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Abstract: - The paper deals with the derivation of governing propagation  equations of  nonlinear waves in thin 
liquid films applying to two basic cases, namely for the perfect fluid flow with a weak mass source at the 
bottom and for the thin film of viscid liquid flow with a mass source and surface activity at the free moving 
boundary. The second case is considered on the example of a condensate film flow under the low heat transfer 
intensity. The conditions under which the model equation has the left-hand side of a type of  the  Korteweg-de-
Vries equation with slowly evolved parameters, and perturbed right-hand side have been established for the 
both cases.  The conditions under which the solitary wave solutions are possible have been defined too.     
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1 Introduction 
Despite a lot of works devoted to modeling the 
formation and propagation of nonlinear waves in 
liquid layers, almost all of them deal with constant-
consumption flows, and the problem for the flows 
with non-constant consumption remains largely 
open [1, 2, 3]. This is explained not by the small 
importance of studies of flows with variable fluid 
flow rate or variable physical properties, but by the 
great variety of observed effects of nonlinearity and 
dispersion [4-8]. This is especially true for flows 
accompanied by heat and mass transfer processes, as 
well as by phase transitions [7-10].  
    A review of the scientific literature and analysis 
of the known results show that the mass gain in the 
condensate film can significantly affect the stability 
of the thin waveless liquid layer flows [6, 7, 11]. 
    Special experimental studies confirmed the 
existence of solitary surface waves in falling 
condensate films [7, 12]. Formation of these waves 
can be quite convincingly explained by the 
combined influence of a variable consumption of 
fluid flow in the film and by a variable, due to the 
temperature dependence, condensate viscosity [4, 
7].  
    Known analytical approaches to solve such 
problems are usually based on transformations of 
the evolution equations proposed by Taniuti and 

Wei [13], as well as on the classical studies of 
Grimshaw [14] and Witham [15]. At the same time, 
there are some factors that make it difficult to 
correctly use such a technique as applied to flows 
with mass sources. These difficulties are connected 
mainly with that noted methods rely on the 
existence of solutions-constants of the basic 
unperturbed transport equations in the stationary 
case [16, 17, 18]. 
    The absence of constant solutions substantially 
complicates the analysis of the orders of smallness 
of the control parameters, since the constant value 
that is needed for comparison and parameters 
evaluation as a main scale disappears. In this case, 
the use of methods of perturbation theory and 
asymptotic analysis is fraught with difficulties in 
substantiating the correctness and estimating errors 
[19, 20, 21].  As shown in [2, 13] even in the case of 
a constant flow rate, but  in the case of a variable 
bottom profile [2, 22], a correct analysis of the 
situation turns out to be complicated, and it leads to 
evolutionary equations that do not have a soliton 
type solution [2, 23]. 
    At this in many cases a full and strictly reasoned 
assessment of the correctness of using asymptotic 
expansions while solving applied problems in the 
theory of nonlinear wave propagation is not carried 
out, because such an analysis often also encounters  
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mathematical difficulties  [24, 25, 26]. Therefore, a 
partially intuitive approach is used, and it is 
supposed  relevant and acceptable from an applied 
point of view [27, 28]. 
    A considerable amount of works carried out  for a 
rather long time has been devoted to a numerical 
study of the formation and propagation of waves in 
film flows [5, 6, 29, 30]. In these works, special 
algorithms for numerically solving the equations of 
motion are debugged, or relevant problems are 
solved taking into account the specifics of  
particular processes [6, 31].  
    Numerical experiments using computer 
simulation devoted to wave propagation in 
condensate films have been conducted by  
Alekseenko with co-workers [5, 6] as well as  by 
authors of works [4, 7]. 
    The method of integral transforms and asymptotic 
expansions for deriving waves propagation 
equations in condensate films has been used in [4].  
However, this work was not brought to deriving the 
equation of propagation of surface waves. 
    Without diminishing the significance of such 
studies, it should be noted that it is usually rather 
difficult to interpret the results obtained in this way 
in relation to more general statements of problems 
[18-21]. 
    However, the basic equations for the propagation 
of nonlinear waves in thin films both for the case of 
shallow water in the presence of mass sources at the 
bottom, and for condensate films have not yet been 
proposed [4, 5]. 
    It is also not known any general control equation 
for the propagation of nonlinear, in particular, 
solitary waves in condensate films, which could be 
considered as a basic model for studying and 
conducting numerical experiments aimed at 
obtaining reliable results [32]. 
    So, today it is hard to consider the reliable type of 
model equations describing the propagation of 
nonlinear waves in film flows with variable flow 
rate or with mass sources of a different nature [33, 
34, 35]. Therefore, only having established the 
possible types of propagation equations for various 
ratios of control parameters, it will be possible to 
draw certain reliable conclusions about the 
properties of the corresponding solutions and carry 
out a meaningful numerical experiment. It seems 
reasonable to give a more detailed analysis of the 
situation in order to correctly establish possible 
types of the evolution equations describing thin-
layer flows in the presence of mass sources. 
    In this paper, it is proposed to discuss only the 
theoretical aspects of the problem, without touching 
a numerical study and a full-scale   experiment.  

