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Abstract: - In the current work, we aim at finding an analytical solution to the problem of fluid flow past a pair of 

separated non-Newtonian fluid bubbles. These bubbles are assumed to be spherical and non-permeable with the 

non-Newtonian fluid, viz. the couple stress fluid filling their interior. Further, the bubbles are presumed to be 

static in the flow domain, where a Newtonian fluid streams past these bubbles with a constant velocity (U) along 

the negative x-direction. We developed a mathematical model in the bipolar coordinate system for the fluid flow 

outside the bubbles and the spherical coordinate system inside the bubbles to derive a separable solution for their 

respective governing equations. Furthermore, to evaluate the model's applicabilities on the industrial front, the 

data on some widely used industrial fluids are given as inputs to the model, such as density, the viscosity of air or 

water for the fluid flow model developed for the region outside the fluid bubbles and the data on Cyclopentane or 

DIDP (non-Newtonian) for that within the bubbles. Some interesting findings are: the pressure in the outer region 

of the bubbles is higher when filled with low viscous industrial fluid, Cyclopentane, than a high viscous fluid, 

DIDP. Furthermore, an increase in the viscosity of Cyclopentane did not alter the pressure distribution in the 

region outside the bubbles. However, there is a considerable effect on this pressure in the case of DIDP bubbles. 

 

 Key-Words: - Fluid bubbles, Separated Spheres, Bipolar coordinates, Couple stress fluid, Industrial application, 

Diisodecyl Phthalate, Cyclopentane. 

Received: December 11, 2020. Revised: April 2, 2021. Accepted: April 15, 2021. Published: April 30, 2021. 

 

1 Introduction 
Translation of fluid sphere in a stationary fluid was 

first treated, independently, by Rybczynski and 

Hadamard [1, 2].  They considered the translation of a 

fluid drop in an immiscible liquid under the action of 

gravity. The flow was assumed to be axisymmetric, 

steady, and creeping, and an analytical expression for 

the stream function was derived. Thus, depicted the 

streamline patterns. Further, the formula for the drag 

on a solid sphere given by the Stokes was modified to 

represent the drag on a fluid bubble. Later, Taylor and 

Acrivos extended this work and studied the 

deformation of a falling viscous drop [3].  They 

showed that for small values of the Weber number 

"We", the drop deforms into an oblate spheroid, and a 

further increase deforms it into a spherical cap. Oliver 

and Chung studied the effect of internal circulation in 

bubbles and droplets [4]. They evaluated the effects of 

different density and viscosity ratios on the low 

Reynolds number flow. They concluded that the drag 

increases with an increase in the ratio of the bubble's 

viscosity to the viscosity of ambience. A survey on the 

related problems indicates works on viscous fluid flow 

past deformed bubbles and spherical drops partially 

coated with thin films, as seen in references [5-11]. 

Ramkissoon, in his work, considered the flow of a 

Newtonian fluid past a fluid spheroid, the shape of 

which varies slightly from that of a sphere and derived 

explicit expressions for external and internal flow 

fields [5]. Sadhal and Johnson examined the steady 

axisymmetric creeping flow due to the motion of a 

liquid drop that is covered partially by a thin 

immiscible fluid layer [6]. They derived the solution 

using the perturbation technique and noted a double 

cell structure's appearance in the circulation inside the 

film when the primary drop viscosity ratio to that of 

the bulk fluid is greater than 1/2. Clift et al. [7] and 

Michaelides [8], in their monographs, presented a 

critical review of the literature concerning the fluid 

dynamics, heat and mass transfer of single bubbles. 

Ramana Murty and Phani Kumar studied the viscous 

flow past a partially contaminated fluid sphere with a 

no-slip condition [9]. Dmitry V. Strunin and Adham 

studied the effect of using two rheological schemes 

(one with bubbles and the other without) on the wave 
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attenuation in the liquid-saturated porous media [10]. 

Nguyen developed models to study the bubble–

particle encounter mechanics and the bubble–particle 

sliding interactions[11].   

 

However, to our knowledge, not much work is 

reported on the flow past fluid bubbles filled with non-

Newtonian fluids. Thus, in this paper, we intend to 

understand the flow configuration and pressure 

distribution in the flow domain when a viscous 

(Newtonian) fluid flows past two separated fluid 

bubbles. Each bubble filled with non-Newtonian fluid. 

The regions within the fluid bubbles, namely, 𝑆𝑖, 𝑖 =
1,2  are described using the non-Newtonian fluid 

model proposed by V K Stokes. [12, 13].  The flow in 

the region outside the bubbles, termed 𝑆0 is assumed 

to be governed by the Navier Stokes equation for 

viscous fluid flow under the Stokesian approximation. 

We chose the non-conventional system, the bipolar 

coordinate system, to describe the flow domain [14, 

15]. This three-dimensional bipolar coordinate system 

is an orthogonal coordinate system that results from 

rotating the two-dimensional bipolar coordinate 

system about the axis connecting the two foci 𝐹1  and 

𝐹2. In this system, any point P has coordinates denoted 

by (𝜉, 𝜂, 𝜙) , where  𝜉 equals the angle 𝐹1𝑃𝐹2  and 

𝜂 equals the natural logarithm of the ratio of distances 

𝑑1and 𝑑2 of P from the foci. Now, 𝜉 = 𝑐 > 0 where c 

is constant represents spheres on the positive x-axis 

and 𝜉 = 𝑐 < 0  describes spheres on the negative x-

axis. Thus, with an appropriate choice of the constant 

"𝑐", the geometry of separated spheres can be readily 

constructed, unlike the conventional coordinate 

systems like Cartesian and Spherical. 

