 

simple mathematical model that binds the main 

parameters of a liquid with the use of the generalized 

Herschel-Bulkley model was proposed. This model 

was obtained based on strict balance of mass and 

momentum applied to the homogeneous on-

evaporative system, where the main forces are 

viscous and gravitational. The parameters that can be 

evaluated are the velocity profile, flow rate, local 

thickness, and average thickness of the coating film. 

Finally, sufficient conditions for the model were 

obtained. Experimental testing and sensitivity 

analysis have been presented in the supplementary 

article as part 2. 

 

 

 

 

3 Statement of Problem by Nonlinear 

Wave Flow on Withdrawn Surfaces 
 

 

3.1 Description of Physical Situation 
It is well known that the thin liquid sheet on the 

withdrawn surface decreases to the constant 

thickness h0 determined by the surface moisten 

quality, its moving velocity u0 and physical properties 

of fluid: viscosity μ, density ρ, surface tension ϭ, etc. 

[34].But earlier investigations did not take into 

account that the film flow effected by gravitational 

forces are marked by nonlinearity and has many 

different regimes including solitary waves [35-39] 

that strongly influences on the surface covering 

properties and their quality. The coordinate system 

x,y shown in Fig. 1 is used. 

 

Fig. 1. Model of fluid adhering to a moving 

withdrawn surface 

 

We consider the problem accounting influence of 

the nonlinearity phenomena. It is supposed that the 

fluid is Newtonian, and the process is isothermal. 

Gravitational force acts against the surface moving 

direction x. It could be also organized using the 

electromagnetic systems for the process control if the 

fluid is electroconductive [37-39], e.g. by application 

of the crossed E, H fields.  

Despite the above-mentioned works, investigation 

of the film flow is still interesting being unknown in 

many aspects because an interplay of the different 

forces creates a lot of combinations of the diverse 

regimes. For example, in a considered in this paper 

flow there are two specific peculiarities: the flow is 

going against the surface moving direction (vortex 

flow) and the static meniscus determines the flow 

beginning part, except the fact that by different 
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Reynolds numbers the situation is changing 

dramatically. 

 

 

3.2 Mathematical Model of the Problem 
The substitutive equation array describing the 

process was derived, assuming that fluid flow is two-

dimensional and considering the film flow in a 

boundary layer approach. The system of the 

boundary layer equations with the corresponding 

boundary conditions is  

  

u v

x y

 
 

 
,  0

p

y





,                                        (1) 

2 2

2 2

1u u u p u u
u v g

t x y x x y




     
      

     

 
 
 

, (2) 

            0y  ,    u = u0,         v=0;                         (3) 

( , )y x t ,  
u v

y x

 
 

 
,  v u

t x
 

  
 
 

,     (4) 

        

2

1 2 2
2

v
p p

y x


 
 

  
 

 ,                        (5) 

where ,u v  are components of the fluid velocity in 

coordinate system x,y; p is the total hydrodynamic 

pressure, g- gravitational acceleration, ( , )y x t - 

the free surface equation for the film flow, p1- inside 

pressure value on the free surface, p2- outside 

pressure value on the free surface, t- time, /   .  

Thus, from (1) follows p=p(x,t) – inside pressure 

of the film flow, p2=const – outside pressure of the 

film flow (atmospheric). 

 

 

4 Derivation of Integral Correlations 

and Differential Equations  
 

 

4.1 Integral Correlations for Film Flow 
The differential equation array (1), (2) with the 

boundary conditions (3) - (5) was integrated across 

the boundary layer using the Leibniz's rule for 

differentiation under the integral sign 

0 0

u
udy dy u

x x x

 



  
 

  
  . 

For the first equation (1), with account of (3) and 

the last boundary condition (4) we get 

0, 0,
q q

u u
t x x x t x

 

        
      

     
 

where q is determined as 

0

q udy



  . Indexes ζ and 0 

indicate here that correspondent values are taken by 

y=ζ and y=0.  

Then integrating the equation (2), with account of 

the boundary conditions (3) - (5) results in  

 2 2

0

q
u u dy u vu g

t t x x



  

 


   
     

   
 

0

1u p
u

y x t x x





 
  



    
  

    

   
  

  
, 

 vu u u
t x

 

  
 

 

 
 
 

,    

2 2

2 2
2 2a a

uv
p p p

y x x x

 
   

  
   

   
  , 

where pa is the atmospheric pressure. We used the 

correlations: 

    2
1

2

uv uvu v u
v u

y y y y x

   
   

    
,   

0

v
u

x x t x





    

   

   
    

   
,   

u v

y x


 
 

 

 
 
 

,       

2

2
,

u v u v v

x y x x y y x

      
      

      

   
  
  

. 

 
0

/ 0v x    because 0v   on a surface of the 

plate. The above-considered yields the following 

equation array for the film flow: 

0
q

t x

 
 

 
,    

                

2

2
2a

u
p p

x x

 
 
 

 
 

 ,                (6) 

2

0

1
2

q p
u dy g u

t x x x t x





 
  



     
    
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 
 

 
 . 

