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Abstract: - Flow of a fluid with pressure-dependent viscosity through a composite of two porous layers is 
considered in this work in an attempt to validate velocity and shear stress continuity conditions at the interface, 
and are popular in the study of flow over porous layers and through composite layers when viscosity of the fluid 
is constant. For the current problem, conditions at the interface between the porous layers reflect continuity 
assumptions of velocity and shear stress, with additional continuity assumptions on pressure and viscosity. 
Viscosity is assumed to vary continuously and exponentially across the layers as a function of pressure. Analytical 
solutions are obtained to illustrate the effects of flow and media parameters (Darcy numbers, layer thicknesses, 
angle of inclination, and viscosity adjustment parameter) on the dynamic behaviour of pressure-dependent 
viscosity fluids in porous structures. All computations, simulations and graphs in this work have been carried out 
and obtained using Maple 2020 software package. 
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1 Introduction 
In this work, we initiate the study of flow of fluids 
with pressure-dependent viscosities through 
composite porous layers. Flow of fluids with constant 
viscosities through layered porous media have been 
extensively studied (cf. [1, 2, 3] and the references 
therein). Flow of fluids with pressure-dependent 
viscosities through free-space has also received 
considerable attention in the literature, (cf. [4, 5, 6, 7, 
8] and the references therein). However, only 
recently models of flow of fluids with pressure-
dependent viscosities through porous media have 
been derived [9, 10, 11, 12]. 
     Fluid viscosity variations include changes in 
viscosity due to temperature, pressure and shear-
thinning. Many fluids, such as paint and polymers 
exhibit behaviours in which a fluid becomes either 
thicker, or thinner when sheared, [13, 14, 15, 16, 17]. 
Nakshatrala & Rajagopal [17]  provided an account of 
these variations. Studies of fluid viscosity variations 

and viscosity dependence on pressure can be traced to 
back to the nineteenth century and the work of various 
authors, including Stokes [18], Barus [19, 20]. More 
recently, experimental studies confirm dependence of 
viscosity on pressure, [7, 8, 21]. 
     Barus [19, 20] suggested two relationships for 
dependence of viscosity on pressure, an exponential 
and a linear relationship. The Barus relationships 
received considerable analysis in the literatrs, (cf. [22] 
and the references therein). A model describing the 
dependence of viscosity on pressure, temperature 
and density has been reported in Szeri [5]. Other 
models of dependence have been discussed in the 
literature, [23, 24]. 
     Interest in fluids with pressure-dependent 
viscosities in porous media stems from their 
industrial applications in the oil industry (enhanced 
oil recovery and geological carbon sequestration), 
food and polymer processing, in the pharmaceutical 
industry, in thin film lubrication and in filtration 
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problems [6, 15, 17, 22, 25, 26]. Fusi et.al. [25] 
provided elegant modelling of three important 
filtration problems involving pressure-dependent 
viscosity fluids in porous media, and Housiadas et.al. 
[26] initiated studies of compressible fluids with 
pressure-dependent viscosity, in their development of 
new analytic solutions of weakly compressible 
Newtonian Poiseuille flows. These and many other 
applications initiated the recent interest in the 
modelling and simulation of flow through porous 
media with a focus on fluids with variable or 
stratified viscosities, and fluids with pressure-
dependent viscosities, [12, 11, 12, 17].   
     Models describing the flow of fluids with pressure-
dependent viscosity through porous media have been 
derived, discussed or otherwise analyzed by various 
authors, including Srinivasan and Rajagopal [10], 
Nakshatrala and Rajagopal [17], Kannan and 
Rajagopal [13], Abu Zaytoon et.al. [11], Alharbi, 
et.al. [12], Of interest to the current work is the 
Brinkman-type model, [10, 13, 17], in which the flow 
through a rigid porous structure is described by the 
following equations of continuity and momentum, 
respectively, written here for steady flow: 
 
∇ ⋅ 𝑢⃗ = 0           (1) 
 