 

Under the assumptions that the fluid is incompressible 

and flow axisymmetric, the equations governing the 

Newtonian fluid flow in the region 𝑆0 takes the form 

𝐸4𝜓(0) = 0 where 𝐸2  is the Stokes stream function 

operator and 𝜓(0), the stream function in the region 

𝑆0. This equation is separable in the bipolar coordinate 

system, and hence, an analytical expression for the 

stream function can be derived. Whereas the flow 

equations in the region within the fluid bubbles 𝑆𝑖, 𝑖 =

1,2 , in terms of the stream function 𝜓(𝑖), 𝑖 = 1,2 , take 

the form 𝐸4(𝐸2 − 𝛼2)𝜓(𝑖) = 0, where, 𝐸2 − 𝛼2 is the 

Helmholtz operator.  We know that the Helmholtz 

operator is not separable in the bipolar coordinate 

system. As we intended to derive analytical solutions 

to the developed model,  we formulated the fluid flow 

problem with a spherical coordinate system inside the 

bubbles. Now, in this system, the Helmholtz equation 

is separable. Further, we considered two spherical 

coordinate systems with the origin at the centre of each 

of the bubbles and solved the Helmholtz equation to 

determine the stream functions 𝜓(𝑖), 𝑖 = 1,2 in the two 

regions 𝑆𝑖, 𝑖 = 1,2.  

 

Here, the challenge involves implementing the 

boundary conditions at the interface where we have 

two different coordinate systems, one on either side. 

More precisely, we have the expressions of all the flow 

variables in the region outside the fluid bubbles in the 

bipolar coordinate system and those within the bubbles 

in the spherical coordinate system. Hence, we used the 

coordinate transformation between the spherical and 

bipolar coordinate systems and represented the flow 

variables in all the regions in a single system, i.e., the 

bipolar system. Later, we solved the flow-governing 

equations together with the boundary conditions for 

the arbitrary constants. We derived expressions for the 

flow variables, the stream function and the pressure in 

all three regions 𝑆𝑖, 𝑖 = 0,1,2 . 

 

Our next objective is to apply this mathematical model 

to understand the flow of industrial fluids past and 

within fluid bubbles. Thus, we took widely used 

industrial (Newtonian) fluids, namely, air or water, to 

stream past the bubbles and the non-Newtonian fluids 

Cyclopentane or DIDP fill the bubbles' interior. These 

two non-Newtonian fluids' choice is due to their vast 

applications in industries. For instance, Cyclopentane 

applications include many domestic appliances such 

as refrigerators and freezers. Moreover, it gets used as 

a blowing agent in the manufacture of polyurethane 

insulating foam. Also, it replaces the usage of 

hazardous gas such as Chloro-Fluoro-Carbons. DIDP, 

known as a Diisodecyl Phthalate, is used in the 

polymer industry as a softener and a plasticizer. It can 

be further used as a lubricant and for manufacturing 

vinyl and polyvinyl goods such as cable and wire. Its 

usage further includes manufacturing screen-printing 

inks, latex coatings, textile coatings, adhesives, 

sealants, and leather coatings.   

 

2 Mathematical Formulation of the 

Problem 
Consider the flow of a Newtonian fluid (with a 

uniform velocity U at infinity) past a pair of separated 

fluid spheres fixed in the flow domain, as shown in   

Fig 1.  
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Fig 1. Schematic diagram of flow past separated fluid 

spheres in bipolar coordinates 

 The bipolar system represented by the 

coordinates(𝜉, 𝜂, 𝜙), with (�̂�𝜉 , �̂�𝜂 , �̂�𝜑) as base vectors 

and(ℎ𝜉 , ℎ𝜂 , ℎ𝜙) as the corresponding scale factors are 

to describe the flow domain where 

𝑥 =
𝑎 sinh𝜉

cosh𝜉−cos𝜂
 and 𝑟 =

𝑎 sin𝜂

cosh𝜉−cos𝜂
  (1) 

ℎ𝜉 =
𝑎

cosh𝜉−cos𝜂
; ℎ𝜂 =

𝑎

cosh𝜉−cos𝜂
;  ℎ𝜙 =

𝑎 sin𝜂

cosh𝜉−cos𝜂
     (2) 

where −∞ < 𝜉 < ∞, 0 ≤ 𝜂 < 𝜋. 

Here,  𝜉 = 𝑐 > 0  where c is constant, it represents 

spheres on the positive x-axis with the centre at a 

distance 𝑎 coth 𝑐  from the origin (along the x-axis) 

and radius equals 𝑎 csch 𝑐 . 𝜉 = 𝑐 < 0  describe 

spheres on the negative x-axis with the centre at a 

distance 𝑎 coth 𝑐  from the origin (along the x-axis) 

and radius 𝑎 csch 𝑐 [14, 15].  

 

Let (�̄�(𝑖), 𝑝(𝑖))denote the velocity and pressure in the 

region 𝑆𝑖, 𝑖 = 1, 2  where 𝑆1  represents the region 

inside the fluid sphere 𝜉 = 𝜉1 and 𝑆2, the region inside 

the fluid sphere 𝜉 = 𝜉2. Let (�̄�(0), 𝑝(0))be the velocity 

vector and pressure in the region  𝑆0  (outside the 

spheres). 

 

2.1 Equations governing the fluid flow in the 

region 𝑺𝟎 
Assuming that the flow (in the region  𝑆0 ) is 

axisymmetric and steady, we have �̄�(0) =

𝑢(0)(𝜉, 𝜂)�̂�𝜉 + 𝑣
(0)(𝜉, 𝜂)�̂�𝜂  and the pressure 

as  𝑝(0)(𝜉, 𝜂) . Further, considering the fluid to be 

incompressible, the momentum equations under 

Stokesian approximation take the form [16]:  

∇𝑝(0) + 𝜇 curl(curl �̄�(0)) = 0   (3) 

Now, introducing the stream function 𝜓(0) through, 

ℎ𝜂ℎ𝜙𝑢
(0) = −

𝜕𝜓(0)

𝜕𝜂
 ; ℎ𝜉ℎ𝜙𝑣

(0) =
𝜕𝜓(0)

𝜕𝜉
  (4) 

Equation (3) in the bipolar system takes the form, 
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where 𝐸2 is the Stokes stream function operator given 

by 

𝐸2 =
ℎ𝜙

ℎ𝜉ℎ𝜂
{
𝜕

𝜕𝜉
(
ℎ𝜂

ℎ𝜉ℎ𝜙

𝜕

𝜕𝜉
) +

𝜕

𝜕𝜂
(

ℎ𝜉

ℎ𝜂ℎ𝜙

𝜕

𝜕𝜂
)}  (7) 

 

Eliminating  𝑝(0) from (6) and (7) gives: 

𝐸4𝜓(0) = 0    (8) 

which is the equation governing the fluid flow in the 

region 𝑆0 .  

