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1  Introduction 
In the study of two-dimensional, viscous fluid flow, it 
is customary to solve the governing Navier-Stokes 
equations in the following vorticity-streamfunction 
form, [1]: 
 
𝜓𝑥𝑥 + 𝜓𝑦𝑦 = −𝜔                  (1) 
 
𝜔𝑥𝑥 + 𝜔𝑦𝑦 = 𝑅𝑒{𝜓𝑦𝜔𝑥 − 𝜓𝑥𝜔𝑦}                (2) 
 
wherein 𝜓(𝑥, 𝑦) is the streamfunction, 𝜔(𝑥, 𝑦) is the 
vorticity, Re is the Reynolds number and subscript 
notation denotes partial differentiation. 
     The tangential and normal velocity components of 
the flow, 𝑢(𝑥, 𝑦) and 𝑣(𝑥, 𝑦), respectively, are related 
to vorticity and streamfunction, as follows: 
 
𝑢 = 𝜓𝑦                                                                     (3) 
𝑣 = −𝜓𝑥                                                                  (4) 

𝜔 = 𝑣𝑥 − 𝑢𝑦                                                            (5) 
 

     The vorticity-streamfunction form has advantages 
over using primitive variables, which include 
avoiding pressure boundary conditions and the 
automatic satisfaction of the equation of continuity. 
However, while the streamfunction enjoys Dirichlet-
type conditions, associated with the vorticity are 
Neumann-type conditions obtained from (5). 
     There exist an abundance of numerical approaches 
to this type of flow problem, [2,3]. A method of 
interest in the current work is the finite differences 
procedure due to its ease of use and knowledge of its 
local errors. As is well-known, the finite differences 
method works well when the flow domain is regular; 
that is, boundaries of the flow domain coincide with 
coordinate lines (rectangular) or curves (polar), as 
examples. If the flow domain is curvilinear, utility of 
this procedure can be extended by either mapping the 
flow domain into a regular computational domain, or 
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resorting to grid generation techniques. Many 
techniques and domain transformations are available 
in the literature and entail mapping the domain, the 
governing equations and boundary conditions, then 
seeking a solution using finite differences. Once a 
solution is obtained, it is mapped back to the physical 
domain where results and flow patterns are analyzed 
(cf. [4-9] and the references therein).  
     A transformation of interest in the current work is 
the following well-known von Mises transformation, 
(𝑥, 𝑦) → (𝑥, 𝜓), defined by 𝑦 = 𝑦(𝑥, 𝜓). In the 
curvilinear net (𝑥, 𝜓), the curves  𝜓 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 
represent the streamlines of the flow, [10-14]. 
Jacobian of the von Mises transformation is given by 
𝐽 = |

𝜕(𝑥,𝑦)

𝜕(𝑥,𝜓)
| = 𝑦𝜓. If  0 < 𝐽, ∞, then the inverse 

transformation exists and the following first partial 
derivative operators in the two coordinate systems are 
obtained, [10]: 
 
𝜕𝑥 = 𝜕𝑥 −

𝑦𝑥

𝑦𝜓
𝜕𝜓                                                       (6) 

𝜕𝑦 =
1

𝑦𝜓
𝜕𝜓                                                               (7) 

 
Second partial derivative operators can be obtained 
by applying operators (6) and (7) onto themselves. 
Applying the transformation to vorticity-
streamfunction equations (1) and (2), respectively, 
yields: 
 
𝐿(𝑦) = 𝜔(𝑦𝜓)

3                                                        (8) 
𝐿(𝜔) = 𝜔𝜔𝜓(𝑦𝜓)

2
+ 𝑅𝑒 𝑦𝜓 𝜔𝑥                              (9) 

 
where   
 
𝐿 ≡ 𝑦𝜓

2𝜕𝑥𝑥 − 2 𝑦𝑥  𝑦𝜓 𝜕𝑥𝜓 +  [1 + 𝑦𝑥
2]𝜕𝜓𝜓        (10) 