    The aim of this work is to derive the governing 
equations for the propagation of nonlinear surface 
waves based on an asymptotic analysis of the  
model parameters of moving thin liquid films. 
    The contribution and novelty of this work is that 
the equations of nonlinear wave propagation in 
moving  thin films both of perfect and viscid liquid  
in the presence of weak sources of mass and 
possible surface activity have been derived and 
justified. 
    The preliminary analysis for both perfect fluid 
flows and viscous condensate flows with increasing 
consumption has been carried out. In both cases, an 
important issue is the allocation of small parameters 
of the problem. 
 
2 Equations for a thin moving perfect 

fluid layer with a mass source at the 

bottom  
 
2.1 Theoretical details. Derivation of the 

governing equation 
Unlike the statement of the problem in [2, 36, 37], 
in the model proposed in this section, a  source of 
liquid at the bottom will be taken into account. The 
goal of this section is to derive the governing 
propagation equation of nonlinear surface waves in 
moving thin films of perfect liquid in the presence 
of mass source of small intensity at the bottom.   
    Let us consider a potential flow of perfect liquid 
with free surface over a plate with slowly changing 
shape if there exists a weak mass source at the 
bottom (Fig. 1 (A)).  
    The approach used here on the whole follows the 
scheme submitted in [2, 8]. 
    The equation of continuity reads [2] 

0
yyxx

  .                                                    (1) 

    Unlike the known approach [2, 38]  the boundary 
condition at the bottom with allowing for the bottom 
mass source here reads 

 xhyqh
yxx

     ; .                                  (2)  

    The kinematical boundary condition at the free 
surface is  

0
yxxt

 .                                                 (3) 

    The dynamical boundary condition at the free 
surface is  
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  0
2
1 22 

yxt
g  .                                      (4) 

    Here   is the velocity potential, q is the density 
of the mass stream across the solid bottom, 

)(xhy   is the function for bottom shape, ),( tx

is the perturbed free surface of the liquid layer, x  is 
a longitudinal coordinate, y is a normal coordinate, 
t is time.  

The density of mass stream q  depends on the 
actual mechanism of physical processes in the 
neighbourhood of the bottom. Let us consider, for 
example, the simplest form of the appropriate 
dependence that can be obtained from the following 
condition 

 kUV  ,                                                              (5) 

where V  is the normal component of liquid velocity 
nearby the bottom and U  is the tangent component. 
    Condition (5) can be interpreted as a linear 
dependence of the mass source intensity on the 
tangent component of liquid velocity nearby the 
bottom. The condition has physical meaning, since 
for an perfect fluid the adhesion condition is not set. 
    This can be written in a novel form that is  
different from the formulation of the problem 
without source [2]  

 
xyxyxx

hkh   .                                       (6) 

     Let us  consider only long-wave perturbations of 
the free surface supposing the wave length l  much 
bigger than average thickness of the liquid layer 0h . 
It seems that such an assumption is quite correct for 
thin layers, when the characteristic longitudinal 
scale prevails the others [8, 39].  

 

 
 
Fig. 1.  Scheme of thin film flow: (A)- a film of  
perfect liquid with the mass source of  intensity q at 
the bottom; (B)- condensate film flow. 