𝜌𝑢⃗ ∙ ∇𝑢⃗ = −∇𝑝 + ∇ ∙ 𝑇⃗ − 𝜆(𝑝)𝑢⃗ +  𝜌𝐺     (2a) 
 
𝑇⃗ = −𝑝𝐼 + 2𝜇(𝑝)𝐴                                    (2b) 
 
is the Cauchy stress tensor in which  
 
𝐴 =

1

2
(∇𝑢⃗ + (∇𝑢⃗ )𝑇                                     (2c) 

 
where u  is the velocity vector field, p  is the 
pressure,   is the fluid density, 𝜌𝐺 =

(𝜌𝐺1, 𝜌𝐺2, 𝜌𝐺3) is the body force, 𝜇 = 𝜇(𝑝) is the 
variable viscosity, and 𝜆(𝑝) is a drag function that 
has been given various forms as discussed by Kannan 
and Rajagopal [13], and include exponential and 
polynomial forms in terms of pressure. Governing 
equations for flow in the channel are the equation of 
continuity and the Navier-Stokes equations with 
pressure-dependent viscosity. These equations are 
similar in form to equations (1) and (2) with 𝜆(𝑝) =
0 in (2a). 
     When the drag function is expressed as the ratio 
between viscosity of the fluid and permeability of the 
porous medium, namely, 𝜆(𝑝) = 𝜇/𝑘, equation (2) 
reduces to a model derived using intrinsic volume 
averaging, [11, 12]. This form of drag function 
facilitates studies of flow through constant and 

variable permeability porous media [27, 28]. We 
implement this form in the current study where we 
consider the parallel flow of a fluid with pressure-
dependent viscosity through two porous layers 
inclined to the horizontal at an angle.  
     The flow domain of a porous channel inclined to 
the horizontal has been a model configuration for 
many problems, including thin film lubrication and 
wave, [29], and, we believe, it facilitates the 
introduction of a continuous pressure function on 
which viscosity depends. Conditions at the interface 
between the porous layer that emphasize continuity 
of pressure, viscosity, shear stress and velocity.  
 
 
2 Problem Formulation 
The steady flow of an incompressible fluid with 
pressure-dependent viscosity through a porous 
medium is governed by continuity and momentum 
equations (1) and (2), above, in which we take 
𝜆(𝑝) = 𝜇/𝑘. 
     Now, consider the flow through the configuration 
shown in Fig.1, where a fluid flows through two 
composite porous layers each with different 
permeability. We set layer 1 to 0 ≤ 𝑦 ≤ ℎ1 and layer 
2 to ℎ1 ≤ 𝑦 ≤ ℎ. Layers 1 and 2 are assumed to be 
parallel and meet at a sharp interface 𝑦 = ℎ1 with 
angle of inclination ϑ. The layers are bounded by 
solid, impermeable walls at 𝑦 = 0 and 𝑦 = ℎ.  

 

Fig. 1. Representative sketch 

     For the unidirectional flow at hand, the flow is in 
the x-direction, taken along the inclined wall, with 
𝑢⃗ = (𝑢, 0). Continuity equation (1) implies that 𝑢𝑥 =
0  𝑜𝑟  𝑢 = 𝑢(𝑦). Equation (2) reduces to −𝑝𝑦 +
𝜌𝐺2 = 0, where 𝜌𝐺2 is the body force component in 
the y-direction, namely, −𝜌𝑔𝑐𝑜𝑠𝜗. Flow in the x-
direction is under the effect of body force (gravity) 
whose component in the x-direction is 𝜌𝑔𝑠𝑖𝑛𝜗. 
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Pressure gradient in the x-direction is zero, 𝑝𝑥 = 0, 
which emphasizes that 𝑝 = 𝑝(𝑦). 
     We now define the following dimensionless 
quantities and Darcy numbers with respect to total 
thickness of the flow domain and with respect to a 
characteristic velocity, 𝑈: 