 
     Velocity components and vorticity, defined by 
equations (3)-(5), take the following forms, 
respectively, in the new coordinate system: 
 
𝑢 =

1

𝑦𝜓
                                                                    (11) 

𝑣 =
𝑦𝑥

𝑦𝜓
= 𝑢𝑦𝑥                                                         (12) 

𝜔 = 𝑣𝑥 + (
𝑣2

𝑢
− 𝑢) 𝑢𝜓 −

𝑣

𝑢
𝑢𝑥 − 2𝑣𝑣𝜓                  (13) 

 
The square of the speed of the flow is given by 
 

𝑞2 = 𝑢2 + 𝑣2 =
1+(𝑦𝑥)2

(𝑦𝜓)
2                                           (14) 

      
Vorticity, (13), can thus be written in terms of the 
square of the speed, 𝑞2 = 𝑢2 + 𝑣2, as 
𝜔 = 𝑣𝑥 −

1

2
(𝑞2)𝜓                                                     (15) 

 
In Section 2 below, it will be shown that on the 
computational domain boundary, 𝑣𝑥 = 0 and 
equation (15) reduces to: 
 
𝜔 = −

1

2
(𝑞2)𝜓                                                         (16) 

 
     Equation (16) represents the Neumann vorticity 
condition that is used to compute boundary vorticity. 
Finite difference evaluation of the first derivative in 
(16), and computing the “best” value of boundary 
vorticity (that is, the value closest to the true value) 
influences the numerical solution to governing 
equations (8) and (9), and is the main theme of this 
work. Computations of boundary vorticity using (16) 
is influenced by factors that include accuracy of the 
scheme and the choice of grid spacing used. 
     Accuracy of the scheme affects the local 
truncation error [18-21]. To this end, standard and 
non-standard schemes of first, second, third and 
fourth order of accuracy have been developed and 
tested using both boundary grid points and up to four 
in-field grid points, [18,19]. Equally important is the 
choice of grid spacing. It has been shown, [9,18,19], 
that if a uniform grid is fitted over the computational 
domain, the corresponding gridlines in the physical 
domain would be clustered away from the boundary, 
and if a uniform grid is chosen in the physical domain, 
the von Mises transformation naturally produces a 
desired clustered grid lines near the boundary in the 
computational domain. In order to capture the effects 
of boundary conditions more accurately, one needs to 
have  more clustering near the boundary. To this end, 
Alharbi et.al. [19] considered higher order schemes 
with both uniform and clustered physical domain and 
showed that a clustered grid in the physical domain 
produces more clustering in the computational 
domain, and more accurate results.  
     Siyyam et.al. [18 ] considered standard and non-
standard first-order accurate schemes but only 
employed a uniform grid in the physical domain, 
which produced a natural clustering in the 
computational domain. Their results showed that the 
best schemes were the schemes that used the natural 
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order of grid lines, as follows. In two-point schemes, 
the (1,2)-scheme uses the boundary grid line (say j=1) 
and the closes internal grid line to it (j=2). In a three-
point scheme, the (1,2,3)-scheme uses the boundary 
grid line (j=1) and the two adjacent and closest 
gridlines (j=2 and j=3), and so on. This leaves a gap 
in the literature, and the following question 
unanswered: What are the effects of a clustered grid 

in the physical domain on first-order accurate 

schemes that use the natural order of grid lines? 

     Results obtained from these schemes are 
compared with the exact value of vorticity. In order 
to accomplish this objective, this work is organized as 
follows. In Section 2, problem formulation is 

presented together with domain discretization data. In 
Section 3, finite difference schemes are presented  
together with their first omitted terms. In Section 4,  
results and discussion of scheme evaluations are 
presented, followed by conclusions to this work and 
suggestions for future direction. 
     In order to answer this question, this work 
employs and tests four first-order schemes, namely, 
the (1,2)-scheme, the (1,2,3)-schemes, the (1,2,3,4)-
scheme and the (1,2,3,4,5)-scheme together with four 
different physical domain grids, one uniform and 
three clustered with different levels of clustering.  
 