Substituting the pressure into the last equation, we 

can get the following equation array of two 

equations: 

       0
q

t x

 
 

 
,    

q Q
g

t x


 
   

 
           (7) 

2 3

2 3
2 2

u
u

x x x t x





   
  


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 
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   
        

.             
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The function 
2

0

Q u dy



   is introduced (kinetic energy). 

4.2 General Case of the Uneven Surface of the 

Withdrawn Plate 

Instead of the boundary condition (3) the more 

general condition may be considered for the uneven 

plate: 

        y x ,  u=u0,  v=0;                                              (8) 

here  y x  is equation of the surface of the 

withdrawn plate (e.g. wavy).  

Then similar to the above: 

u u
udy dy u u dy

x x x x x

  

 

  

     
  
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     

0u u
x x



  
 

 
, 

0,
q

u u u
t x x x x

  

       
    
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 

   

   
   

  
 

   
1 p

g
x
   




   


. 

In this general case of uneven surface of the plate, 

the equation array (7) with the boundary conditions 

(8) is transformed as follows 

          0 0
q

u
t x x

   
  

  
,                             (9)

 
2 3

2

0 2 3
2

uq Q
u

t x x x x

  
  



   
     

    

 
  
 

 

  2g u
x t x



 
  

  
  

  

 
 

 
.             

Here q and Q are determined as 

q udy





  , 
2

Q u dy





  . 

4.3 Unique Peculiarities of the Derived 

Equation Array 
First, as shown above, the similar nonlinear terms in 

the differential equations obtained after integration 

across the film layer have mutually reduced. Thus, 

only the second equations contain the nonlinear terms 

in their right hands in the equation arrays (7) and (9). 

The other unique feature has concern to the first 

equations of the system, (7) and (9), which are 

presented in the following form: 

0
q

t x

 
 

 
,   

 0
0

q u

t x

  
 

 
,                                    

where from follows 

                  
 /1 1q f x t     ,                 (10)

   0 1/1q u F x t      ,                               

so that the hyperbolic-type equations of the mass 

conservation in a film flow have general solution f 

and F – any arbitrary functions of the argument 

1x t    , which means that a speed of the waves 

in both cases is the same and is equal 1.  

In the solutions (10), the 1 is introduced as a unity 

of velocity (e.g. 1 m/s) to correlate the dimensional 

values. In a dimensionless form, of course, it is not 

needed. Thus,  q f   ,  0q u F     ,  

x t   .                                    

 

 

5 Dimensionless Equation Arrays for 

film flow on a surface of the plate 
 

 

5.1 The Equation Array for Film Flow with 

Approximate Flow Profile 
The first simple equation (7) shows that with 

decrease of the flow rate at the current point of x the 

film thickness has tendency to grow, and inversely 

with increase of the flow rate – like in the Bernoulli 

equation: with increase of the width of a flow (tube) 

the velocity is going down.  

Here the speed of a plate is constant, therefore 

with increase of thickness of a film the flow rate may 

decrease only due to changes in velocity profile. The 

second equation, except the functions q and ζ 

contains the values: velocity of a film flow at the free 

surface u , its second derivative by x and to the left 

– integral from square of u.  
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With account of the above mentioned, for further 

analysis of the wave processes in a film flow, we need 

to approximate the film flow profile with a 

polynomial function: u=u0[1+(a2+a3y)y2]. We 

obtained this profile using the boundary condition (3) 

and condition y=0, / 0u y    as a requirement of 

the smooth velocity profile since some finite layer of 

a liquid is kept on a surface of the plate, so that close 

to a plate in some sublayer velocity is nearly constant.  

Due to action of gravity against direction of the 

plate’s movement, there is vortex flow in a film. 

Liquid on a plate is going up, while the free surface 

is prone to an action of gravity down, up to the point, 

where gravity becomes small comparing to adhesive, 

capillary and viscous forces. Thus, profile of the film 

flow velocity becomes nearly uniform by its thin 

cross section.  

We have done approximation up to a third order 

by y because it looks reasonable due to vortex flow 

and change of sign in a layer of a film. For this 

reason, the parabolic profile seems to be too rough.  

The peculiarities of the above equations (6), (7) is 

that that we do not know the initial conditions, neither 

boundary at the pool, we only can request stationary 

parameters far away from the surface of pool: 

 x=∞,  ζ=h0,  u=u0,  q=q0=u0h0.                    (11) 

As the initial condition, we can state capillary 

meniscus on the plate at the initial moment of time. 

Equations (6) or (7) with boundary conditions (11) 

can be used for analysis of the nonlinear film flow 

that determine the quality of a fluid adhering to the 

withdrawn surface.  