𝑦∗ =
𝑦

ℎ
;   𝑢𝑖

∗ =
𝑢𝑖

𝑈
 𝜀 =

ℎ1

ℎ
;   𝐷𝑎𝑖 =

𝑘𝑖

ℎ2
  𝑓𝑜𝑟 𝑖 = 1,2;           

                                                     (3) 

     Dropping the asterisk (*), the governing equations 
for the ith layer, where 𝑖 = 1,2 refer to the lower and 
upper layer, respectively, take the following forms: 

𝜇𝑖
𝑑2𝑢𝑖

𝑑𝑦2
+
𝑑𝜇𝑖

𝑑𝑦

𝑑𝑢𝑖

𝑑𝑦
+
𝜌𝑔ℎ2𝑠𝑖𝑛𝜗

𝑈
−

𝜇𝑖

𝐷𝑎𝑖
𝑢𝑖 = 0           (4) 

𝑑𝑝𝑖

𝑑𝑦
= −𝜌𝑔ℎ𝑐𝑜𝑠𝜗               (5) 

     At the solid boundaries, 𝑦 =  0 and 𝑦 = 1, the 
velocity vanishes. We also assume that the value of 
pressure at y=1 is given as 𝑝0. Boundary conditions 
are thus as follows: 

𝑢1(0) = 0             (6) 

𝑢2(1) =0             (7) 

𝑝2(1) = 𝑝0              (8) 

𝑢1(𝜀) = 𝑢2(𝜀)                         (9) 

𝜇1
𝑑𝑢1

𝑑𝑦
(𝜀) = 𝜇2

𝑑𝑢2

𝑑𝑦
(𝜀)                        (10) 

𝜇1(𝜀) = 𝜇2(𝜀)                        (11) 

𝑝1(𝜀) = 𝑝2(𝜀)                        (12) 

In order to find the pressure distribution, we integrate 
equation (5) and use conditions (8) and (12) to obtain  

𝑝1(𝑦) = 𝑝0 + (1 − 𝑦)𝜌𝑔ℎ𝑐𝑜𝑠𝜗; 
0 ≤ 𝑦 ≤ 𝜀                                                        (13) 
𝑝2(𝑦) = 𝑝0 + (1 − 𝑦)𝜌𝑔ℎ𝑐𝑜𝑠𝜗; 
𝜀 ≤ 𝑦 ≤ 1                                                        (14) 

     At the interface between the two layers, the 
pressure is given by 

𝑝1(𝜀) = 𝑝2(𝜀) = 𝑝0 + (1 − 𝜀)𝜌𝑔ℎ𝑐𝑜𝑠𝜗        (15) 

     In order to solve (16), we first need to specify 
viscosities 𝜇𝑖 as functions of pressure distributions 
(13) and (14). In this work we assume that viscosities 
vary exponentially according to Barus’ relationship 
of the form:  

𝜇𝑖(𝑝𝑖) = 𝐴𝑒
𝛼𝑝𝑖              (16) 

where A  and   are positive constants, referred to as 
viscosity control parameters. Their role is to keep 
values of viscosities within realistic limits. We note 
that 𝜇1(𝑝1) and 𝜇2(𝑝2) are equal at the interface, 𝑦 =
𝜀, hence condition (11) is satisfied. Equations (4) thus 
take the following form: 

𝑑2𝑢𝑖

𝑑𝑦̅2
− 𝛽

𝑑𝑢𝑖

𝑑𝑦̅
−

𝑢𝑖

𝐷𝑎𝑖
= −𝛾𝑒𝛽𝑦̅                          (17) 

where 

𝛽 = 𝛼𝜌𝑔ℎ𝑐𝑜𝑠𝜗                (18) 

𝛾 =
𝜌𝑔ℎ2𝑠𝑖𝑛𝜗

𝑈𝐴
 𝑒−𝛽−𝛼𝑝0                          (19) 

 
3 Problem Solution 

3.1. Velocity Profiles 

General solutions to equations (17) are given by: 