 
 

2  Problem Formulation 
Consider the steady flow of a viscous, incompressible 
fluid in a two-dimensional, dimensionless channel 
bounded below and above by solid, curvilinear 
boundaries, as shown in Fig. 1. The channel is 
described by: 
  });()(),{( 21 bxaxfyxfyx  , where 

)(1 xf  and )(2 xf  are known smooth functions, and 
the flow is governed by equations (1) and (2), above. 
The streamfunction enjoys Dirichlet conditions when 
the solid boundaries are taken as streamlines of the 
flow, say min   on the lower boundary and 

max   on the upper boundary. At the inlet and exit 
of the channel, the Dirichlet conditions on   are 
determined from the inlet and exit tangential velocity 
profile for parallel flow, by integrating equation (3). 
An example of a typical inlet and exit profiles is given 
as follows. Assuming that the channel is long-enough 
for the normal component of velocity to vanish there 
and that at 𝑥 = 𝑎 and 𝑏, the value of 𝑦 ranges on the 
interval [−1,1], we can assume the parallel and 
parabolic inlet velocity profile given by: 
 
𝑣 = 0 and 𝑢 = 1 − 𝑦2;  −1 ≤ 𝑦 ≤ 1                    (17) 
 
Integrating (3) and using (17), we obtain 
𝜓 = 𝑦 −

𝑦3

3
;   −1 ≤ 𝑦 ≤ 1                                     (18) 

 
     The absence of explicit vorticity boundary 
conditions necessitates imposing appropriate inlet, 
exit and solid boundary conditions on the vorticity.  
 

 
 
Assuming that equation (5) is valid on all boundaries 
then the conditions: 
 
𝑣𝑥 = 0  and ω = −𝑢𝑦                  (19)                              
 
can be used on all boundaries of the configuration at 
hand (even at the exit of the channel, since the profile 
of u is assumed to be known there). Alternatively, 𝜔𝑥 
can be taken to be zero at the exit of the channel.  
     Using (17) and (19), we obtain 𝜔 = 2𝑦 at the inlet 
to the channel. In particular, we are interested in the 
value of vorticity at 𝑦 = −1, namely 𝜔(𝑦 = −1) =
−2, in the development of forward differencing 
schemes.                                            
     In using the von Mises this transformation, the 
problem of solving equations (1) and (2) for 𝜓(𝑥, 𝑦) 
and 𝜔(𝑥, 𝑦) in the physical curvilinear 𝑥𝑦 − 𝑝𝑙𝑎𝑛𝑒 
subject to boundary conditions on 𝜓 and 𝜔, has been 
replaced by the problem of solving equations (8) and 
(9) for 𝑦(𝑥, 𝜓) and 𝜔(𝑥, 𝜓) in the rectangular 𝑥𝜓 −
𝑝𝑙𝑎𝑛𝑒, shown in Fig. 2, described by 
{(𝑥, 𝜓)| 𝜓𝑚𝑖𝑛 ≤ 𝜓 ≤ 𝜓𝑚𝑎𝑥 ;   𝑎 ≤ 𝑥 ≤ 𝑏}, and 
subject to transformed boundary conditions on the 
variables 𝑦 and ω. 
     The computational conditions on 𝑦 are as follows: 
On the lower boundary 
𝑦 = 𝑓1(𝑥)                                                               (20) 
On the upper boundary 
𝑦 = 𝑓2(𝑥)                                                                (21) 
At inlet and exit to the channel 
𝑦 −

𝑦3

3
= 𝜓 for − 2

3
≤ 𝜓 ≤

2

3
                                   (22) 

The computational condition on 𝜔 at inlet and exit, 
and on the lower and upper boundaries is given by 
(16). 