 
    Thus the small parameter   is introduced as 
follows 

122
0  lh .                                                      (7)                                       

    In addition, let us suppose that the perturbation 
amplitude is also small that is necessary in order to 
stay in framework of weak nonlinearity 
approximation: 

10  ha .                                                       (8) 

    When solving the problem, it should bear in mind 
some uncertainty that creates problems for further 
asymptotic analysis. The fact is that the order of 
smallness, which characterizes the intensity of the 
source at the bottom, significantly affects the 
structure of the governing equation. 
    If  both of small parameters introduced above 
have the same order (   ), but the coefficient of 
mass stream at the bottom k  has a higher order, 
then following ratio is reasonable. 

 
2

11  kkk  ,                                              (9) 
 
where  1~1 Ok . 
    In  framework of weak non-linearity the bottom 
shape is a function of the slow variable xX  .  
Let us use the dimensionless variables [2, 4] 
 

xlx , 0
0

gh
h

a
  , 

 
0gh

l
tt  , 0yhy  ,  a ,  0hhh .      (10) 

    Using dimensionless variables (10),  system (1)-
(4) takes the form 

0
yyxx

 ,                                                      (11) 

xyXx kh  2
1

2  ,                                          (12) 

  0
2
1 22 

yxt
 ,                                     (13) 

  01


yxxt



 .                                        (14) 

    The Taylor expansion of the velocity potential in 
a vicinity of the bottom gives [7] 
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     

    ...
24
1

6
1

2
1,

43

2





hyhy

hyhytxF

yyyyyyy

yyy





.              (15)           

    Using (7) and (8) the following estimations are 
obtained 

 
xxyyxXy FFhk     ,1

2 ,                       (16) 

 
xxxxyyyyyyy F23    ,O   .                               (17) 

    After neglecting terms of higher than   orders 
expression  (13) takes the forms 

2
xxxtt

FHFF   ,                                       (18) 

where  hH 1 .  
    Substituting (18) into (14) the following 
expression is obtained 

 
xtxxxttxxxxtt

FFFHFkHHFF 22
1  

                                 

(19)                                            
6
1 3





 HFFF

xxxxxxt

           

    For more comfortable use of the methods of a 
secular perturbations theory [2, 32] it is reasonable 
to look for  the function  txF ,  in the form 

     2O,,, 
























 XfXFtxF ,           (20) 

where   is a special self-similar variable depending 
on slow coordinates  xX  ,   tT  . 
    Thus the main equation for function  txF ,  reads   

    1
22 kHHFHF

XTTXXXT
    

 
XXxT

FHf   222    

 













TXXXT
FFHF  

24222 3
6
1             (21)                 

    In order to satisfy this equation in a zero order the 
following dispersion relation should be fulfilled 

022 
XT

H .                                                      (22) 

    Eliminating secular terms in the next order the 
following governing equation can be supposed 









  


UH

H
UU

H
U

XT

XTX

X

22

3
1

42
3   

 
U

H

HkH

X

XXXXT










 





2
1 ,                            (23) 

where FU     
     Under choosing  0

T
  and  0

X
    this 

equation has a structure of the left side which bears 
a resemblance to the Korteweg-de-Vries equation 
(KdV) [1, 40].  
     As a result it can be concluded that  for the 
accepted order of mass source intensity at the 
bottom corresponding to  (9) its influence on non-
linear waves propagation in thin liquid layer may be 
described by equation (23). 
    If  a lower order for the weak mass source was 
accepted than the structure of evolution equation 
(23) would be destroyed.  
    Indeed let it be 1kk  . Thus the zero order 
instead of (22) reads   

  01
22    FkHF

XXT .                                (24) 

    In next orders a system of linear recurrent 
equations which describe decrementing or 
incrementing perturbations would be obtained. 
    However in any case the complete structure of 
KdV equation is destroyed by the perturbation in the 
right-hand side, and that can be interpreted as 
damping influence of mass source [8, 41]. 
    Else, if we consider the right-hand side of  
equation as a perturbing effect of the mass source, 
and assume, with a weak intensity of this source, a 
linear relationship between the source intensity and 
the flow rate U , then the propagation equation can 
acquire  the following  structure 