 

2.2 Equations governing the fluid flow in the 

region 𝑺𝒊, 𝒊 = 𝟏, 𝟐 

Let  (�̄�(𝑖), 𝑝(𝑖)), 𝑖 = 1,2  be the velocity vector and 

pressure in the regions, 𝑆𝑖, 𝑖 = 1,2, respectively. As 

discussed earlier, we introduced a spherical coordinate 

system (𝑅, 𝜃, 𝜙)  to describe the flow equations in 

these two regions. Assuming that the flow is 

axisymmetric and steady, we have �̄�(𝑖) =

𝑢(𝑖)(𝑅, 𝜃)�̂�𝑟 + 𝑣
(𝑖)(𝑅, 𝜃)�̂�𝜃, 𝑖 = 1,2  and the pressure 

as 𝑝(𝑖)(𝑅, 𝜃), 𝑖 = 1,2. Further, considering the fluid to 

be incompressible, the momentum equations under 

Stokesian approximation take the form: 

∇𝑝(𝑖) + 𝜇curl(curl �⃗�(𝑖) + 𝜂1curl curl curl �⃗�) = 0,
𝑖 = 1,2      (9) 

where the other symbols in equation (9) have their 

usual meaning as described in [10, 11]. 

Now, introducing the stream function through  

𝑢(𝑖) = −
1

𝑅2 sin𝜃

𝜕𝜓(𝑖)

𝜕𝜃
 ; 𝑣(𝑖) =

1

𝑅 sin𝜃

𝜕𝜓(𝑖)

𝜕𝑅
  (10) 

 

equation (9) takes the form: 
𝜕𝑝

𝜕𝑟
+

𝜇

𝑟2 sin𝜃

𝜕

𝜕𝜃
𝐸2𝜓(𝑖) −

𝜂1

𝑟2 sin𝜃

𝜕

𝜕𝜃
𝐸4𝜓(𝑖) = 0 (11) 

 
1

𝑟

𝜕𝑝

𝜕𝜃
−

𝜇

𝑟 sin𝜃

𝜕

𝜕𝑟
𝐸2𝜓(𝑖) +

𝜂1

𝑟 sin𝜃

𝜕

𝜕𝑟
𝐸4𝜓(𝑖) = 0 (12) 

 

Now, eliminating pressure from equations (11) and 

(12), we have 

𝐸4(𝐸2 − 𝛼𝑖
2)𝜓(𝑖) = 0, 𝑖 = 1,2,  𝛼2 =

𝜇𝑖

𝜂1𝑖
 (13) 

where 𝐸2 =
𝜕2

𝜕𝑅2
+
sin𝜃

𝑅2
𝜕

𝜕𝜃
(

1

sin𝜃

𝜕

𝜕𝜃
)  (14) 

and 𝜇𝑖 , 𝜂1𝑖  are respectively the viscosity and the 

couple stress momentum parameter in the  region 

𝑆𝑖, 𝑖 = 1,2. 

 

2.3 Boundary conditions 
The determination of the relevant flow field 

variables  𝜓(𝑖) and 𝑝(𝑖), 𝑖 = 0,1,2 is subject to the 

following boundary and regularity conditions: 
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(i) Continuity of the normal velocity component at 

interfaces: 

𝑢(𝑖) = 𝑢(0) on 𝑆𝑖, 𝑖 = 1,2   (15) 

(ii) Continuity of tangential velocity component at 

interfaces: 

 𝑣(𝑖) = 𝑣(0)  on 𝑆𝑖, 𝑖 = 1,2   (16)   

(iii) Continuity of shear stress component at 

interfaces: 

 𝜏𝜉𝜂
(𝑖) = 𝜏𝜉𝜂

(0) on 𝑆𝑖, 𝑖 = 1,2  (17)                   

(iv) Couple stresses vanish at the interface: 

 
1

2
𝑐𝑢𝑟𝑙�̄�(1) = 0  on 𝑆1 ; 

1

2
𝑐𝑢𝑟𝑙�̄�(2) = 0  on 𝑆2

                              (18)   

(v) Regularity condition at infinity, gives: 

  𝜓(0) = −
1

2
𝑈𝑟2, 

           i.e. 𝐿𝑖𝑚
𝜉→0

 𝑢(0) = −𝑈, 𝐿𝑖𝑚
𝜉→0

 𝑣(0) = 0. (19) 

 

 

3 Solution Methodology                     
 

3.1 Solution to the equations governing the 

flow in 𝑺𝟎 
Using the method of separation of variables, we see 

after straight forward and lengthy calculations that the 

solution of equation (8) takes the form [10, 11] 

𝜓(0)(𝜉, 𝜏) = 𝑎2 ∗ 

(cosh 𝜉 − 𝜏)−3/2∑(𝐴𝑛 cosh(𝑛 − 1/2)𝜉

∞

𝑛=1

+𝐵𝑛 sinh(𝑛 − 1/2)𝜉
+ 𝐶𝑛 cosh(𝑛 + 3/2)𝜉
+ 𝐷𝑛 sinh(𝑛 + 3/2)𝜉)𝜗𝑛+1(𝜏)  

      (20) 

where 𝜗𝑛+1(𝜏) is the Gegenbauer function of order 

n+1 and degree -1/2, 𝜏 = cos 𝜂, sinh 𝜉 and cosh 𝜉 are 

hyperbolic trigonometric functions. 

 

3.2 Solution to the equations governing the 

flow in the regions 𝑺𝒊, 𝒊 = 𝟏, 𝟐 

From equation (13), using the superposition principle, 

we see that each 𝜓(𝑖), 𝑖 = 1,2 can be written as  𝜓(𝑖) =
𝜙1 + 𝜙2, 𝑖 = 1,2 where   

𝐸4𝜑1 = 0, and           (21)

 (𝐸2 − 𝜆𝑖
2)𝜑2 = 0                            (22)

      

Following Happel and Brenner [14], the stream 

function in 𝑆𝑖, 𝑖 = 1,2 is 

𝜓(𝑖)(𝑅, 𝜁  ) = ∑ (𝐴𝑛
(𝑖)
𝑅𝑛+3 + 𝐵𝑛

(𝑖)
𝑅𝑛+1 +∞

𝑛=1

𝐶𝑛
(𝑖)
√𝑟𝐼𝑛+1/2(𝛼𝑖𝑅))𝜗𝑛+1(𝜁)          (23)

  

where 𝐼𝑛+1/2(𝑥)is the modified Bessel's function of 

the second kind and 𝜁 = cos 𝜃. 