WSEAS TRANSACTIONS on FLUID MECHANICS 
DOI: 10.37394/232013.2021.16.19 M. H. Hamdan

E-ISSN: 2224-347X 203 Volume 16, 2021



 
 

 
Fig. 1  Representative Sketch (Physical Domain) 

 
 

 
 

 
 

2.1  Discretizing the Flow Domain 
The rectangular computational domain of Fig. 2 is 
discretized using either a uniform grid or a clustered 
grid, with the vertical grid lines ranging from  i=1 at 
x=a to i=Imax at x=b, and the horizontal grid lines 
ranging from j=1 at the lower computational 
boundary (𝜓 = −

2

3
) to j=Jmax at the upper 

computational boundary (𝜓 =
2

3
). 

     In order to capture the effects of boundary 
conditions more accurately, grid needs to have 
clustering near the boundary. Clustering of grid lines 
near the computational boundary when the von Mises 
variables are used can be accomplished in two ways: 

 
1) Selecting a uniform grid in the physical 

domain and calculating the grid spacings in 
the computational domain. This results in a 
“natural” clustering near the computational 
boundary.  For the given parabolic inlet 
velocity profile, and the indicated range of 
streamlines, we can choose 𝑦 to vary over the 
interval [-1,1], and calculate the step size Δ𝜓 
between two adjacent grid lines.  
     Suppose that we wish to produce a 
uniform grid of step size 01.0y  in the 
physical domain, then clustered grid is 
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computed using 𝑦 −
𝑦3

3
= 𝜓 for −

2

3
≤ 𝜓 ≤

2

3
. The variable grid spacings in the 

computational domain, corresponding to a 
uniform grid in the physical domain with 

01.0y , are shown in Table 1, wherein 
Δ𝜓𝑗 = 𝜓𝑗+1 − 𝜓𝑗 for j=1,2,3,4. Clearly, the 
computational grid lines are clustered near 
the computational boundary, even though the 
physical grid lines were equally spaced 
(uniform grid). This points out the fact that 
the use of the von Mises variables has the 
added advantage of naturally producing 
clustered grid near the computational 
boundaries without resorting to an algebraic 
method to cluster the grid. 

2) Selecting a grid in the physical domain that is 
non-uniform and clustered near the physical 

boundary produces a computational grid that 
is also clustered near the computational 
boundary. This is the heart of the current 
work in which we develop appropriate 
forward finite difference expressions and 
study the effects of clustering the grid in the 
physical domain on local truncation errors. 

     Physical grid clustering can be accomplished in 
various ways, including the use of elementary 
functions. For the current work, we employ the square 
root, the cubic root and the square functions to define 
the clustering in the physical y-direction. These are 
illustrated in Tables 2 to 4, wherein we provide a 
comparison with the case of uniform grid in the 
physical domain (Table 1). It should be noted that 
five grid points are chosen in this work (one boundary 
point, j=1, and four internal points,  j=2,3,4,5). 

 
 
 
                          Jmax     
                                     . 
                                     . 
                                     . 
                                    
                             j=3       
                            j=2        

                            j=1  

                                           i=1         i=2             i=3                             Imax 

                                      
Fig. 3. Grid Lines. (i,j)=(1,1) Corresponds to (x,y)=(a,-1) 

 
 
 
 
 
 
 
 
 
 
 

 

 

Table 1:Grid 1. Uniform Grid in the Physical Domain 
*

jj yy  for *
jy =1,0.99,0.98,     0.97,0.96 

 
 

j 
jy  jy  j  j  

1 11 y  0.01 666666666.01   000099666.01   
2 99.02 y  0.01 666567000.02   000297667.02   
3 98.03 y  0.01 666269333.03   000493667.03   

4 97.04 y  0.01 665775666.04   000687666.04   
5 96.05 y  0.01 665088000.05    
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Table 2: 
Grid 2. 
Non-

uniform Grid in the Physical Domain. 
*

jj yy  for *
jy =1, 0.99, 0.98, 0.97, 0.96 

 
 

 

 

 

 

 

 

 

 

 

 