 
  сUUUUU

X
 .                               (25) 

 
    Then equation (25) is reduced to the form known 
in the theory of solitary waves [16, 42] 

 
0)(   UUUсU

X .                              (26) 
      
    Let us look for a solution of (26) in the form of a 
stationary wave 
 

 cXUUU   )( ,                                       (27) 
where   is a phase variable and c  is a phase 
velocity. 
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    After twofold integration and some 
transformations, equation (26) in the case 0   
transforms to the form [16, 19] 
 

   UUUUUU
d

dU









321

2

3


 .        (28) 

 
Here 321  , , UUU  are the constants that are 

expressed through control parameters of equation 
(25) and integration constants.  

Finite solutions of equation (28) can be obtained 
under 321 UUUU   in the form 
                    

    3
31

21312
31 ;

12
dn U

UU

UUUU
UUU 





















 .                                        

                                                                             (29) 
 
    Here "dn" is the Jacobi elliptic function [16]. 
    In the particular case 32 UU   expression (27) is 
reduced to the form of classical soliton [16] 
 

   3

312

31

12
ch

U
UU

UU
U 













 







 .                        (30) 

     
    Structure of  the propagation  equation for non-
linear waves may be also changed under the 
influence of phenomena taking place at the free 
surface [12, 30].  
    For example, if supplementing equation  (13) 
with a term describing surface activity in the form 

tx
  ,  then instead of (13) the following 

equation can be obtained 

  0
2
1 22 

xxyxt
 ,                       (31) 

where    is the coefficient of surface activity.  
    This form can be obtained, given in account the 
pressure gradient along the flow direction of a thin 
film, which arises due to the changing curvature of 
the film surface under the increasing consumption 
and influence of surface tension.    
    Namely, equation (25) after the rearrangements 
and transforms which pursue an aim to eliminate 
secular growth of perturbations [20, 21] can be 
expanded by the term describing a surface activity 
in the following form 









  


UH

H
UU

H
U

XT

XTX

X

22

3
1

42
3

 

 









U

H
U

H

HkH

X

T

X

XXXXT

22

3
1 









 

.
        (32) 

2.2 Discussion and summary of Section 2  
Equations (23) and (32) are offered in this work  as  
contenders for the role of the governing equations 
for nonlinear waves in thin films of an inviscid fluid 
in the presence of a weak mass source at the bottom 
of the flow and surface activity. The derived 
equations are correct under the restriction that the 
intensity of a weak near-bottom source described by 
the small parameter k in relation (9)  has a higher 
order of smallness than a small parameter 
characterizing the long-wave approximation. 
    The experience of a theoretical study of 
propagation equations for modulated nonlinear 
surface waves during fluid flow in channels with a 
varying bottom profile has shown the effectiveness 
of using conservation laws for these purposes [2, 
43].      
     However, in our case, it is necessary to take into 
account the presence of mass sources, i.e. the role of 
relevant laws would play balance relations [29, 30].  
      Using the expansion of differential operators in 
the vicinity of critical values of the control 
parameters 1k ,   and excluding then the secular 
terms, the amplitude equations of the special type 
[19, 23]  can be derived.  Similar equations describe 
various nonlinear wave processes with dispersion. 
However, there are no soliton solutions in this case 
[23]. The stability of the similar wave flows 
depends on the order of the control parameter  

XT
H 23 in equation (32). 

    In contrast to the perturbed KdV equation for the 
shallow water with a varying bottom profile [2, 22], 
in our case the right-hand side of equation (23) 
contains not only spatial derivatives, but also the 
derivative with respect to the time variable. This can 
be explained by the presence of a source of mass at 
the bottom. 
    Besides, the simultaneous presence of even and 
odd derivatives in  (32) may be significantly 
manifested in the study of hydrodynamic stability 
[11]. The phenomenon of surface activity can 
significantly affect the flow pattern in the presence 
of contaminating surfactants in the liquid [30].  But 
this issue will need more detail analysis in further 
works.   
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3 Equations for nonlinear waves in 

