
 

   
Abstract: - The induced flexural vibration of slender pipe systems with continuous non uniform 
 cross sectional area containing laminar flowing fluid lying on extended Winkler viscoelastic 

foundation is considered. The Euler Bernoulli model of the pipe has hinged ends. The inlet flow 

is considered constant steady that interacts with the wall of the pipe. The mathematical model is 

developed and its corresponding solution is obtained. The influence of the combination of 

variation of cross section, foundation stiffness and damping on the critical velocities, complex 

natural frequencies and stabilization of the system is presented.
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1. Introduction 
 

    Many researchers studied different 

parameters of the vibration of a pipe 

containing a flow fluid and presented the 

influence of these parameters in terms on the 

stability and critical flow velocity [1 -12]. In 

general, when the internal flow velocity is 

raised up to a definite critical value, the 

piping structure will be unstable. On the 

other hand, several studies investigated the 

effect of stiffness and damping of elastic 

foundation toward the stability features of 

the pipe containing flow fluid by obtaining 

the natural frequencies and critical flow 

velocities [13-25]. One of the early studies 

conducted by Stein et al. [18] who 

investigated the vibration features of a pipe 

containing pressurized flow fluid lying on an 

elastic foundation. They presented the effect 

of internal foundation stiffness, pressure, 

fluid velocity on the stability and can be 

guaranteed for certain range of flow 

velocities. Becker et al.[18] presented 

theoretical analysis for the vibration of pipes 

with fixed-free ends on different types of 

elastic foundation and validated with 

experimental results. Lottati et al.[23] 

investigated the influence of the foundation 

stiffness and damping on the vibration 

characteristics of the pipe conveying fluid 

for cantilever and fixed-fixed ends. They 

concluded that the effect of elastic 

foundation is revealed elevating of the 

critical flow fluid velocity. They found that 

damping is working as stabilizing or 

destabilizing dependent on the mass ratio of 

the pipe and fluid. Simply supported ends 

for a pipe containing flow fluid supported 

with elastic foundation was considered by 

Dermendjian-Ivanova [26]. He obtained the 
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critical flow velocity and its dependence on 

the elastic foundation.  Impollonia et al.[28] 

considered the articulated pipe containing 

flow fluid and demonstrated the influence of 

elastic foundations on divergence and 

flutter. Lilkova-Markova et al.[29] 

addressed the vibration characteristics of a 

pipe with fixed-free ends lying on an elastic 

foundation with lateral force at its tip. 

Carbon nanotubes containing flow fluid 

lying on viscoelastic Winkler elastic 

foundation was investigated by Ghavanloo 

et al.[30]. They presented the variation of 

resonant frequencies and critical flow 

velocities due to the presence of elastic and 

damping parameters in the Winkler 

foundation. Elishakoff et al.[31] and 

Djondjorov [25] considered elastic 

foundation partially attached to the 

cantilever pipe containing flow fluid and yet 

still can affect the stabilization of the piping 

system. Marzani et al.[32] considered a non-

uniform elastic foundation of a cantilever 

pipe containing flow fluid. They concluded 

that the stability in terms of critical flow 

velocity can be affected depending on the 

mass ratio. Javadi et al. [33] considered the 

pipes of viscoelastic materials conveying 

fluid with viscoelastic of Kelvin-Voigt 

fractional type. Mostafa [34] used finite 

element method to analyze a pipe containing 

flow fluid with constant velocity lying on 

modified Winkler viscoelastic foundation 

and hinged at ends. He stated that the 

stiffness modulus tend to increase the 

critical flow velocities while damping acting 

in an opposite manner. 

Olayiwola [21] utilized integral transforms 

to study the current piping system and 

presented closed form relations for vibration 

characteristics. Doare et al.[35] addressed 

the correlation of the local with global 

lateral motions of pipes containing flow 

fluid on Winkler elastic foundation and 

discussed its local and global instability. 

Karlicic et al.[36] conducted the nonlinear 

dynamic and vibration characteristics for 

single walled carbon nanotube in a magnetic 

field with simply supports at ends and lying 

on viscoelastic foundation of Kelvin-Voigt 

type. Skarian et al.[37] focused on a 

viscoelastic foundation modeled as 

fractional Kelvin-Voigt kind in investigating 

dynamic stability behavior of a pipe 

containing flow fluid.  They showed that the 

mass ratio and fractional order parameter 

can be stabilizing or and destabilizing 

factors. Several studies considered Eddy 

current dampers to be used to suppress the 

dynamical instability [38-39 by Saxena et 

al.[14], Jae-Sung et al.[15] ]. Apparently, 

most of the above studies concluded that the 

stabilization effect of the stiffness 

foundation toward the features of pipe with 

internal flow such as the critical flow 

velocities and the critical resonant 

frequencies are proportionally increasing. 