 

3.3 Determination of arbitrary constants 
As mentioned earlier, at the interface, we have the 

field variables on either side in two different 

coordinate systems, namely bi-polar and spherical. 

Thus, we use the following transformation equations 

(in their non-dimensional form) to transform all the 

boundary conditions in the bi-polar system. 

𝑅2 = (
cosh𝜉+𝜏

cosh𝜉−𝜏
) , 𝜃 = tan−1

√1−𝜏2

sinh𝜉
 (24) 

Using (24) and the orthogonality properties of 

𝜗𝑛+1(𝜏), equations (15)-(18) simplifies to: 

(i) Continuity of the normal velocity component at 

interfaces: 

∫
√1−𝜏2

𝑅2 𝑠𝑖𝑛𝜃(𝑐𝑜𝑠ℎ 𝜉−𝜏)
(𝐴𝑛

(1)
𝑅𝑛+3 + 𝐵𝑛

(1)
𝑅𝑛+1 +

1

−1

𝐶𝑛
(1)
𝑅1/2𝐼𝑛+1/2(𝛼1𝑅))𝑃𝑛(𝜁)𝑑𝜏 = 0  on 𝜉 = 𝜉1 

      (25) 

∫
√1−𝜏2

𝑅2 𝑠𝑖𝑛𝜃(𝑐𝑜𝑠ℎ 𝜉−𝜏)
(𝐴𝑛

(1)𝑅𝑛+3 + 𝐵𝑛
(1)𝑅𝑛+1 +

1

−1

𝐶𝑛
(1)𝑅1/2𝐼𝑛+1/2(𝛼1𝑅))𝑃𝑛(𝜁)𝑑𝜏 = 0  on 𝜉 = 𝜉2

      (26) 

 

(ii) Tangential velocity matches at interfaces: 

𝑣(0) = 𝑣(1) on 𝜉 = 𝜉1 gives: 

 

∑ (𝐴𝑛
(0)𝑐 𝑜𝑠ℎ (𝑛 −

1

2
) 𝜉1 +𝐵𝑛

(0)𝑠 𝑖𝑛ℎ (𝑛 −
1

2
) 𝜉1 + 𝐶𝑛

(0)𝑐 𝑜𝑠ℎ (𝑛 +
3

2
) 𝜉1 + 𝐷𝑛

(0)𝑠 𝑖𝑛ℎ (𝑛 +∞
𝑛=1

3

2
) 𝜉1)

−3/2𝑠𝑖𝑛ℎ 𝜉1(𝐼3(𝑛−1)−𝐼3(𝑛+1))|𝜉=𝜉1
2𝑛+1

+∑ ((𝑛 −
1

2
)𝐴𝑛

(0) 𝑠𝑖𝑛ℎ (𝑛 −
1

2
) 𝜉1 + (𝑛 −

1

2
)𝐵𝑛

(0) 𝑐𝑜𝑠ℎ (𝑛 −
1

2
) 𝜉1 +

∞
𝑛=1

(𝑛 +
3

2
)𝐶𝑛

(0) 𝑠𝑖𝑛ℎ (𝑛 +
3

2
) 𝜉1 + (𝑛 +

3

2
)𝐷𝑛

(0) 𝑐𝑜𝑠ℎ (𝑛 +
3

2
) 𝜉1)

(𝐼2(𝑛−1)−𝐼2(𝑛+1))|𝜉=𝜉1
2𝑛+1

=

∫
𝑠𝑖𝑛 𝜂

(𝑅 𝑠𝑖𝑛 𝜃)|𝜉=𝜉2(𝑐𝑜𝑠ℎ 𝜉1−𝜏)
2

𝜕𝜓(1)

𝜕𝑅
𝑑𝜏

1

−1
         (27) 
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Furthermore, 𝑣(0) = 𝑣(2) on 𝜉 = 𝜉2 gives: 

 

∑ (𝐴𝑛
(0)
𝑐 𝑜𝑠ℎ (𝑛 −

1

2
) 𝜉2 + 𝐵𝑛

(0)
𝑠 𝑖𝑛ℎ (𝑛 −

1

2
) 𝜉2 + 𝐶𝑛

(0)
𝑐 𝑜𝑠ℎ (𝑛 +

3

2
) 𝜉2 +𝐷𝑛

(0)
𝑠 𝑖𝑛ℎ (𝑛 +∞

𝑛=1

3

2
) 𝜉2)

−3/2𝑠𝑖𝑛ℎ 𝜉2(𝐼3(𝑛−1)−𝐼3(𝑛+1))|𝜉=𝜉2
2𝑛+1

+ ∑ ((𝑛 −
1

2
)𝐴𝑛

(0)
𝑠𝑖𝑛ℎ (𝑛 −

1

2
) 𝜉2 + (𝑛 −

1

2
)𝐵𝑛

(0)
𝑐𝑜𝑠ℎ (𝑛 −

1

2
) 𝜉2 +

∞
𝑛=1

(𝑛 +
3

2
)𝐶𝑛

(0)
𝑠𝑖𝑛ℎ (𝑛 +

3

2
) 𝜉2 + (𝑛 +

3

2
)𝐷𝑛

(0)
𝑐𝑜𝑠ℎ (𝑛 +

3

2
) 𝜉2)

(𝐼2(𝑛−1)−𝐼2(𝑛+1))|𝜉=𝜉2
2𝑛+1

=

∫
𝑠𝑖𝑛 𝜂

(𝑅 𝑠𝑖𝑛 𝜃)|𝜉=𝜉2(𝑐𝑜𝑠ℎ 𝜉2−𝜏)
2

𝜕𝜓(2)