𝑢1 = 𝑐1𝑒
𝑚1𝑦 + 𝑐2𝑒

𝑚2𝑦 + 𝛾𝐷𝑎1 𝑒
𝛽𝑦;                                                                         

0 < 𝑦 ≤ 𝜀                                                     (20) 

𝑢2 = 𝑑1𝑒
𝑟1𝑦 + 𝑑2𝑒

𝑟2𝑦 + 𝛾𝐷𝑎2 𝑒
𝛽𝑦;                                                                   

𝜀 ≤ 𝑦 < 1                                                     (21) 

where 𝑐1 , 𝑐2, 𝑑1 and 𝑑2 are arbitrary constants and 

 

𝑚1 =
𝛽+√𝛽2+

4

𝐷𝑎1

2
 ,   𝑚2 =

𝛽−√𝛽2+
4

𝐷𝑎1

2
 ,    𝑟1 =

𝛽+√𝛽2+
4

𝐷𝑎2

2
 ,   𝑟2 =

𝛽−√𝛽2+
4

𝐷𝑎2

2
           (22) 

  

Velocity at the interface is given by either (20) or 
(21), evaluated at 𝑦 = 𝜀, namely 
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𝑢1(𝜀) = 𝑐1𝑒
𝑚1𝜀 + 𝑐2𝑒

𝑚2𝜀 + 𝛾𝐷𝑎1 𝑒
𝛽𝜀        (23) 

𝑢2(𝜀) = 𝑑1𝑒
𝑟1𝜀 + 𝑑2𝑒

𝑟2𝜀 + 𝛾𝐷𝑎2 𝑒
𝛽𝜀 .       (24) 

Now, to find the values of arbitrary constants 
𝑐1, 𝑐2, 𝑑1 and 𝑑2 appearing in (20) and (21), we apply 
equation (6), (7), (9) and (10) to obtain the following 
system of linear equations: 

𝑐1 + 𝑐2 + 𝛾𝐷𝑎1 = 0                      (25) 

𝑑1𝑒
𝑟1 + 𝑑2𝑒

𝑟2 + 𝛾𝐷𝑎2 𝑒
𝛽 = 0                   (26) 

𝑐1𝑒
𝑚1𝜀 + 𝑐2𝑒

𝑚2𝜀 = 𝑑1𝑒
𝑟1𝜀 + 𝑑2𝑒

𝑟2𝜀 +

𝛾 𝑒𝛽𝜀(𝐷𝑎2 −𝐷𝑎1)                                (27) 

𝑐1𝑚1𝑒
𝑚1𝜀 + 𝑐2𝑚2𝑒

𝑚2𝜀 = 𝑑1𝑟1𝑒
𝑟1𝜀 + 𝑑2𝑟2𝑒

𝑟2𝜀 +

𝛾𝛽 𝑒𝛽𝜀(𝐷𝑎2 −𝐷𝑎1)                                   (28) 

Equations (25)-(28) are written in the matrix form 
𝐴𝑋 = 𝐵⃗ , which can be solved numerically using 
Maple, where  

𝐴 = (

1 1 0 0
0 0 𝑒𝑟1 𝑒𝑟2

𝑒𝑚1𝜀 𝑒𝑚2𝜀 −𝑒𝑟1𝜀 −𝑒𝑟2𝜀

𝑚1𝑒
𝑚1𝜀 𝑚2𝑒

𝑚2𝜀 −𝑟1𝑒
𝑟1𝜀 −𝑟2𝑒

𝑟2𝜀

) ,   

 𝑋 = (

𝑐1
𝑐2
𝑑1
𝑑2

) , 𝐵⃗ =

(

 
 

−𝛾𝐷𝑎1
−𝛾𝐷𝑎2 𝑒

𝛽

𝛾 𝑒𝛽𝜀(𝐷𝑎1 −𝐷𝑎2) 

𝛾𝛽 𝑒𝛽𝜀(𝐷𝑎1 −𝐷𝑎2) )

 
 

 

                                                                      (29)  