The pipe conveying a fluid with variable 

cross sectional area has many applications in 

aircraft, biological engineering and 

industrial machines. Gaith [6] studied the 

vibration of pipe with variable cross section 

that is conveying a fluid hinged at ends and 

presented the impact of several parameters 

toward the stability map of the system. To 

the best of author’s knowledge, the problem 

of pipe containing a flow fluid with non-

uniform cross section and lying on an 

viscoelastic foundation was never 

considered before. 

In this study lateral vibration in y-direction 

of pipe containing internal flow fluid with 

variable cross sectional and hinged at end is 

investigated. The governing equation of 

motion will be introduced analytically using 

energy and solved using Galerkin’s 

procedure.  The stability analysis of the 

piping system will be studied considering 

different input parameters. 

 
 
 

2. Formulation of The Problem 

 

Fig. 1 shows the pipe of finite length of L 

along the axial coordinate x-direction, with 

inlet diameter b, outlet diameter a, mass per 

unit length ( )pm x containing a flow fluid 

with constant inlet velocity ov  and of mass 

per unit length ( )fm x . The pipe is of 
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variable circular cross section and simply 

supported at ends, E is Young’s constant, 

)(xI is variable moment of inertia. The pip 

is lying on Winkler viscoelastic foundation 

of stiffness k and viscosity c. 

 

 
Figure 1. Schematic diagram of simply 

supported pipe with non-uniform cross 

section. 

 

The partial differential governing equation 

of motion for the current piping system for 

the hinged ends is derived based on applying 

the variation procedure [5] of the total 

energy including kinetic and potential 

energies of the system and applying 

Hamilton’s principle as following: 
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Where ),( txw is the flexural deflection of 

the pipe, ( )I x is the moment of inertia, 

( )V x is the fluid velocity function of the 

axial span of the tubular beam, and the 

hinged ends conditions are defined as:  
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The parameters of the system can be 

presented in a non-dimensional form as 

following: 
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Hence, the governing equation of Eq.(1) is 

represented in non-dimensional form as: 
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(6) 

 

All the non-dimensional coefficients are 

listed in Appendix A. The general solution 

of the pipe deflection can be expressed in 

the form ( , ) ( ) i TW X T X e  . Hence, 

Eq. (6) becomes: 
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0

d d d d
B B B B

dX dX dX dX
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The coefficients in Eq. (7) are listed in 

Appendix A. The mode shape solution of the 

system can be calculated through the 

Galerkin’s procedure assuming the mode 

function as: 

 

1 2( ) sin sin 2X c X c X     (8) 

The complex circular frequency can be 

obtained using the four boundary conditions 

at hinged end. 
 

 

3. Results and Discussion: 
 
The pipe conveying a fluid with certain inlet 

velocity can stay in stable manner as long as 

it does not reach a certain value designated 

as critical flow velocity. Hence, Figs. 2 and 

3 present the critical flow velocity for the 

first and second mode, respectively, for 

different non-uniform cross section ratios, 

b/a, at different pure foundation stiffness 

values. For a given specific stiffness value, 
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the critical velocity is decreasing when 

increasing the cross section ratios. 

Meanwhile, the figures show clearly that by 

increasing the elastic foundation stiffness at 

a given cross section ratios, b/a, the 

corresponding critical velocity will increase. 

Since the cross section ratio is decreasing 

the critical velocity, adding elastic 

foundation will elevate the critical velocity 

significantly, and consequently the stable 

region will expand. 
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Figure 2. The dimensionless critical flow 

fluid velocity for the first resonant frequency 

versus the non-uniform cross section ratios, 

b/a for different elastic foundation stiffness 

values K and µ=0. 
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Figure 3. The dimensionless critical flow 

fluid velocity for the second resonant 

frequency versus the non-uniform cross 

section ratios, b/a for different elastic 

foundation stiffness values K and µ=0. 