𝜕𝑅
𝑑𝜏

1

−1
         (28)

    

(iii) Continuity of shear stress component at interfaces: 

𝜏𝜉𝜂
(0) = 𝜏𝑅𝜃

(1)
 on 𝜉 = 𝜉1 gives:  

{
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
(−

3

2
𝑠𝑖𝑛ℎ2 𝜉1∑(

𝐴𝑛
(0)
𝑐𝑜𝑠 ℎ (𝑛 −

1

2
) 𝜉1 +𝐵𝑛

(0)
𝑠𝑖𝑛 ℎ (𝑛 −

1

2
) 𝜉1

+𝐶𝑛
(0)
𝑐𝑜𝑠 ℎ (𝑛 +

3

2
) 𝜉1 + 𝐷𝑛

(0)
𝑠𝑖𝑛 ℎ (𝑛 +

3

2
) 𝜉1

)(
𝐼3(𝑛 − 1) − 𝐼3(𝑛 + 1)

2𝑛 + 1
)
𝜉=𝜉1

∞

𝑛=1

)

−
3

2
𝑐𝑜𝑠ℎ 𝜉1∑(

𝐴𝑛
(0)
𝑐𝑜𝑠 ℎ (𝑛 −

1

2
) 𝜉1 + 𝐵𝑛

(0)
𝑠𝑖𝑛 ℎ (𝑛 −

1

2
) 𝜉1

+𝐶𝑛
(0)
𝑐𝑜𝑠 ℎ (𝑛 +

3

2
) 𝜉1 + 𝐷𝑛

(0)
𝑠𝑖𝑛 ℎ (𝑛 +

3

2
) 𝜉1

)(
𝐼2(𝑛 − 1) − 𝐼2(𝑛 + 1)

2𝑛 + 1
)
𝜉=𝜉1

+

∞

𝑛=1

∑

(

 
 𝐴𝑛

(0)
(𝑛 −

1

2
)
2

𝑐𝑜𝑠ℎ (𝑛 −
1

2
) 𝜉1 + 𝐵𝑛

(0)
(𝑛 −

1

2
)
2

𝑠𝑖𝑛ℎ (𝑛 −
1

2
) 𝜉1

+𝐶𝑛
(0)
(𝑛 +

3

2
)
2

𝑐𝑜𝑠ℎ (𝑛 +
3

2
) 𝜉1 + 𝐷𝑛

(0)
(𝑛 +

3

2
)
2

𝑠𝑖𝑛ℎ (𝑛 +
3

2
) 𝜉1

)

 
 

∞

𝑛=1

(
𝐼1(𝑛 − 1) − 𝐼1(𝑛 + 1)

2𝑛 + 1
)
𝜉=𝜉1

+

3

2
∑(

𝐴𝑛
(0)
𝑐𝑜𝑠 ℎ (𝑛 −

1

2
) 𝜉1 + 𝐵𝑛

(0)
𝑠𝑖𝑛 ℎ (𝑛 −

1

2
) 𝜉1

+𝐶𝑛
(0)
𝑐𝑜𝑠 ℎ (𝑛 +

3

2
) 𝜉1 + 𝐷𝑛

(0)
𝑠𝑖𝑛 ℎ (𝑛 +

3

2
) 𝜉1

)(
𝐼5(𝑛 − 1) − 𝐼5(𝑛 + 1)

2𝑛 + 1
)
𝜉=𝜉1

∞

𝑛=1

−∑(
𝐴𝑛
(0)
𝑐𝑜𝑠 ℎ (𝑛 −

1

2
) 𝜉1 +𝐵𝑛

(0)
𝑠𝑖𝑛 ℎ (𝑛 −

1

2
) 𝜉1

+𝐶𝑛
(0)
𝑐𝑜𝑠 ℎ (𝑛 +

3

2
) 𝜉1 + 𝐷𝑛

(0)
𝑠𝑖𝑛 ℎ (𝑛 +

3

2
) 𝜉1

)(𝐼4(𝑛))𝜉=𝜉1

∞

𝑛=1
}
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

= ∫
√1 − 𝜏2

(𝑐𝑜𝑠ℎ 𝜉1 − 𝜏)
3
𝜂1 (𝛼1

2 (
𝜕𝑣(1)

𝜕𝑅
−
𝑣(1)

𝑅
+
1

𝑅

𝜕𝑢(1)

𝜕𝜃
) −

1

𝑅 𝑠𝑖𝑛 𝜃
𝐸4𝜓(1))|

1

−1 𝜉=𝜉1

𝑑𝜏 

             (29) 

and 𝜏𝜉𝜂
(0) = 𝜏𝑅𝜃

(2)
 on𝜉 = 𝜉2 gives: 
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{
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
(−

3

2
𝑠𝑖𝑛ℎ2 𝜉2∑(

𝐴𝑛
(0)
𝑐𝑜𝑠 ℎ (𝑛 −

1

2
) 𝜉2 +𝐵𝑛

(0)
𝑠𝑖𝑛 ℎ (𝑛 −

1

2
) 𝜉2

+𝐶𝑛
(0)
𝑐𝑜𝑠 ℎ (𝑛 +

3

2
) 𝜉2 +𝐷𝑛

(0)
𝑠𝑖𝑛 ℎ (𝑛 +

3

2
) 𝜉2

)(
𝐼3(𝑛 − 1) − 𝐼3(𝑛 + 1)

2𝑛 + 1
)
𝜉=𝜉2

∞

𝑛=1

)

−
3

2
𝑐𝑜𝑠ℎ 𝜉2∑(

𝐴𝑛
(0)
𝑐𝑜𝑠 ℎ (𝑛 −

1

2
) 𝜉2 + 𝐵𝑛

(0)
𝑠𝑖𝑛 ℎ (𝑛 −

1

2
) 𝜉2

+𝐶𝑛
(0)
𝑐𝑜𝑠 ℎ (𝑛 +

3

2
) 𝜉2 + 𝐷𝑛

(0)
𝑠𝑖𝑛 ℎ (𝑛 +

3

2
) 𝜉2

)(
𝐼2(𝑛 − 1) − 𝐼2(𝑛 + 1)