3.2. Vorticity and Shear Stress 

Vorticities, 𝜔1 in the lower layer and 𝜔2 in the upper 
layer, take the following forms with the help of (20) 
and (21), respectively:  

𝜔1 = −
𝑑𝑢1

𝑑𝑦
= −[𝑐1𝑚1𝑒

𝑚1𝑦 + 𝑐2𝑚2𝑒
𝑚2𝑦 +

𝛾𝛽𝐷𝑎𝑖  𝑒
𝛽𝑦]                                          (30) 

𝜔2 = −
𝑑𝑢2

𝑑𝑦
= −[𝑑1𝑟1𝑒

𝑟1𝑦 + 𝑑2𝑟2𝑒
𝑟2𝑦 +

𝛾𝛽𝐷𝑎2 𝑒
𝛽𝑦]                                       (31) 

with values at the interface given by 

𝜔1(𝜀) = −[𝑐1𝑚1𝑒
𝑚1𝜀 + 𝑐2𝑚2𝑒

𝑚2𝜀 + 𝛾𝛽𝐷𝑎1 𝑒
𝛽𝜀]    

                                                (32) 

𝜔2(𝜀) = −[𝑑1𝑟1𝑒
𝑟1𝜀 + 𝑑2𝑟2𝑒

𝑟2𝜀 + 𝛾𝛽𝐷𝑎2 𝑒
𝛽𝜀]. 

                                                (33) 

     We note that 𝜔1(𝜀) =  𝜔2(𝜀) as a consequence of 
conditions (10) and (11). 
     The shear stresses, 𝜏1 in the lower layer 𝜏2 in the 
upper layer, are written as follows with the help of 
(20) and (21), respectively: 

𝜏1 = 𝜇1
𝑑𝑢1

𝑑𝑦
= 𝜇1[𝑐1𝑚1𝑒

𝑚1𝑦 + 𝑐2𝑚2𝑒
𝑚2𝑦 +

𝛾𝛽𝐷𝑎1 𝑒
𝛽𝑦]                                                   (34) 

𝜏2 = 𝜇2
𝑑𝑢2

𝑑𝑢
= 𝜇2[𝑑1𝑟1𝑒

𝑟1𝑦 + 𝑑2𝑟2𝑒
𝑟2𝑦 +

𝛾𝛽𝐷𝑎2 𝑒
𝛽𝑦]                                  (35) 

The shear stress at the interface (𝑦 = 𝜀) is given by: 

𝜏1(𝜀) = 𝜇1(𝜀)[𝑐1𝑚1𝑒
𝑚1𝜀 + 𝑐2𝑚2𝑒

𝑚2𝜀 +

𝛾𝛽𝐷𝑎1 𝑒
𝛽𝜀]                                  (36) 

𝜏2(𝜀) = 𝜇2(𝜀)[𝑑1𝑟1𝑒
𝑟1𝜀 + 𝑑2𝑟2𝑒

𝑟2𝜀 + 𝛾𝛽𝐷𝑎2 𝑒
𝛽𝜀]   

                                             (37) 

We note that 𝜏1(𝜀) = 𝜏2(𝜀) due to (10). 

4. Results and Discussion 

Results have been obtained for the following ranges 
that are representative of the media and flow 
parameters: 
     Ranges of Darcy Numbers: 𝐷𝑎1 =
1, 0.1, 0.01, 0.001 and  0.00001, and 𝐷𝑎2 =
1 and 0.01. We point out that when 𝐷𝑎1 = 𝐷𝑎2 then 
the two layers behave like one layer. 
Range of inclination angle 𝜗:   30, 60, and 75 degrees. 
Range of 𝑝0:   2, 3, and 5. 
Range of 𝜀:   0.25, 0.5 and 0.75.  
Range of 𝛼:   0.01, 0.1 and 1.  

     We can take 𝜌𝑔 = 1 and ℎ = 1 as is Kannan and 
Rajagopal [13]. We also take A=U=1 as 
representative values. 