condensate films   
 
3.1 Theoretical details  
This section deals with  propagation equation for 
nonlinear waves in viscid condensate films  with a 
slowly varying film thickness. 
    In this process, the situation is significantly 
complicated as a result of the presence of heat and 
mass sources, strong non-isothermality and, 
accordingly, due to these factors, the variability of 
the physical properties of the medium: viscosity, 
density, surface tension, etc. It was previously 
shown that for the moving condensate films, a 
situation may arise when the stationary Nusselt 
problem has no solution [4]. Therefore it can be 
assumed that nonlinear waves can be generated in 
the regions of significant temperature and viscosity 
gradients [7]. 
    In order to carry out the analysis, let us obtain 
firstly the basic system of equations for the film 
thickness and flow rate during film condensation by 
the method of integral relations [6, 7].  
     Fig. 1.(B) depicts the scheme  of the considered 
flow.   
    Equations of impulse and continuity in the long-
wave approximation read [7] 

dx

dK
g

y

U

yy

U
V

x

U
U

t

U
S

ef

































 ,  (33)    

   0
y

V

x

U







 .                                              (34) 

   Boundary conditions are 
 

00   VUy , 0
y

U
hy



 .            (35) 

 

    Equation for material balance of condensate is 

mI
x

j

t

h


∂

∂

∂

∂ ,                                                 (36) 

   The intensity of the mass source 
m

I  in (36), i.e.  
increase in condensate flow rate, is related to the 
intensity of heat removal from the free surface of 
the film by the following relation 

hy

conm
y

T

r
I











)(, .                                         (37) 

Integrating the equation of motion over the 
thickness it can be obtained 














00

2

y

w

h

S
y

U

x

j

t

h
UdyU

xt

j






















 

dx

dKh
hg S

ef



 .                                              (38) 

    With using the self-similarity hypothesis,  the 
velocity profile over the film thickness can be 
supposed in the form                                                                   

 fUU
S

 ,
h

y
 ,   11 f .                           (39) 

Then the last equation can be written as 

                

dx

dKh
hg

h

j

f

f

hf

jI

h

j

xf

f

t

j
S

efw

m






















 2

1

3

1

2

2
1

2 ,                               

(40)   

The following notations are accepted here. 

 
1

0
1ffd ,  2

1

0

2 fdf   ,   3
0

f
f






 .           (41) 

    The resulting equations form the basic system for 
film thickness and flow rate (condensate 
consumption).  
    However, the self-similarity hypothesis (39) [7] 
has some justification only for the case, when the 
temperature of the supporting surface over which 
the condensate film flows is constant. 
     If the temperature of the supporting surface is not 
constant, then it is necessary to include in the 
expression for the self-similar velocity profile a 
dependence on the film thickness as a parameter:  
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Then  a more general form of the evolution equation 
reads 
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(43) 
    An equation of a similar type was derived  in the 
work [4] but for a source m

I  of a special and not 
general form. 
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3.2 Asymptotic analysis. Derivation of the 

governing equation 
And again, as in Section 2, the problem of choosing 
the order of smallness of the control parameters 
arises, since the structure of the governing equation 
substantially depends on such a choice. 
    In our case, the problem is formulated as  
deriving the equation of propagation of nonlinear 
waves in a condensate film with a slowly varying  
consumption and, accordingly, with a slowly 
varying film thickness.   In this case, it is necessary 
to evaluate the appropriate parameter of smallness. 
     At a sufficient distance from the starting point, 
the intensity of the mass source during film 
condensation is usually low. This makes it possible 
to introduce into consideration a small parameter  
 

jrT   ,                                                   (44) 
 

where j  is the averaged condensate consumption 
for the undisturbed film at the considered area [7].  
    This approach acquires  the additional 
justification under the great phase transition heat [4, 
6, 7].  
    Then the following balance ratio is correct 
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    In addition, it becomes possible to introduce 
stretched slow variables t  , xz   and a fast 
phase variable     ,z . 
    Then the system of basic equations is converted 
to the form: 
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    Because film flow consumption and the film 
thickness are functions of both slow and fast 
coordinates, derivatives in the basic equations are 
disclosed as follows 
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    The coefficients in the resulting equations are 
disclosed as follows: 
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    As a result, it leads to the following system of 
evolution equations 
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Let us look for a solution to the basic system in the 
form of expansions in powers of a small parameter 
[2] 
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In the zero order, the system has the following form 
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In the first order, the system is as follows: 
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(55)    