2𝑛 + 1
)
𝜉=𝜉2

+

∞

𝑛=1

∑

(

 
 𝐴𝑛

(0)
(𝑛 −

1

2
)
2

𝑐𝑜𝑠ℎ (𝑛 −
1

2
) 𝜉2 + 𝐵𝑛

(0)
(𝑛 −

1

2
)
2

𝑠𝑖𝑛ℎ (𝑛 −
1

2
) 𝜉2

+𝐶𝑛
(0)
(𝑛 +

3

2
)
2

𝑐𝑜𝑠ℎ (𝑛 +
3

2
) 𝜉2 + 𝐷𝑛

(0)
(𝑛 +

3

2
)
2

𝑠𝑖𝑛ℎ (𝑛 +
3

2
) 𝜉2

)

 
 

∞

𝑛=1

(
𝐼1(𝑛 − 1) − 𝐼1(𝑛 + 1)

2𝑛 + 1
)
𝜉=𝜉2

+

3

2
∑(

𝐴𝑛
(0)
𝑐𝑜𝑠 ℎ (𝑛 −

1

2
) 𝜉2 + 𝐵𝑛

(0)
𝑠𝑖𝑛 ℎ (𝑛 −

1

2
) 𝜉2

+𝐶𝑛
(0)
𝑐𝑜𝑠 ℎ (𝑛 +

3

2
) 𝜉2 + 𝐷𝑛

(0)
𝑠𝑖𝑛 ℎ (𝑛 +

3

2
) 𝜉2

)(
𝐼5(𝑛 − 1) − 𝐼5(𝑛 + 1)

2𝑛 + 1
)
𝜉=𝜉2

∞

𝑛=1

−∑(
𝐴𝑛
(0)
𝑐𝑜𝑠 ℎ (𝑛 −

1

2
) 𝜉2 +𝐵𝑛

(0)
𝑠𝑖𝑛 ℎ (𝑛 −

1

2
) 𝜉2

+𝐶𝑛
(0)
𝑐𝑜𝑠 ℎ (𝑛 +

3

2
) 𝜉2 + 𝐷𝑛

(0)
𝑠𝑖𝑛 ℎ (𝑛 +

3

2
) 𝜉2

)(𝐼4(𝑛))𝜉=𝜉2

∞

𝑛=1
}
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 

    = ∫
√1−𝜏2

(𝑐𝑜𝑠ℎ 𝜉2−𝜏)
3 𝜂2 (𝛼2

2 (
𝜕𝑣(2)

𝜕𝑅
−
𝑣(2)

𝑅
+

1

𝑅

𝜕𝑢(2)

𝜕𝜃
) −

1

𝑅 𝑠𝑖𝑛 𝜃
𝐸4𝜓(2))|

1

−1
𝜉=𝜉2

𝑑𝜏

                                                                    (30)

              

(iv) Couple stresses vanish at the interface: 
1

2
curl�̄�(1) = 0 on 𝜉 = 𝜉1 gives 

 ∫ 𝐸2𝜓(1)|
1

−1 𝜉=𝜉1
𝑑𝜏 = 0   (31) 

 

and 
1

2
curl�̄�(2) = 0  on 𝜉 = 𝜉2 gives  

 ∫ 𝐸2𝜓(2)|
1

−1 𝜉=𝜉2
𝑑𝜏 = 0   (32) 

We see that the above sets of equations to determine 

the arbitrary constants are infinite series in infinite sets 

of constants. Solving these equations for the constants 

is the most crucial and complex task in this study that 

got handled using the definition of equality of two 

infinite series that states that " Two infinite series are 

equal if and only if the corresponding partial sums are 

equal".  Thus, equating the sum to the first one term of 

the two series (here, we take the right-hand side of the 

above equations as the zero series) gives ten equations 

in ten unknowns 

𝐴1
(0)
, 𝐴1
(1)
, 𝐴1
(2)
, 𝐵1

(0)
, 𝐵1

(1)
, 𝐵1

(2)
, 𝐶1

(0)
, 𝐶1

(1)
, 𝐶1

(2)
, 𝐷1

(0)  
 

that is solved for these unknowns. Now, equating the 

sum to the first two terms of the two series, we again 

get ten equations in ten unknowns, namely 

𝐴2
(0)
, 𝐴2
(1)
, 𝐴2
(2)
, 𝐵2

(0)
, 𝐵2

(1)
, 𝐵2

(2)
, 𝐶2

(0)
, 𝐶2

(1)
, 𝐶2

(2)
, 𝐷2

(0)
  

that is solved and so on.  

 

4 Numerical discussions 
As mentioned earlier, in this section, we present the 

flow configuration and the pressure distribution within 

and around the fluid bubbles filled with industrial 

fluids. We considered Newtonian fluids, water or air, 

to fill the region 𝑆0  (the region outside the fluid 

bubbles) and non-Newtonian fluids, Cyclopentane or 

DIDP in 𝑆𝑖, 𝑖 = 1,2. Some relevant studies found in 

[8] and [17]. Data required to carry out the simulations 

are taken from the published results [18, 19] and 

presented in Table 1 below.   

 

Fluid 
Temperature 

(K) 

Viscosity 

(mPa.s) 

Temperature 

(K) 

Viscosity 

(mPa.s) 

Cyclopentane 293.15 0.443 273.15 0.563 

DIDP 293.15 123 283.16 267.36 

Water - 1.002 - - 

Air - 0.0018 - - 
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Table 1 shows the values of Cyclopentane's and 

DIDP's viscosities at one atmospheric pressure and 

temperatures at 293.150K, 273.150K and 283.160K. 

These values indicate DIDP as more viscous than 

compared to Cyclopentane. From the table above, we 

see that the viscosity of water is higher than that of air. 

 

The values of the couple's stress momentum parameter 

"η" are assigned based on the mathematical constraints 

derived by Stokes [12, 13]. For  visualizing the flow 

and pressure plots, we fixed this value inside the 

region 𝑆1  as  η1 = 0.01and that in the region 𝑆2  as   

η2 = 0.1 . Thus, the couple stress momentum 

parameter assumes a higher value in the region 𝑆2 than 

in 𝑆1. The viscosity of the fluid within 𝑆𝑖, 𝑖 = 1,2 is 

taken to be either 0.443mPa.s in the case of 

Cyclopentane fluid bubbles or 123 mPa.s in the case 

of  DIDP bubbles unless specified. Further, the 

velocity of the fluid at infinity (U) is assumed unity.  