 

Figs. 4 and 5 show the influence of flow 

velocity on real parts of the first and second 

circular frequencies, respectively, at 

different values of foundation stiffness. The 

circular resonant frequencies are decreasing 

by increasing the flow velocity and diminish 

at certain critical flow velocity. For piping 

systems resting on an elastic foundation, the 

natural frequencies are elevated and vanish 

at higher critical flow velocity compared to 

the one without elastic foundation. This 

general conclusion is validated in previous 

studies for pipes with uniform cross 

sectional areas [18, 24,27]. 
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Figure 4. The dimensionless first circular 

resonant frequency versus the non-uniform 

flow fluid velocity, U, for different elastic 

foundation stiffness values K, µ=0 and, b/a 

=1.2. 
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Figure 5. The non-dimensional second 

circular resonant frequency versus the non-

uniform flow fluid velocity, U, for different 

elastic foundation stiffness values K, µ=0 

and, b/a =1.2. Figure 5. The non-

dimensional second circular resonant 

frequency versus the non-uniform flow fluid 

velocity, U, for different elastic foundation 

stiffness values K, µ=0 and, b/a =1.2. 

 

 The two complex parts of non-dimensional 

first and second natural frequencies are 

presented in Figs. 6 and 7, respectively, in 

terms of the fluid velocity for K=0, 100 and 

damping µ=0, 30, b/a = 1.2. Fig. 6 shows 

that for K=0 and 100, with no foundation 

damping, µ=0, there are real and imaginary 

parts for the second resonant frequency due 

to the cross section ratio, b/a = 1.2. The real 

part is decreasing by increasing the flow 

velocity while the imaginary is almost zero. 
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For U > 4, the real part is decreasing and the 

imaginary part is positively increasing 

which displays a contribution of positive 

damping effect. For K=100, µ=0 and 30. 

The existence of damping has lowered 

slightly the real parts and critical flow 

velocity but, concurrently, increased 

significantly the positive damping imaginary 

part for all flow velocities. Fig. 7 shows that 

the influence of foundation stiffness occurs 

in elevating the real part of first frequency 

and elevating the flow velocity till the real 

part is vanished. On the other hand, 

foundation damping is slightly affecting the 

stability region. Fig. 8 shows the real and 

imaginary parts of the second frequency for 

the case K = 0, 1000, µ = 0, 30. The large 

value of foundation stiffness leads to huge 

elevation in the real part and elevates 

consequently the flow velocity where the 

real part vanishes. At that high stiffness 

value, the damping effect, µ = 30, will 

elevate the imaginary damping part of the 

system for a certain flow velocity then it will 

decrease to zero at the critical velocity for it 

vanishes at K = 1000.  
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Figure 6. The real (solid) and imaginary 

(dashed) parts of dimensionless first 

resonant frequencies versus the 

dimensionless fluid velocity for different 

values of foundation stiffness K=0, 100 and 

damping µ=0, 30, b/a = 1.2. 

 

Apparently the influence of damping on the 

first frequency is not substantial on the real 

and imaginary parts of the first circular 

frequency as shown in Fig. 9. However 

different behavior is displayed for the 

second circular frequency. Fig. 10 depicts 

the effect of foundation damping on the real 

and imaginary parts of the second circular 

frequency for K = 100 and U = 2. By 

increasing the foundation damping, the real 

part of second frequency is decreasing until 

it vanishes at µ = 80, and, concurrently, the 

imaginary part is increasing and having two 

positive damping branches at µ = 75. 

Figures 11-13 display the influence of 

foundation damping on the two complex 

parts of second circular frequency for large 

stiffness values. Fig. 11 depicts the effect of 

damping on the real part of second circular 

frequency for large foundation stiffness K = 

0, 100, 1000, and 10000. The stiffness is 

elevating the real part and, and concurrently, 

the foundation damping µ is  
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Figure 7. The real (solid) and imaginary 

(dashed) parts of dimensionless second 

resonant frequencies versus the 

dimensionless fluid velocity for variant 

values of foundation stiffness K=0, 100 and 

damping µ=0, 30, b/a = 1.2. 
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Figure 8. The real (solid) and imaginary 

(dashed) parts of dimensionless second 

resonant frequencies versus the 

dimensionless fluid velocity for variant 

values of foundation stiffness K=0, 100 and 

damping µ=0, 30, b/a = 1.2. 
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reducing the real part. However, this 

foundation damping is playing a substantial 

role in building up the imaginary parts of the 

second frequency as shown in Figs. 12-13. 