    The recurrence relations for the subsequent 
decomposition orders are obtained consequently. All 
systems except the first are linear with respect to the 
sought-for functions and are decoupled.  At that, 
unlike [42, 43], the systems are disconnected 
without the additional assumption that the phase 
velocity is constant. 
    From relation (54) it follows        
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      As from the physical meaning of the problem 
under consideration   0,  z ,   the equation for   

0H reads 
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    Similarly, systems become disjointed for 
subsequent approximations. At that, between 
consumptions and thicknesses as functions of fast 
and slow variables, there is a quasi-linear 
relationship 
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    This shows that the contribution of the surface 
pressure gradient, due to the variable curvature of 

the film surface which is responsible for the 
dispersion of the waves, manifests itself as a 
dispersing factor only in the zero order. Waves of 
higher orders evolve, but are, strictly speaking, not 
dispersive. 
    The coefficient 1K  may be of the order   or 2 , 
depending on the nature of liquid. Therefore, to 
evaluate the effect of surface tension, we will 
present solution (57) in the form 02010 HHH  , 
where 0102 HH  is the correction term taking into 
account the effect of surface tension.  Then the 
following equation for 01H can be obtained 
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    Equation (59) has an obvious traveling-wave type 
solution: 
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    After discarding the terms of the second and 
higher orders of smallness with respect to the 
correction term 02H  the following equation can be 
obtained 
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    With discarding the first term on the right-hand 
side, as having a higher order of smallness than the 
others, homogeneous equation has been obtained.  It 
is easy to verify that the Wronskian of this 
homogeneous equation is equal to zero, since there 
is no second derivative 2

01
2  H . From this it 

follows that the order of the obtained equation 
cannot be reduced to the first, and the equation has 
not monotonously growing solutions [19]. 
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    For the appearance of oscillating solutions in the 
form of a distortion of a wave profile such as 
ripples, it is necessary to fulfill the condition [4] 

  01 
z

A
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 .                                                (63) 

    The last inequality is interesting in that it relates 
the integral characteristics of the velocity profile in 
the film, which depend on the temperature field over 
the thickness of the film, and the wave number of 
the carrier wave. If inequality (63) is not satisfied, 
then it can be expected that a small perturbation of 
the profile of the carrier wave will be smoothed out 
by capillary forces.  
    For positive wave numbers, the last inequality 
leads to the condition  1A . 
    Since the wave number and frequency in the film 
of variable flow rate vary with time, it is necessary 
to take into account at least two terms in their 
expansion in the Taylor series 
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(64) 
Then the evolution equation follows 
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    Using the methods proposed and used in [19, 23], 
one would describe the evolution of functions 

1   ,   and   provided that special additional 
restrictions on the coefficients of the basic 
equations are satisfied. However, the fulfillment of 
such restrictions in our case is not obvious.  
    Therefore, in order to construct mathematical 
models capable of describing the evolution of wave 
perturbations of the condensate film profile, the 
methods of the secular perturbation theory [2, 32] 
have been applied. These methods are widely used 
in many works for studying nonlinear waves and 
solitons, such as models of nonlinear waves of 
modulation, perturbed solitons, slowly varying 
cnoidal waves, etc. [20, 21].   
    Let us suppose that near the stability boundary of 
the stationary flow regime, the process can be 
considered quasi-stationary. But then, provided that 
the functions 0j  and 0h  describing stationary 
solutions are slow, it can be assumed that some 
relation  11 hLj   is valid, where 01 jj   and 

01 hh   are perturbations of the stationary solution 

of the film condensation problem, and L  is also a 
slow function.  
    For condensation on a flat wall, it is possible to 
write a system of equations for perturbations of 
flow rate and film thickness, similar to that for a 
cylindrical surface [4]. However, unlike [4], to 
describe the evolution of the wave packet in the 
weakly nonlinear approximation, the second-order 
terms should be saved [2, 21]. 
    As a result it leads to the following equations 
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The coefficients of the resulting system of equations 
are described by the following expressions:  
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    If the temperature of the supporting surface of the 
flow can vary, then some coefficients of the system 
should be written differently: 

