Table 3: Grid 3. Non-uniform Grid in the Physical Domain 
3 *

jj yy   for *
jy =1,0.99,0.98, 0.97, 0.96 

 
 

j 
jy  jy  j  j  

1 11 y  0.0199 666666666.01   000393383.01   
2 9801.02 y  0.0197 666273283.02   001154077.02   
3 9604.03 y  0.0195 665119206.03   001876541.03   
4 9409.04 y  0.0193 663242665.04   002561929.04   
5 9216.05 y   660680736.05    

Table 4: Grid 4.  Non-uniform Grid in the Physical Domain 
2* )( jj yy  for *

jy = 1,0.99, 0.98, 0.97, 0.96 
 
     Clearly, these variable step sizes are fine near the 
computational boundary, and are expected to better 

capture the boundary effects and render more 
accurate computations. Moreover, they “correspond” 

j 
jy  jy  j  j  

1 11 y  0.005012567 666666666.01 

 
000025083.01   

2 994987437.02 y  0.005037944 666641582.02 

 
00007559.02   

3 989949493.03 y  0.005063713 666565991.03 

 
000126613.03   

4 98488578.04 y  0.005089883 666439377.04 

 
000178167.04   

5 979795897.05 y   666261209.05 

 
 
 

j 
jy  jy  j  j  

1 11 y  0.003344507 666666666.01   000011173.01   
2 996655493.02 y  0.003367105 666655493.02   000033772.02   
3 993288388.03 y  0.003390089 666621721.03   000056756.03   
4 989898299.04 y  0.003413469 666564965.04   000080136.04   
5 986484829.05 y   666484829.05    

WSEAS TRANSACTIONS on FLUID MECHANICS 
DOI: 10.37394/232013.2021.16.19 M. H. Hamdan

E-ISSN: 2224-347X 206 Volume 16, 2021



to a coarse-enough uniform grid in the physical 
domain to “avoid” regions of viscous separation, 
recirculation, and flow reversal, that hinders the use 
of the von Mises transformation without domain 
decomposition, due to the change of sign of the 
Jacobian of transformation. These effects need 
special considerations that are not discussed in this 
work. 
 
2.2  Calculating Inlet Square of Speed 
At the inlet to the channel, the computational velocity 
conditions are:  

𝑣(𝑥, 𝜓) = 0, and 𝑢(𝑥, 𝜓) = 1 − 𝑦2 for −1 ≤ 𝑦 ≤ 1. 
The square of the speed at inlet to the computational 
domain is given by  
 
𝑞2(𝑥, 𝜓) = 𝑢2 + 𝑣2 =  (1 − 𝑦2)2                           (23) 
 
 
Using (23), we compute (𝑞2)𝑗 for each of the four 
types of grid (Tables 1-4), at the first five grid points. 
These are illustrated in Table 5, below. 

 
 
 

 
  

 

 

 

 

 

 

Table 5: Square of the Speed at Inlet to Computational Domain  
for the Four Grids Used. 

 
 

2.3   Finite Difference Schemes 
The definition of vorticity is expressed at the lower 
boundary of the computational domain, in von Mises 
coordinates as the following derivative of the square 
of the speed of the flow: 
 
𝜔𝑖,1 = −

1

2
(𝑞𝜓

2 )
𝑖,1

                                                    (24) 
 
     In order to obtain finite difference expressions for 
𝜔𝑖,1, Siyyam et.al., [18], developed the following 
forward finite difference schemes for the first partial 
derivative on the right-hand –side of (24), using up to 
four internal grid points. The schemes are based on 

the natural order or points. For instance, a two-point 
scheme uses grid points on the grid lines  j=1 and j=2. 
A five-point scheme uses grid points on j=1,2,3,4,5. 
The following is used in the schemes below. 
 