The existence and increasing of foundation 

damping is lowering the real part and critical 

flow velocity, but is generating the 

imaginary damping part for the second 

frequency and, concurrently, the existence 

of foundation stiffness will generate two 

positive braches at larger foundation 

damping values. The first circular frequency 

is not affected significantly by the 

foundation damping. 
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Figure 9. The relationship between the real 

and imaginary parts of dimensionless second 

resonant frequencies with the dimensionless 

foundation damping µ for K= 1000, U=2 

and b/a = 1.2. 
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Figure 10. The relationship between the real 

(dashed) and imaginary (solid) parts of 

dimensionless second resonant frequencies 

with the dimensionless foundation damping 

µ at K= 100, U=2 and b/a = 1.2. 
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Figure 11. The relationship between the real 

part of dimensionless second resonant 

frequencies with the dimensionless 

foundation damping µ for different large K, 

at U=2 and b/a = 1.2. 
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Figure 12. The relationship between the 

first imaginary part of dimensionless second 

resonant frequencies with the dimensionless 

foundation damping µ for different large K, 

at U=2 and b/a = 1.2. 
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Figure 13. The relationship between the 

second imaginary part of dimensionless 

second resonant frequencies with the 

dimensionless foundation damping µ for 

different large K, at U=2 and b/a = 1.2. 
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4. Conclusion 
 
The effect of viscoelastic modified Winkler 

foundation and the non-uniform cross 

sectional area on the stability and vibration 

of a pipe with non-uniform cross section 

conveying a fluid with hinged ends is 

presented. It is found that the existence of 

non-uniform cross section will reduce the 

circular resonant frequencies and correlated 

critical flow fluid velocities, however, with 

the foundation stiffness; the natural 

frequencies are elevated and vanish at 

greater critical flow velocity compared to 

the one without elastic foundation. This will 

expand the stability regions and more 

significant for the second mode. The 

existence and increasing of foundation 

damping is lowering the real part and critical 

flow velocity, but is generating the 

imaginary damping part for the second 

frequency and, concurrently, the existence 

of foundation stiffness will generate two 

positive braches at larger foundation 

damping values. The first circular frequency 

is not affected significantly by the 

foundation damping. 

 

 

APPENDIX A 
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of the pipe,  is the complex circular 

frequency and * , ,
p

p f

f

and


  


  

are density of pipe and fluid, 

respectively  

 

1

8( 1)

(1 ( 1) )

b
B

b X




 
 (A.7) 

4
2

2

2 2 6

12( 1) 4

(1 ( 1) ) (1 ( 1) )

b b
B U

b X b X


 

   
 (A.8) 

1
2

2

3 3

4

2

7

(2)
2 ( )

(1 ( 1) )

8 ( 1)

(1 ( 1) )

b
B U i

b X

b b
U

b X

 




 
 

 

 

 
 

 

 

(A.9) 

2

4 4

4

(1 ( 1) )
B k i

b X
  


   

 
 (A.10) 

 

 

 

References 
 

[1]. Païdoussis M., Fluid-structure 

interactions: slender structures and axial 

flow, vol. 1. London: Academic Press; 

2014. 

[2]. Li S., Karney B., Liu G., FSI Research 

in pipeline systems - a review of the 

literature, J Fluid Structure, Vol.57, 

2015, pp. 277– 97. 

[3]. Li L., Hu Y., Critical flow velocity of 

fluid-conveying magneto-electro-elastic 

pipe resting on an elastic foundation, Int 

J Mech Sci, Vol.119, 2016, pp. 273–82. 

[4]. Bahaadini R., Hosseini M., Nonlocal 

divergence and flutter instability 

analysis of embedded fluid-conveying 

carbon nanotube under magnetic field, 

Microfluid Nano fluidics, Vol.20(7), 

2016, pp. 108.  

[5]. Benjamin T., Dynamics of A system of 

Articulated Pipes Conveying Fluid .I. 

Theory, Proceedings of the Royal 

Society (London), A261, 1961, pp. 457-

486. 

[6]. Gaith M., The dynamic response of 

tubular beam with variable cross section 

WSEAS TRANSACTIONS on FLUID MECHANICS 
DOI: 10.37394/232013.2020.15.16 Mohamed Gaith

E-ISSN: 2224-347X 169 Volume 15, 2020



conveying fluid, International Journal 

of Mechanical Engineering & 

Technology, Vol. 11, Issue 7, 2020, pp. 