 2

0

0

0
2
0

0

1
2
01

3

0

0
2

1

2
4

112
h

I

j

I

h

j

fhf

f

h

j

xf

f
w








 ;  

3
0

3

3
0

00

0
2
0

0
3
0

0

1

3
5

22
x

h
g

h

Ih

h

I

h

j

h

j

f

f
w












 














  

WSEAS TRANSACTIONS on FLUID MECHANICS 
DOI: 10.37394/232013.2020.15.15 A. Brener, A. Yegenova, S. Botayeva

E-ISSN: 2224-347X 157 Volume 15, 2020



 















0
2
00

2

2

2
0

00
2
0

2
1

2
3

2
2
1

j

I

hj

I

h

j

x

h

hf

f












 ;

 


























04
0

0

0
3
0

0

0
2

2

2
0

0
4
0

0

1

3
3
0

2
0

2
1

2
4

6

4
2
13

I
h

j

h

I

h

j

h

I

h

j

h

j

f

f

h

j

xf

f w














    Before  analyzing system (66), (67), some of its 

features should be noted.  
    In addition to the usual convective nonlinearities, 
nonlinear terms appear in the equations due to the 
pumping of energy and mass due to an increase in 
the flow rate of the liquid in the film. The 
convective nonlinear terms of the type of  xUU   
which are contained in the initial equations lead as a 
result of integral transformations to the terms 
 xhh   in the final form. The additional nonlinear 

terms in the equations appear when  the intensity of 
the source and its derivatives are not be equal to 
zero: 0I ;  0 hI ; 022  hI . 
    The pumping of energy into the system is also 
due to another source - gravitational forces. The 
resulting system, due to this and other reasons, 
cannot be disengaged within the framework of 
formal mathematical calculations. However, this can 
be done using the results of the analysis of an 
approximate linear problem and remaining within 
the framework of an adequate description of the 
qualitative behavior of small perturbations of the 
stationary solution [2, 20]. 
    Let us introduce, as before, the stretched variables 

tTxX       ,  and the fast variable 
   TX ,  and will further search for a solution 

to the system (65), (66) in the form  
 
  exp1 Hh  ,  exp1 Jj  .                          (68) 

    Then, after separating the terms of the equations 
by the powers of the small parameter and discarding 
the rapidly oscillating components of small 
amplitude of type  2exp2H   and  2exp2J , the 
approximate linear system for the amplitudes has 
been derived 
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    For the solvability of system (69), (70), the 
dispersion relation should be fulfilled  
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    From expressions (69), (70) the desired 
representation  HTXLJ ,  can be obtained, 
where 
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 .                                  (72) 

    Given that  TXL ,  is the function of slow 
variables, and after substituting the last relation into 
the original system, the zero-order equation for the 
function 1h  has been derived: 
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    In the resulting equation, it is convenient to 
transfer to a moving coordinate system:   

  



L

dX
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21
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    As a result equation (72) is converted to the 
form 
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    Resulting equation (75) in structure is close to the 
Korteweg de Vries equation with non-linear 
perturbation on the right side and slowly varying 
coefficients [20]. The presence of such a 
perturbation leads to the fact that the dispersion 
relation of   last equation (75) contains a nonzero 
imaginary part, and an undamping wave solution 
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can exist only on the neutral line and in the growth 
region of amplitudes [19]. 
    To simplify further analysis, it is convenient to 
rewrite equation (75) in the form 

2
14133

1
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2
1

11
1 hRhR

h
R

h
hR

t

h












 .             (76) 

    It is important note that the problem has a control 
parameter in the form of the source intensity  I . 
 