 

Using this data, we solved equations (25) – (32) and 

(19)  to determine the values of the arbitrary constants. 

We developed codes in MATHEMATICA software to 

solve the equations and determine the expressions for 

the stream functions in all three regions 𝑆0 , 𝑆1 and 𝑆2.  

The expression for the pressure function in the region 

𝑆0 is obtained by eliminating stream function from 

equations (5) and (6). The resulting equation is solved 

using the method of separation of variables, the details 

of which are in Appendix- B. 

 

The pressure function in the regions𝑆𝑖, 𝑖 = 1,2  are 

obtained by integrating equations (11) and (12). After 

a straight forward calculation, we get the expression 

for pressure inside the region 𝑆𝑖 as                             

𝑃(𝑖)(𝑅, 𝜃) = 𝜇𝑖 ∑ 𝐴𝑛
(𝑖)∞

𝑛=1
6+4𝑛

𝑛
𝑅𝑛𝑃𝑛(cos𝜃), 𝑖 = 1,2. 

 

The flow pattern and pressure distribution are depicted 

in Figures 2-15. Figures 2 – 5 portray the streamlines 

and pressure contours when the two bubbles are of 

equal radius. Figures 6-13 represent the flow 

configuration and pressure distribution when the two 

bubbles are of unequal radii.  

 
 

 

 

 
 

 

 

 

 

Table 1. Data at one atm Pressure 

 

2(a) Pressure 

distribution 

2(b) Streamlines 

Figure 2. Pressure distribution and streamlines for Cyclopentane 

fluid bubbles surrounded by water 
𝜉1 = 1.0, 𝜉2 = −1.0, 𝛼1 = 0.0664, 𝛼2 = 0.021, 𝜇0 = 1.002 × 10

−3, 
𝜇1 = 𝜇2 = 0.4413 × 10−3 

3(a) Pressure 

distribution 

3(b) Streamlines 

Figure 3. Pressure distribution and streamlines for DIDP fluid 

bubbles surrounded by water 
𝜉1 = 1.0, 𝜉2 = −1.0, 𝛼1 = 1.10905, 𝛼2 = 0.350714, 𝜇0 = 1.002 × 10

−3, 
𝜇1 = 𝜇2 = 0.123 
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4(a) Pressure 

distribution 

4(b) Streamlines 

Figure 4. Pressure distribution and streamlines for Cyclopentane 

fluid bubbles surrounded by air 
𝜉1 = 1.0, 𝜉2 = −1.0, 𝛼1 = 0.0664, 𝛼2 = 0.021, 𝜇0 = 1.82 × 10

−5, 
𝜇1 = 𝜇2 = 0.4413 × 10−3 

 

5(a) Pressure 

distribution 

5(b) Streamlines 

Figure 5. Pressure distribution and streamlines for DIDP fluid 

bubbles surrounded by air 
𝜉1 = 1.0, 𝜉2 = −1.0, 𝛼1 = 1.10905, 𝛼2 = 0.350714, 𝜇0 = 1.8 × 10

−5, 
𝜇1 = 𝜇2 = 0.123 

7(a) Pressure 

distribution 

7(b) Streamlines 

Figure 7. Pressure distribution and streamlines for DIDP fluid 

bubbles surrounded by water 
𝜉1 = 1.5, 𝜉2 = −1.0, 𝛼1 = 1.10905, 𝛼2 = 0.350714, 𝜇0 = 1.002 × 10

−3, 
𝜇1 = 𝜇2 = 0.123 

6(a) Pressure 

distribution 

6(b) Streamlines 

Figure 6. Pressure distribution and streamlines for Cyclopentane 

fluid bubbles surrounded by water 
𝜉1 = 1.5, 𝜉2 = −1.0, 𝛼1 = 0.0664, 𝛼2 = 0.021, 𝜇0 = 1.002 × 10

−3, 
𝜇1 = 𝜇2 = 0.4413 × 10−3 
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8(a) Pressure 

distribution 

8(b) Streamlines 

Figure 8. Pressure distribution and streamlines for Cyclopentane 

fluid bubbles surrounded by air 
𝜉1 = 1.5, 𝜉2 = −1.0, 𝛼1 = 0.0664, 𝛼2 = 0.021, 𝜇0 = 1.82 × 10

−5, 
𝜇1 = 𝜇2 = 0.4413 × 10−3 

 

9(a) Pressure 

distribution 

9(b) Streamlines 

Figure 9. Pressure distribution and streamlines for DIDP fluid 

bubbles surrounded by air 
𝜉1 = 1.5, 𝜉2 = −1.0, 𝛼1 = 1.10905, 𝛼2 = 0.350714, 𝜇0 = 1.8 × 10

−5, 
𝜇1 = 𝜇2 = 0.123 

10(a) Pressure 

distribution 

10(b) Streamlines 

Figure 10. Pressure distribution and streamlines for 

Cyclopentane fluid bubbles surrounded by water 
𝜉1 = 1.0, 𝜉2 = −1.5, 𝛼1 = 0.0664, 𝛼2 = 0.021, 𝜇0 = 1.002 × 10

−3, 
𝜇1 = 𝜇2 = 0.4413 × 10−3 

11(a) Pressure 

distribution 

11(b) Streamlines 

Figure 11. Pressure distribution and streamlines for DIDP fluid 

bubbles surrounded by water 
𝜉1 = 1.0, 𝜉2 = −1.5, 𝛼1 = 1.10905, 𝛼2 = 0.350714, 𝜇0 = 1.002 × 10

−3, 
𝜇1 = 𝜇2 = 0.123 
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12(a) Pressure 

distribution 

12(b) Streamlines 

Figure 12. Pressure distribution and streamlines for 

Cyclopentane fluid bubbles surrounded by air 
𝜉1 = 1.0, 𝜉2 = −1.5, 𝛼1 = 0.0664, 𝛼2 = 0.021, 𝜇0 = 1.82 × 10