72-82. 

[7]. Tang Y., Zhen Y., Fang B., Nonlinear 

vibration analysis of a fractional 

dynamic model for the viscoelastic pipe 

conveying fluid, Appl Math, Vol.56, 

2018, pp. 123–36 . 

[8]. Firouz-Abadi R., Askarian A., Kheiri 

M., Bending-torsional flutter of a 

cantilevered pipe conveying fluid with 

an inclined terminal nozzle, Journal of 

Sound and Vibration, Vol.12, 2013, pp. 

3002–14 . 

[9]. Yang X., Yang T., Jin J., Dynamic 

stability of a beam-model viscoelastic 

pipe for conveying pulsative fluid, Acta 

Mech Solida Sin, Vol.20(4), 2007, pp. 

350–6. 

[10]. Hosseini M., Paparisabet M., The 

effects of blood flow on blood vessel 

buckling embedded in surrounding soft 

tissues, Int J Appl Mech, Vol.8, 2016, 

pp. 50065. 

[11]. Zhao Y., Huang Y., Guo M., A 

novel approach for free vibration of 

axially functionally graded beams with 

non-uniform cross-section based on 

Chebyshev polynomials theory, 

Composite Structure, Vol.168, 2017, pp. 

277–84. 

[12]. Ibrahim R., Overview of mechanics 

of pipes conveying fluids, part I: 

fundamental studies, J. Press. Vessel 

Technol, Vol.32, 2010, pp. 1–32. 

[13]. Djondjorov P., Vassilev V, 

Dzhupanov V, Dynamic stability of 

fluid conveying cantilevered pipes on 

elastic foundations, Journal of Sound 

and Vibration, Vol.247 (3), 2001, pp. 

537-546. 

[14]. Sinir B., Demir D., The analysis of 

nonlinear vibrations of a pipe conveying 

an ideal fluid, Eur J Mech B, Vol.52, 

2015, pp. 38–44 . 

[15]. Bahaadini R., Hosseini M, Nonlocal 

divergence and flutter instability 

analysis of embedded fluid conveying 

carbon nanotube under magnetic field, 

Microfluid Nanofluidics, Vol.20(7), 

2016, pp. 108. 

[16]. Chellapilla K., Simha H., Critical 

velocity of fluid-conveying pipes resting 

on two-parameter foundation, Journal of 

Sound and Vibration, Vol.302, 2007, pp. 

387–397. 

[17]. Stein R., Tobriner M., Vibration of 

pipes containing flowing fluids, Trans 

ASME J Appl. Mechanics, 1970, pp. 

906-916. 

[18]. Becker M., Hauger W., Winzen W., 

Influence of internal and external 

damping on the stability of Beck's 

column on an elastic foundation, 

Journal of Sound and Vibration, Vol.54, 

1977, pp. 468-472.  

[19]. Kornecki L., The effect of an elastic 

foundation and of dissipative forces on 

the stability of fluid-conveying pipes, 

Journal of Sound and Vibration, 

Vol.109, 1986, pp. 327-338. 

[20]. Liang F., Jin J., Yang X., Static and 

dynamic stabilities of fluid pipes on 

elastic foundation, Engineering 

Mechanics, Vol.11, 2010, pp. 166–171. 

[21]. Olayiwola P., Mechanics of a Fluid-

Conveying Pipeline System Resting on a 

Viscoelastic Foundation, Journal of 

Multidisciplinary Engineering Science 

Studies, Vol. 2. Issue 3, 2016. 

[22]. Fakher M., Hosseini-Hashemi S., 

Bending and free vibration analysis of 

nanobeams by differential and integral 

forms of nonlocal strain gradient with 

Rayleigh-Ritz method, Mater Res 

Express, Vol.4(12), 2017, pp. 125025. 

[23]. Lottati I, Kornecki A, The effect of 

an elastic foundation and of dissipative 

forces on the stability of fluid conveying 

pipes, Journal of Sound and Vibration, 

Vol.109(2), 1986, pp. 327-338. 

[24]. Li L, Hu Y, Critical flow velocity of 

fluid-conveying magneto-electro-elastic 

pipe resting on an elastic foundation, Int 

J Mech Sci, Vol.119, 2016, pp. 273–82. 