3.3 Discussion and summary of  Section 3  
Equations (75), (76) with dispersion relation (71) 
are submitted here as the governing model for 
nonlinear waves in condensate films under the weak 
heat transfer intensity.  The scale of smallness for 
control parameters is estimated by the parameter 
(44). 
    Further research would be interesting to focus on 
issues of the wave flow stability and on the 
evolution of waves characteristics.  Computer 
simulation and numerical studies would also be 
carried out. 
    Below is a preliminary analysis of the developed 
model and a forecast of the possible behavior of 
wave solutions on the base of the known features of 
equations of similar types. 
    The solution of equation (76) can be searched  in 
the form of expansion [2]      

  12
2

11101 hhhh  ,                             (77) 

where 
     iAiAh   expexp10 ,                         (78) 
A - complex conjugate amplitude; and the phase 

variable in this case can be represented in the form 
  tkd  , where, in turn,  k  is the wave 

number,   is the perturbation frequency. 
    In order to transform (76), the multi-scale 
decomposition algorithm of differential operators 
[19] can be used. In accordance with this technique  
the following representations for derivatives are 
valid: 
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where tT 1 ,  tT 2
2  ,  1X ,   2

2 X . 
    Determinant (71) plays a role of a dispersion 
relation. The parameter I  can be expanded in the 
vicinity of the critical value in a Taylor series 
according to the procedure [19, 23] 
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2
1
 .                             (79) 

    According to the known classification  [22, 23], 
the instability of the solution of problem (76) 
belongs to the category of dissipative instability. 
Therefore, the removal of secular terms leads to an 
amplitude equation of the type of the Landau-
Ginzburg equation [19]: 
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    The appearance of an additional nonlinearity of 
the so-called BA-type [19, 23] is due to the 
presence of an average background flux, which in 
our case has a clear physical meaning, namely: it 
appears due to an increase in the condensate flow 
rate during a phase transition. The function B   
affects the following approximations and for 11h  it 
can be written [23] 
 

         iAAiAkCTXBh 2exp2exp,, 2
1111  

.                                        
                                                                    (81) 

    The equation for the function B  has the 
following type [23] 
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     And for the amplitude of the zero approximation, 
in addition to equation (82), a relation of the special 
type [19] can be supposed 
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where the value 2
0

2
0 dkd    is determined on the 

neutral line [19]. 
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4  Conclusion 
The nature of the propagation waves and evolution 
of nonlinear waves characteristics in systems with 
mass sources substantially depends on both the  
intensity of the sources and form of the boundary 
conditions.  
    Asymptotic analysis showed that an equation of 
nonlinear waves propagation in thin layer of 
inviscid liquid such as the perturbed KdV equation 
for shallow water can be derived only in the case 
when the order of smallness of the parameter 
characterizing the intensity of the bottom mass 
source is higher than the order of the small 
parameter characterizing the ratio between the liquid 
layer  thickness and the length of the surface wave  
in the long-wave approximation.   
    Besides, in the case of a linear relationship 
approximation between the weak source intensity 
and the flow rate the solution of a solitary wave type 
has been obtained.   
    If  the same or a lower order for the mass source 

is accepted than the structure of the evolution 

equation is destroyed. This phenomenon can be 

interpreted as damping influence of the mass source.             

    The novel modifications of perturbed KdV 

equations (23) and (32)  for a thin layer of the 

perfect liquid with  accounting the joint influence of  

a weak source at the bottom and surface activity 

have been derived. It can be assumed that the 

equations obtained allow correctly describing how 

the phenomenon of  surface activity  affect the flow 

pattern and how  the nonlinear waves arise in the 

presence of contaminating surfactants in the liquid. 

However, this issue should be investigated  further 

more thoroughly.     
     The study of the influence of possible sources of 
natural (springs) or technogenic origin in the near-
bottom zone and surface activity could be of 
practical interest in environment studies. 
    The novel modification of perturbed KdV 
equation (76) for describing non-linear waves in the 
thin viscid condensate films under the condition of 
slow consumption increase  is also derived. The 
obtained solvability condition (71)  plays a role of 
the general dispersion relation for nonlinear waves 
in thin condensate films. 
    The solutions of the obtained equation may be 
useful for detail describing the formation of solitary 
waves at a sufficient distance from the starting point 
of the condensation process.  
    The development of the asymptotic methods 
proposed in this paper for describing nonlinear 
waves in thin layers both of perfect and viscid fluids 
in the presence of mass sources both on the bottom 
and at the free moving boundary  allows explaining 

the phenomenon of solitary waves propagation in 
modelled processes. These phenomena have been 
observed before in full-scale experiments.  
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