Δ𝜓𝑗 = 𝜓𝑗+1 − 𝜓𝑗; 𝑗 = 1,2,3,4                               (25) 





















43214

3213

212

11









a

a

a

a

              (26) 

 
 

 

 

 
2.3.1 Two-point Scheme: (1,2)-Scheme 

 

 
(1,2) 

Scheme 
(𝑞𝜓

2 )
𝑖,1

 Leading error term 
 

j 
jq2  Grid1 jq2  Grid2 jq2  Grid3 jq2  Grid4 

1 0 0 0 0 
2 0.00039601 0.0001 0.000044593 0.001552674 
3 0.00156816 0.0004 0.000178975 0.006026702 
4 0.00349281 0.0009 0.000404064 0.013157739 
5 0.00614656 0.0016 0.000720798 0.022696458 
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Non-
uniform 
Grid 

(𝑞2)𝑖,2 − (𝑞2)𝑖,1

Δ𝜓1
 −

Δ𝜓1

2
(𝑞𝜓𝜓

2 )
𝑖,1

 

Table 6. First-order Accurate, (1,2) Scheme for 1,
2 )( iq   

 
 
 
2.3.2  Three-Point Scheme (1,2,3)-Scheme 

 

(1,2,3) 

Scheme 
(𝑞𝜓

2 )
𝑖,1

 Leading error term 
 

Non-
uniform 
Grid 

(𝑞2)𝑖,3 + (𝑞2)𝑖,2 − 2(𝑞2)𝑖,1

2Δ𝜓1 + Δ𝜓2
 −

(2Δ𝜓1 + Δ𝜓2)2 + (Δ𝜓2)2

4(2Δ𝜓1 + Δ𝜓2)
(𝑞𝜓𝜓

2 )
𝑖,1

 

Table 7. First-order Accurate, (1,2,3) Scheme for 1,
2 )( iq   

 

 

 
2.3.3  Four-Point Schemes: (1,2,3,4) Schemes: 

 
Four-point 

Schemes 1,
2 )( iq   

Scheme 1 

321

1,
2

2,
2

3,
2

4,
2

23
)(3)()()(

 

 iiii qqqq
 

Scheme 2 

321

1,
2

2,
2

3,
2

4,
2

2
)()()()(

 

 iiii qqqq
 

Scheme 3 

31

1,
2

2,
2

3,
2

4,
2 )()()()(

 

 iiii qqqq
 

Scheme 4 

13

1,
2

2,
2

3,
2

4,
2 )()()()(

 

 iiii qqqq
 

Table 8a. First-order Accurate, (1,2,3,4) Schemes for 1,
2 )( iq   

                
 

Four-point 

Schemes 
Leading Error Term 

Scheme 1 
1,

2

321

2
3

2
2

2
1 )(

2
1

iq
aaa

aaa


















  

Scheme 2 
1,

2

321

2
3

2
2

2
1 )(

2
1

iq
aaa

aaa


















  

Scheme 3 
1,

2

321

2
3

2
2

2
1 )(

2
1

iq
aaa

aaa


















  
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Scheme 4 
1,

2

321

2
3

2
2

2
1 )(

2
1

iq
aaa

aaa


















  

Table 8b. Leading Error Terms for First-order Accurate, (1,2,3,4) Schemes 
                
 
 
2.3.4  Five-Point Schemes: (1,2,3,4,5) Schemes 
 
 

Five-point 

Schemes 1,
2 )( iq   

(1,2,3,4,5)-

Scheme 1 
4321

1,
2

2,
2

3,
2

4,
2

5,
2

234
)(4)()()()(

 

 iiiii qqqqq
 

(1,2,3,4,5)-

Scheme 2 
4321

1,
2

2,
2

3,
2

4,
2

5,
2

232
)(2)()()()(

 

 iiiii qqqqq
 

(1,2,3,4,5)-

Scheme 3 
4321

1,
2

2,
2

3,
2

4,
2

5,
2

22
)(2)()()()(

 

 iiiii qqqqq
 

(1,2,3,4,5)-

Scheme 4 
421

1,
2

2,
2

3,
2

4,
2

5,
2

2
)(2)()()()(

 

 iiiii qqqqq
 

(1,2,3,4,5)-

Scheme 5 
421

1,
2

2,
2

3,
2

4,
2

5,
2

2
)(2)()()()(

 

 iiiii qqqqq
 

Table 10a. First-order Accurate, (1,2,3,4,5) Schemes for 1,
2 )( iq   

               
 