4.1. Velocity Profiles 

Velocities in the porous layers are given by equations 
(20) and (21), respectively. Effects of the various 
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flow and medium parameters on the velocity profiles 
are discussed in what follows. 

4.1.1. Effects of Darcy Numbers 

Fig. 2 illustrates the effects of Darcy numbers on the 
velocity profiles across the two layers, when they are 
of the same thickness. As is well known, velocity 
increases with increasing Darcy number. When 
𝐷𝑎1 = 𝐷𝑎2, permeabilities are the same and the two 
layers behave like a single layer. The velocity profile 
shown for the case of 𝐷𝑎1 = 𝐷𝑎2 = 0.1 is parabolic 
and symmetric about y=0.5. 
     In the lower layer, y < 0.5, Fig. 2 shows the 
increase in velocity with increasing 𝐷𝑎1. By keeping 
𝐷𝑎2 fixed at 0.1, Fig. 2 shows a greater influence on 
the upper layer by the lower layer with increasing 
𝐷𝑎1. This influence results in distorting the parabolic 
shape of the velocity profile in the upper layer.  

 

Fig. 2 Velocity across the two layers for various 
values of 𝐷𝑎1. 

𝜀 = 0.5, 𝛼 = 1, 𝑈𝐴 = 1, 𝑝0 = 2, 𝜗 = 30, 𝐷𝑎2 =
0.1. 

 

4.1.2. Effects of 𝜺 

The value of 𝜀 represents the fraction of the total 
thickness of the flow domain that the lower layer 
occupies. When 𝜀 = 0.5, both layers are of the same 
thickness.  

In Fig. 3, we illustrate the effects of 𝜀 when the 
lower layer has a higher Darcy number than the upper 
layer. This translates into the lower layer having a 
higher influence on the upper layer by virtue of the 
higher velocity associated with higher Da. With 
increasing 𝜀, velocity at the interface increases, as per 
equations (23) and (24). 

4.1.3. Effects of 𝒑𝟎 

Fig. 4 illustrates the effects of 𝑝0 on the velocity 
profile. It shows that with decreasing 𝑝0 velocity 
increases due to the decrease in viscosity that is 
associated with decreasing 𝑝0. Decreasing viscosity 
translates into a lesser resistance to the flow, hence a 
greater velocity. 

 

Fig. 3 Velocity across the two layers various values 
of 𝜀. 

𝛼 = 1 𝑝0 = 2, 𝐴𝑈 = 1, 𝜗 = 30, 𝐷𝑎2 = 0.01, and 
𝐷𝑎1 =  0.1. 

4.1.4. Effects of 𝝑 

Associated with increasing angle of inclination is 
a decrease in the pressure distribution, hence a 
decrease in viscosity, hence an increase in velocity. 
In addition, with increasing inclination angle there is 
a greater gravitational force driving the flow. The net 
effect across the configuration is a velocity increases 
with increasing angle of inclination, as shown in Fig. 

5.  
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4.1.5. Effects of 𝜶 

For a given pressure distribution, when 𝛼 increases 
then viscosity increases, which results in a decrease 
in velocity across the layers. This is illustrated in Fig. 
6 which shows the slowing down of the flow as 𝛼 
increases. 

 

Fig. 4 Velocity across the two layers for various 
values of 𝑝0. 

𝜀 = 0.5, 𝛼 = 1, 𝐴𝑈 = 1, 𝜗 = 30, 𝐷𝑎2 = 0.01, and 
𝐷𝑎1 =  0.1. 

 

Figure 5 Velocity across the two layers for various 
values of 𝜗. 

𝜀 = 0.5, 𝛼 = 1, 𝐴𝑈 = 1, 𝑝0 = 2, 𝐷𝑎2 = 0.01, and 
𝐷𝑎1 =  0.1. 

 

Fig. 6 Velocity across the two layers for various 
values of 𝛼. 

𝜀 = 0.5, 𝑝0 = 2, 𝐴𝑈 = 1, 𝜗 = 30, 𝐷𝑎2 = 0.01, and 
𝐷𝑎1 =  0.1. 