−5, 
𝜇1 = 𝜇2 = 0.4413 × 10−3 

 

13(a) Pressure 

distribution 

13(b) Streamlines 

Figure 13. Pressure distribution and streamlines for DIDP fluid 

bubbles surrounded by air 
𝜉1 = 1.0, 𝜉2 = −1.5, 𝛼1 = 1.10905, 𝛼2 = 0.350714, 𝜇0 = 1.8 × 10

−5, 
𝜇1 = 𝜇2 = 0.123 

14(a) Pressure 

distribution 

14(b) Streamlines 

Figure 14. Pressure distribution and streamlines for DIDP fluid 

bubbles surrounded by water 
𝜉1 = 1.0, 𝜉2 = −1.0, 𝛼1 = 1.63401, 𝛼2 = 0.51672, 𝜇0 = 1.002 × 10

−3, 
𝜇1 = 𝜇2 = 0.267 

15(a) Pressure 

distribution 

15(b) Streamlines 

Figure 15. Pressure distribution and streamlines for DIDP fluid 

bubbles surrounded by air 
𝜉1 = 1.0, 𝜉2 = −1.0, 𝛼1 = 1.63401, 𝛼2 = 0.51672, 𝜇0 = 1.8 × 10

−5, 
𝜇1 = 𝜇2 = 0.267 
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4.1 Observations 

 The pressure around the fluid bubbles is high 

when surrounded by water than air. As water 

is a more viscous fluid than air, it offers more 

resistance to its flow. 

 The pressure within DIDP-fluid bubbles is 

more than that within Cyclopentane bubbles 

since DIDP is more viscous than 

Cyclopentane.  

 Studies reveal that couple stresses decrease 

the fluid flow velocity, thereby increasing the 

pressure in its surroundings [20]. This 

phenomenon is evident in the case of equal 

spheres, where the pressure in 𝑆1 is less than 

that in 𝑆2. (te that the couple stress momentum 

parameter is assigned a lower value for the 

fluid inside 𝑆1 than that in 𝑆2.)   
 In the case of Cyclopentane-fluid bubbles, 

isobaric lines in the region 𝑆0 are symmetrical 

about the x-axis, whereas they are 

asymmetrical in the case of DIDP bubbles. 

 We see from Figures (3 and 14) and (5 and 15) 

that, with an increase in the viscosity of DIDP, 

the pressure in 𝑆0  took values on a broader 

scale. However, this phenomenon not being 

observed in the case of Cyclopentane.   

 Figures 14 and 15 present the streamlines and 

pressure contours with the bubbles filled with 

the same fluid but with different viscosities. 

We understand that this difference in the 

viscosities did not affect the pressure in the 

region 𝑆0. 

   

5 Conclusions 

We developed a mathematical model to simulate a 

Newtonian fluid flow past a pair of separated non-

Newtonian, impermeable fluid bubbles. To evaluate 

the model's applicabilities on the industrial front, we 

assigned data on some widely used industrial fluids to 

the model parameters.  Data on the density,  viscosity 

of air or water are the inputs to the fluid flow model 

outside the fluid bubbles. Whereas the data on 

Cyclopentane or DIDP is for the parameters for the 

model within the bubbles. We depicted the flow 

configuration and the pressure distribution when the 

fluid bubbles have equal and unequal radii and 

discussed our observations.  From these conclusions, 

we anticipate a possible means of pressure regulation 

in transport phenomenon problems from the industrial 

front; and the prime objective is to regulate pressure in 

and around spherical objects. This work's future scope 

is to extend the developed mathematical model to suit 

some bio-medical engineering applications. 
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Appendix- A 

 

Denote 

  𝐼1(𝑛) = ∫
𝑃𝑛(𝑥)

(𝑐 𝑜𝑠ℎ 𝜉−𝑥)1/2
𝑑𝑥 =

2√2

2𝑛+1

1

−1
𝑒−(𝑛+1/2)|𝜉|,     

 (A.1) 

  𝐼2(𝑛) = ∫
𝑃𝑛(𝑥)

(𝑐 𝑜𝑠ℎ 𝜉−𝑥)3/2
𝑑𝑥 =

2√2

𝑠𝑖𝑛ℎ|𝜉|

1

−1
𝑒−(𝑛+1/2)|𝜉|,     (A.2) 

  𝐼3(𝑛) = ∫
𝑃𝑛(𝑥)

(𝑐 𝑜𝑠ℎ 𝜉−𝑥)5/2
𝑑𝑥 =

4√2

3(𝑠𝑖𝑛ℎ|𝜉|)2
1

−1
(
2𝑛+1

2
+ 𝑐𝑜𝑡ℎ|𝜉|) 𝑒−(𝑛+1/2)|𝜉|   (A.3) 

  𝐼4(𝑛) = ∫
(1−𝑥2)𝑃𝑛

′ (𝑥)

(𝑐 𝑜𝑠ℎ 𝜉−𝑥)1/2
𝑑𝑥 =

𝑛(𝑛+1)

2𝑛+1
(𝐼1(𝑛 − 1) − 𝐼1(𝑛 + 1))

1

−1
    (A.4) 

 

 

Appendix- B 

 

We now derive the expression for the pressure function from equations (5) and (6). Substituting the expressions 

for the scale factors from (2) in these equations, we get 
      
0

02oshcp
E

a

  


 

 
 

 
,        (B.1) 
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E

  


 

 
 

 
.        (B.2) 

Eliminating  0
  from these equations, we get 

 
 

   
 0 0

1 1 2osh osh 1 0.
p p

c c    
   

 
      
       
      
   

     (B.3) 

Using the method of separation of variables, we get 

       
1/20

1 1
0

1 1
, osh osh inh

2 2
n n n

n

p c H c n G s n P      


 


    
         

    
,   (B.4) 

where's are Legendre's polynomials.  

Substituting  this and the expression for the stream function in (B.1) and (B.2), the arbitrary constants 𝐻𝑛+1and 

𝐺𝑛+1 can be expressed in terms of 𝐴𝑛+1, 𝐵𝑛+1, 𝐶𝑛+1 and 𝐷𝑛+1 [15]. 
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