 

 
Five-point 

Schemes 
Leading Error Term 

(1,2,3,4,5)-

Scheme 1 1,
2

4321

2
4

2
3

2
2

2
1 )(

2
1

iq
aaaa

aaaa


















  

(1,2,3,4,5)-

Scheme 2 1,
2

4321

2
4

2
3

2
2

2
1 )(

2
1

iq
aaaa

aaaa


















  

(1,2,3,4,5)-

Scheme 3 1,
2

4321

2
4

2
3

2
2

2
1 )(

2
1

iq
aaaa

aaaa


















  

(1,2,3,4,5)-

Scheme 4 1,
2

4321

2
4

2
3

2
2

2
1 )(

2
1

iq
aaaa

aaaa


















  

(1,2,3,4,5)-

Scheme 5 1,
2

4321

2
4

2
3

2
2

2
1 )(

2
1

iq
aaaa

aaaa


















  
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Table 10b. Leading Error Terms for First-order Accurate, (1,2,3,4,5) Schemes 
                 

 
 
 

3  Results and Discussion 
Vorticity on the computational channel boundary is 
given by equation (24). The lower, left-corner 
vorticity has a value of 𝜔1,1 = −2, obtained from the 
channel inlet condition 𝜔 = 2𝑦 at 𝑦 = −1.  
 
Vorticity 𝜔1,1 is approximated by evaluating all the 
schemes in Tables 6-10 using the four grids of Tables 

1-4 in order to study the effects of grid clustering on 
vorticity. Values of 𝜔1,1 are computed using the 
square of the speed values of Table 5.   

 
Computed values of  𝜔1,1 are tabulated below 
together with the Percentage Relative Error (P.R.E.) 
defined as: 
 
𝑃. 𝑅. 𝐸. =  

𝐸𝑥𝑎𝑐𝑡 𝜔1,1−𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑑 𝜔1,1

𝐸𝑥𝑎𝑐𝑡 𝜔1,1
                              (27) 

 
The P.R.E. values are listed for each of the schemes 
in parenthesis in the tables below. 

 
Scheme (1,2)-scheme (1,2,3)-scheme 

Grid 𝜔1,1 

(P.R.E.) 

𝜔1,1 

(P.R.E.) 

Grid 1 -1.9867357 
(0.666%) 

-1.976030133 
(1.198%) 

Grid 2 -1.993381972 
(0.331%) 

-1.987976717 
(0.601%) 

Grid 3 -1.995569677 

(0.221%) 

-1. 991945543 

(0.403%) 

Grid 4 -1.973488941 
(1.325%) 

-1. 952598948 
(2.371%) 

 
Table 11a. Values of 𝝎𝟏,𝟏  𝐚𝐧𝐝 𝑷. 𝑹. 𝑬. for (1,2)- and (1,2,3)-Schemes 

 
 
 
 

 

Grid 1 -1.96577231 

(1.711%) 
-1.962265294 

(1.887%) 
-1.955611481 

(2.219%) 
-1.939893554 

(3.005%) 
Grid 2 -1.982766923 

(0.862%) 
-1.98100873 

(0.949%) 
-1.97763949 

(1.118%) 
-1.969861125 

(1.506%) 
Grid 3 -1.988455129 

(0.577%) 
-1.987281599 

(0.636%) 
-1.985028486 

(0.748%) 
-1.979860913 

(1.069%) 

(1,2,3.4) 

Schemes 

 

Scheme 1 Scheme 2 Scheme 3 Scheme 4 

Grid 𝜔1,1 

(P.R.E.) 

𝜔1,1 

(P.R.E.) 

𝜔1,1 

(P.R.E.) 