 

4.2. Velocity, Vorticity and Shear Stress at the 

Interface 

Velocity, vorticity and shear stress at the interface 
𝑦 = 𝜀 are tabulated, Tables 1 through 5, below for 
different parameters using expressions (23), (24), 
(32), (33), (36) and (37). 

Table 1 illustrates the effects of Darcy number on 
interfacial quantities and shows the expected increase 
of velocity at the interface with increasing 𝐷𝑎1 for a 
fixed value of 𝐷𝑎2. This behaviour is in agreement 
with the effects of Darcy number 𝐷𝑎1on the velocity 
profile, shown in Fig. 2. Vorticity decreases, 
numerically, with decreasing 𝐷𝑎1, and shear stress at 
the interface increases, numerically with decreasing 
𝐷𝑎1 This is also in line with the velocity profiles 
depicted in Fig. 2 if one considers the behaviour of 
slopes of the velocity curves at the interface 𝑦 = 𝜀. 
     Also in line with the velocity profile figures, Fig. 

2 to Fig. 6, are the effects of the parameters 𝜀, 𝛼, 𝜗 
and 𝑝0 on the velocity at the interface, illustrated in 
Tables 2 to 5 in which we document the values of 
vorticity and shear stress at the interface. We 
summarize their effects as follows. Increasing 𝛼 
results in a decrease in the interfacial velocity and a 
decrease in the vorticity, and a numerical increase in 
shear stress, as shown in Table 2. 
     Increasing 𝜀, results in an increase in the 
interfacial velocity, and a corresponding increase in 
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the vorticity, and a numerical decrease in the shear 
stress at the interface, as shown in Table 3. 

Increasing 𝑝0 results in a decrease in the interfacial 
velocity, and a decrease in the vorticity. The  shear 
stress at the interface remains unaffected by changes 
in 𝑝0, as shown in Table 4. 

Increasing the angle of inclination, 𝜗, results in an 
increase in the interfacial velocity, as per Fig. 5, and 
a corresponding increase in the vorticity, while the 
shear stress at the interface decreases with increasing 
inclination angle, as shown in Table 5. 

Table 1 Velocity at the interface for various 𝐷𝑎1. 𝜀 =
0.5,𝛼 = 1,𝑈𝐴 = 1, 𝑝0 = 2, 𝜗 = 30, 𝐷𝑎2 = 0.1 

𝐷𝑎1 

𝑢1(𝜀)= 𝑢2(𝜀) 𝜔1(𝜀)= 𝜔2(𝜀) 𝜏1(𝜀)= 𝜏2(𝜀) 

1 0.0034873 0.00976403 -0.08958714 

0.1 0.0026393 0.00401309 -0.03682098 

0.01 0.0009683 -0.0031813 0.0292059 

0.001 0.000283 -0.0056960 0.0522625 

0.0001 0.000086 -0.0064038 0.0587570 

Table 2 Velocity, Vorticity and Shear stress at the 
interface for different 𝛼. 𝑝0 = 2, 𝐴𝑈 = 1, 𝜗 = 30, 

𝐷𝑎2 = 0.01, and 𝐷𝑎1 =  0.1, 𝜀 = 0.5 

𝛼 
𝑢1(𝜀)= 𝑢2(𝜀) 𝜔1(𝜀)= 𝜔2(𝜀) 𝜏1(𝜀)= 𝜏2(𝜀) 

1 0.00096826 0.00476337 -0.05426985 

0.1 0.00892301 0.05001707 -0.06379441 

0.01 0.01113969 0.06319418 -0.06475056 

 

 

Table 3 Velocity, Vorticity and Shear stress at the 
interface for different 𝜀. 

𝛼 = 1 𝑝0 = 2, 𝐴𝑈 = 1, 𝜗 = 30, 𝐷𝑎2 = 0.01, and 
𝐷𝑎1 =  0.1. 