Using the obtained film flow profile, we get the 

following equations: 

         0
q

t x

 
 

 
,                                     (12) 

2

0 2 31 ( )u a a
x t x

 
 

  
  

  

 
   

 
  

                  0 2 32 3( )u a a     ,              (13) 

2 3
2

0 2 32 3
2 ( )

q Q
u a a

t x x x

 
   



   
  

   

 
    

 
  

0 2 32 2 3( )u a a g     .       (14) 

The equation (13) was obtained from the first 

boundary condition (4). With the introduced 

polynomial profile, the equation array could be 

presented totally through the function ζ but we use it 

only for the functions 
2 2/u x   and u . After 

getting the solution, we can substitute into the 

approximations for calculation of the constants 

2 3,a a : 

2

0 2 31 ( )u u a a y y    , 

2

0 2 31 ( )u u a a      ,    

2

0 2 3( )
u

u a a
x x


 

 


 
   ,   

2 2
2

0 2 32 2
( )

u
u a a

x x


 

 


 
   , 

2 332
0

0

1
3 4

aa
udy u



    
 
 
 

 , 

2
2 2 2 3 43 2

0 2

0

2
1

3 2 5
(

a a
u dy u a



        

2
5 62 3 3

3 7
)

a a a
   . 

The boundary and initial conditions for the 

equations (12) - (14) are following: 

      x=0, 
00h  , 

00q q , 
00Q Q ;                   (15) 

x=∞,  *h  , 
*q q , 

*Q Q , 0
q Q

x x x

  
  

  
;       

  t=0,   0h x  ,   0q q x ,   0Q Q x ,      (16)  

where 
0( )x   is the well-known static meniscus 

equation, and the other parameters are stated 

according to this, and the speed of the plate 

withdrawn from a pool. The stars assign the 

stationary parameters far away from the pool. 

The equation array (12) - (14) is transformed to 

the following dimensionless form: 

                  0
q

t x

 
 

 
,                              (17) 

2

2 31 ( )a a
x t x

 
 

  
  

  

 
   

 
  

            2 32 3( )a a     ,                           (18) 

2
2

2 32

2

Re
( )

q Q
a a

t x x


 

  
  

  
    

    
3

2 33 2

1 2
2 3

Re
( )a a

We x Fr

 
  





   .  (19)       
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Here Re and We are the Reynolds and Weber 

numbers, Re=u0l0/, 2

00 0 /We h u  , 
0 0/Fr u gl

- the Froude number, We=Ca Re. The scale values for 

non-dimensional equations (17) - (19) are the 

following: ζ , x- l0, u- u0, t- l0/u0. We introduce h00 as 

characteristic thickness of the film at the beginning 

of the withdrawn process; l0 is the characteristic 

distance by plate where the film flow is established.  

 

 

5.2 Dimensionless Equation Array for Film 

Flow with Approximate Flow Profile 
Analysis of the linear equation (17) of the mass 

conservation shows that η= x t  is the complex 

variable, so that any function f(η) satisfies this 

equation. Obviously, η= x t  is equation of the 

simple wave moving with constant speed 1 (the same 

as a plate is moving).  

Thus, from (17) - (19) yields 

          q f x t f     ,                     (20) 

22

2 3 2 3

2

2 3 2 3

2 3 2 3
0

( ) ( )

a a a ad d

d a a d a a

  

     
  

  
 

  
, (21)                                     

3 2

2 33 2

4
3

Re
( )

dQ d d
a a

d We d d

   


  
    

        
2 32

2
2 3

Re
( )

d
a a

d Fr

 
 


   .           (22) 

 

 

5.3 Solution of Dimensionless Equation Array 
The solution procedure is a follows. First the non-

linear second-order equation (21) is solved, then a 

solution obtained is substituted into the equation (22), 

/dQ d  is computed through the velocity profile and 

then the equation obtained is used for calculation of 

the constants 2a , 3a . It is interesting that a parabolic 

profile ( 3a =0) yields from (21) 

        

22

2

2 2
0

d d

d d

 

   
  

 
 
 

,                     (23) 

so that function     does not depend on the flow 

velocity profile, which influence is revealed only in 

the equation (22), where from the profile is 

determined. 

Film flow to a moving withdrawn surface is not 

as simple as considered in [34] because the 

nonlinearity of the process may be strong; therefore, 

it cannot be neglected. The mathematical simulation 

of the process of fluid adhering to a moving 

withdrawn surface in linear approach is rough 

enough that explains poor correspondence between 

the linear theory results and the experimental data. 

This process also can be controlled by 

electromagnetic fields [37-39] in case of 

electroconductive fluid. 

 

 

6 Conclusion 
We have identical profiles (20) for the functions of 

the film flow surface and the film flow rate. The 

nonlinear second-order equation (21) was solved for 

a range of available values of the constants. Then 

from (22), after substitution of the solution obtained, 

the constants of the polynomial approximation of the 

profile, which satisfy the (22) can be computed. The 

(21) shows that parabolic film flow profile leads to a 

universal solution, which does not depend on the film 

flow profile. But the constants of integration and 

constant a2 in a film flow profile can be computed 

afterwards from the equation (22). Further analysis of 

the equations derived for a smooth withdrawn plate, 

as well as the equations (9) for a wavy plate, and their 

solution is a subject for further research. As shown 

above and is known from the cited literature, there 

are many very different regimes and the solutions 

might differ correspondingly. 
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