𝜔1,1 

(P.R.E.) 
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Grid 4 -1.936405457 

(3.179%) 
-1.925673503 

(3.716%) 
-1.912775714 

(4.361%) 
-1.880569366 

(5.972%) 
 

Table 11b. Values of 𝝎𝟏,𝟏  𝐚𝐧𝐝 𝑷. 𝑹. 𝑬. for (1,2,3,4)-Schemes 
 
 
 

 
(1,2,3,4,5) 

Schemes 

Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 

Grid 𝜔1,1 

(P.R.E.) 

𝜔1,1 

(P.R.E.) 

𝜔1,1 

(P.R.E.) 

𝜔1,1 

(P.R.E.) 

𝜔1,1 

(P.R.E.) 

Grid 1 -1.955653908 

(2.217%) 

-1.953418689 
(2.329%) 

-1.94917447 
(2.541%) 

-1.949040446 
(2.547%) 

-1.808335999 
(9.583%) 

Grid 2 -1.97760038 

(1.119%) 

-1.97648268 
(1.175%) 

-1.974337206 
(1.283%) 

-1.974184251 
(1.291%) 

-1. 90799641 
(4.600%) 

Grid 3 -1.984993641 

(0.750%) 

-1.984248842 

(0.787%) 

-1.982815916 

(0.859%) 

-1.982701425 

(0.865%) 

-1.939503706 

(3.025%) 

Grid 4 -1.913242789 

(4.337%) 

-1.908755891 
(4.562%) 

-1. 89684611 
(5.157%) 

-1.900843438 
(4.957%) 

-1.577352412 
(21.132%) 

 

Table 11c. Values of 𝝎𝟏,𝟏  𝐚𝐧𝐝 𝑷. 𝑹. 𝑬. for (1,2,3,4,5)-Schemes 
 
 
 
Tables 11(a,b,c) illustrate the following: 
 

1) Using Grid 3 consistently produces the most accurate 
computed values of vorticity and least Percentage 
Relative Errors (for all first-order schemes and grids 
used). This may be ascribed to the fact that Grid 3 
uses grid points that are closest to the boundary. 
Associated with Grid 3 is the lowest truncation error. 

2) Of the (1,2,3,4)-Schemes, Scheme I produces the 
most accurate corner vorticity and lease P.R.E., for all 
grids used. This scheme, together with Grid 3, 
produce the best results. 

3) Of the (1,2,3,4,5)-Schemes, Scheme I produces the 
most accurate corner vorticity and lease P.R.E., for all 
grids used. This scheme, together with Grid 3, 
produce the best results. 

4) The (1,2)-Scheme produces the most accurate results 
when used in conjunction with Grid 3. 
 

 
4  CONCLUSION 
In this work, the effects of grid clustering on forward 
finite difference approximations to the first derivative 
were considered. Results obtained support the 
following conclusions: 

 
1- Grids with lowest Percentage Relative Errors for the 

schemes that use four or five points are, respectively: 
Grid 3, Grid 2, Grid 1, and Grid 4.   

2- Schemes that employ the natural order, (1,2)-scheme, 
of grid points produce smaller Percentage Relative 
Errors, for all grids employed. This supports the 
general understanding that a standard first order 
scheme uses two points; a second order scheme uses 
three points; a third order scheme uses four points, 
and an nth order scheme requires n+1 points. 

3- Using clustered Grid 3 produces the lowest 
Percentage Relative Error, for all standard schemes 
used. This might be attributed to the lower truncation 
error associated with the scheme. 

4- For first-order accurate schemes, the use of more 
internal grid points in the scheme did not improve the 
result. 

5- When internal grid points are used, schemes that 
employ grid points closest to the boundary, in 
general, produce better results.  

6- When using the von Mises transformation in the study 
of viscous fluid flow through irregular domains (in 
particular two-dimensional channels), the velocity 
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inlet profile influences the type of grid employed in 
the computational domain. 

7- Schemes with more clustering near the boundary 
(Grid 3 in this work) produce better results than grids 
with less clustering.  
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