𝜀 
𝑢1(𝜀)= 𝑢2(𝜀) 𝜔1(𝜀)= 𝜔2(𝜀) 𝜏1(𝜀)= 𝜏2(𝜀) 

0.25 0.00052199 0.00131358 -0.01858354 

0.5 0.00096826 0.00476337 -0.05426985 

0.75 0.00132741 0.00812923 -0.07458747 

 

  
Table 4 Velocity, Vorticity and Shear stress at the 

interface for different 𝑝0. 
𝜀 = 0.5, 𝛼 = 1, 𝐴𝑈 = 1, 𝜗 = 30, 𝐷𝑎2 = 0.01, and 

𝐷𝑎1 =  0.1. 
𝑝0 

𝑢1(𝜀)= 𝑢2(𝜀) 𝜔1(𝜀)= 𝜔2(𝜀) 𝜏1(𝜀)= 𝜏2(𝜀) 

2 0.00096826 0.00476337 -0.05426985 

3 0.00035620 0.00175235 -0.05426985 

5 0.00004821 0.00023715 -0.05426985 

Table 5 Velocity, Vorticity and Shear stress at the 
interface for different 𝜗. 𝜀 = 0.5, 𝛼 = 1, 𝐴𝑈 = 1, 

𝑝0 = 2, 𝐷𝑎2 = 0.01, and 𝐷𝑎1 =  0.1. 

𝜗 
𝑢1(𝜀)= 𝑢2(𝜀) 𝜔1(𝜀)= 𝜔2(𝜀) 𝜏1(𝜀)= 𝜏2(𝜀) 

30 0.00096826 0.00476337 -0.05426985 

60 0.00204452 0.01072180 -0.10172564 

75 0.00259720 0.01416932 -0.11916257 

 

5 Conclusion 

In this work, we modelled, and provided a solution 
to, parallel flow of a fluid with pressure-dependent 
viscosity through a composite of two inclined porous 
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layers. It was assumed that permeabilities are 
constant and the flow in each layer is governed by 
Brinkman’s equation for flow of fluids with variable 
viscosity. The layers were saturated by the same 
fluid. Pressure variations through the flow domain 
were described by a continuous linear function. 
Viscosity was then expressed as a continuous, 
exponential function of pressure. These choices of 
viscosity and pressure distributions helped maintain 
the continuity conditions at the interface between 
layers. Model equations were solved subject to 
continuity of velocity, pressure, viscosity and shear 
stress at the interface, and the no-slip condition on 
solid boundaries. Results obtained support the 
following conclusions: 

1) Parameters that influence the flow are the 
angle of inclination, 𝜗, pressure condition 𝑝0 
at the upper channel wall, thickness 𝜀  of the 
lower porous layer, viscosity adjustment 
parameter, 𝛼, and the Darcy number of each 
layer. 

2) For a given pressure distribution, viscosity 
distribution is the most sensitive parameter 
as it controls the behaviour and values of 
viscosity. High and low values of 𝛼 could 
result in unrealistic viscosity values. 

3) Effects of the parameters on velocity at the 
interface are as follows: 

i) Increasing 𝜗, all other parameters fixed, increases 
the velocity and vorticity, but decreases shear stress 
at the interface. 
ii) Increasing 𝑝0 results in a decrease in the interfacial 
velocity, and a decrease in the vorticity. The  shear 
stress at the interface remains unaffected by changes 
in 𝑝0. 
iii) Increasing 𝜀, results in an increase in the 
interfacial velocity, and a corresponding increase in 
the vorticity, and a numerical decrease in the shear 
stress at the interface. 
iv) Increasing 𝛼 results in a decrease in the interfacial 
velocity and a decrease in the vorticity, and a 
numerical increase in shear stress. 
v) Velocity at the interface increases with increasing 
𝐷𝑎1 for a fixed value of 𝐷𝑎2. Vorticity decreases, 
numerically, with decreasing 𝐷𝑎1, and shear stress at 
the interface increases, numerically with decreasing 
𝐷𝑎1. 
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