[25]. Djondjorov P., Dynamic stability of 

pipes partly resting on Winkler 

foundation, Journal of Theoretical and 

Applied Mechanics, Vol. 31(3), 2001, 

pp. 101-112. 

WSEAS TRANSACTIONS on FLUID MECHANICS 
DOI: 10.37394/232013.2020.15.16 Mohamed Gaith

E-ISSN: 2224-347X 170 Volume 15, 2020



[26]. Dermendjian-Ivanova D., Critical 

flow velocities of a simply supported 

pipeline on an elastic foundation, 

Journal of Sound and Vibration, 

Vol.157, 1992, pp. 370-374. 

[27]. Ryu B., Ryu S., Kim G., Yim K., 

Vibration and dynamic stability of pipes 

conveying fluid on elastic foundations, 

KSME Int J, Vol.18(12), 2004, pp. 

2148–57. 

[28]. Impollonia N., Elishakoff I., Effect 

of Elastic Foundations on Divergence 

and Flutter of an Articulated Pipe 

Conveying Fluid, Journal of Fluids and 

Structures, Vol. 14, 2000, pp. 559-573. 

[29]. Lilkova-Markova S., Lolov D., 

Cantilevered pipe conveying fluid, lying 

on Winkler elastic foundation and 

loaded by transversal force at the free 

end, J. Building (Sofia), Vol.4, 2003, pp. 

5–8. 

[30]. Ghavanloo E., Daneshmand F., 

Rafiei M., Vibration and instability 

analysis of carbon nanotubes conveying 

fluid and resting on a linear viscoelastic 

winkler foundation, Physica E, 

Vol.42(9), 2010, pp.  2218–24. 

[31]. Elishakoff I., Impolonia N., Does a 

partial elastic foundation increase the 

flutter velocity of a pipe conveying 

fluid, Journal of Applied Mechanics-

Transactions of the ASME, Vol.68(2), 

2001, pp. 206-212. 

[32]. Marzani A., Mazzotti M., Viola E., 

Vittori P., Elishakoff I, FEM 

Formulation for Dynamic Instability of 

Fluid-Conveying Pipe on Nonuniform 

Elastic Foundation, Mechanics Based 

Design of Structures and Machines, 

Vol.40, 2012, pp. 83-95. 

[33]. Javadi M., Noorian M., Irani S., 

Stability analysis of pipes conveying 

fluid with fractional viscoelastic model, 

Meccanica, Vol.54(3), 2019, pp. 399–

410. 

[34]. Mostafa N., Effect of a Viscoelastic 

foundation on the Dynamic Stability of 

a Fluid Conveying Pipe, International 

Journal of Applied Science and 

Engineering, Vol.12, 2014, pp. 59-74. 

[35]. Doare, E., De L., Local and global 

instability of fluid conveying pipes on 

elastic foundation, Journal of Fluids and 

Structures, Vol.16, 2002, pp. 1–14. 

[36]. Karlicic D., Kozic P., Pavlovic R., 

Nesic N, Dynamic stability of single-

walled carbon nanotube embedded in a 

viscoelastic medium under the influence 

of the axially harmonic load, Composite 

Structure, Vol.162, 2017, pp. 227–43. 

[37]. Askarian A., Permoon M., Shakouri 

M., Vibration analysis of pipes 

conveying fluid resting on a fractional 

Kelvin-Voigt viscoelastic foundation 

with general boundary conditions, 

International Journal of Mechanical 

Sciences, Vol.179, 2020, pp. 105702.  

[38]. Saxena A., Patel C., Vibration 

Control of Cantilever Beam Using Eddy 

Current Damper, International Journal 

of Engineering and Innovative 

Technology, Vol. 2, Issue 3, 2013. 

[39]. Jae-ung B., Moon K., Daniel I., 

Vibration Suppression of a Cantilever 

Beam Using Eddy Current Damper, 

Journal of Sound and Vibration, 

Vol.284, 2005, pp. 805-824. 

Creative Commons Attribution License 4.0  
(Attribution 4.0 International, CC BY 4.0)  
This article is published under the terms of the Creative  
Commons Attribution License 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en_US 

WSEAS TRANSACTIONS on FLUID MECHANICS 
DOI: 10.37394/232013.2020.15.16 Mohamed Gaith

E-ISSN: 2224-347X 171 Volume 15, 2020




