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The topic of water waves is an old one, more
than half a century has passed and the study of ocean
surface waves has greatly advanced. Shallow water
waves are studied because of their impacts on coasts,
the economy, recreation and defense. Although there
is still interest in shallow water waves as a source
of pollution-free renewable energy. The water waves
problem has attracted physicians and mathematicians
because of its extremely rich structure. In order to give

a sketch of the historical development of the modeli-
sation of water waves problems, assume that the do-
main occupied by the fluid at time t is denoted by
Ωt = {(x, z) ∈ R×R;−h0+ b < z < ζ } where the sur-
face of the fluid is a graph parametrized by ζ and
its bottom is parametrized by −h0+ b, with h0 is the
reference depth. Under the following definitions of:
a as the amplitude of the wave, λ the wavelength
of the wave, let us introduce the following parame-
ters: µ = h0

2

λ and ε = a
h0

, the former parameter char-
acterizes the shallowness of the wave, whereas the lat-
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ter characterizes its nonlinearity. The first mathemati-
cal description of the motion of an homogeneous, in-
viscid, incompressible and irrotational fluid was pro-
vided by Euler model, where the driving force is due
to gravity g, and the effect of the surface tension is
neglected for the sake of simplicity:



∂tV + (V · ∇x,z)V = −ge→z −∇x,zP in (x, z) ∈ Ωt,

divV = 0 in (x, z) ∈ Ωt, t ≥ 0,
curlV = 0 in (x, z) ∈ Ωt, t ≥ 0,
P = Patm at z = ζ(t, x), t ≥ 0,
∂t ζ −

√
1+ (∂xζ)2V .n+ at z = ζ(t, x), t ≥ 0,

V .n− = 0 at z = −h0+ b(x), t ≥ 0,
lim

|(x,z) |→∞
|ζ(t, x)|+ |V | = 0 in (x, z) ∈ Ωt, t ≥ 0,

(1)

with V is the fluid velocity, P is the fluid pressure,
e→z is a unit vector in vertical direction, n− and n+
are the outward and inward normal vectors respec-

tively.
These fluid equations expressed the mass and momen-
tum conservation, where every physical assumption
was stated by an equation.
From the equations mentioned above, Bernoulli equa-
tions for traveling water waves was obtained by em-
ploying two key reductions: the traveling wave as-
sumption and the introduction of a velocity poten-
tial. The assumption of irrotationality is equivalent
to assuming thee existence of a velocity potential ϕ :
R+×R×R→ R such that ∇ϕ represents the fluid ve-
locity vector, thereby, another formulation of the free
surface Euler equations:
(2)
∂2
xϕ+ ∂

2
z ϕ = 0 at − h0+ b(x) < z < ζ

∂zϕ− ∂xb · ∂xζ = 0 at z = −h0+ b(x)
∂t ζ + ∂xϕ · ∂xζ − ∂zϕ = 0 at z = ζ
∂tϕ+

1
2
(
(∂xϕ)

2+ (∂zϕ)
2) = −gζ at z = ζ

Toward the dimensionalization of Bernoulli’s equa-
tions, use the following relations

x = λx ′ z = h0z′ ζ = aζ ′

ϕ =
a
h0
λ
√
gh0ϕ

′ b = b0b′ t =
λ√
gh0

t ′

The governing equations of the water waves problem
in terms of the dimensionless variables become
(3)
µ∂2

xϕ+ ∂
2
z ϕ = 0 at −1+ βb < z < εζ

∂zϕ− µβ∂xb · ∂xζ = 0 at z = −1+ βb
∂t ζ + ∂xϕ · ∂xζ − ∂zϕ = 0 at z = εζ
∂tϕ+

1
2
(
(∂xϕ)

2+ (∂zϕ)
2) + ζ = 0 at z = εζ

where β = b0
h0

represents the topography parameter.
A popular form of the water waves system is given by
the Zakharov/Craig-Sulem formulation. This is an el-
egant formulation of the water waves equations where
all the unknowns are evaluated at the free surface only.
Following Zakharov, introduce the trace of the poten-
tial on the free surface ψ(t, x) = ϕ(t, x, εζ) = ϕ|z=εζ .
Craig and Sulem observed that one can form a system
of two evolution equations for ζ and ψ. To do so,
they introduced the Dirichlet-Neumann operator Gµ

that relates ψ to the normal derivative ∂nϕ of the
potential by

Gµ[εζ, βb]ψ = −µε∂xζ · ∂xϕ |z=εζ + ∂zϕ |z=εζ

=

√
1+ µε2∂xζ

2∂nϕ |z=εζ

with ϕ solving the boundary value problem:

(4)


µ∂2

xϕ+ ∂
2
z ϕ = 0 at −1+ βb < z < εζ

∂nϕz=−1+βb = 0
ϕ |z=εζ = ψ

Benefiting from the definition of Gµ and (4) and
doing some calculations we get:
(5)
∂t ζ −

1
µGµ[εζ, βb]ψ = 0

∂tψ+ ζ +
ε
2 (∂xψ)

2− µε
( 1
µGµ [εζ,βb]ψ+ε∂x ζ ·∂xψ)

2

2(1+ε2µ(∂x ζ )2)
= 0

Considering long waves propagation in shallow water
but without assuming small amplitudes (µ << 1, ε =
O(1)), Green and Naghdi derived a new improved
model of equations describing significant dispersive
effects of water waves phenomena. To derive these
equations, let us inroduce the depth averaged horizon-
tal velocity

u(t, x) =
1
h

∫ εζ (t,x)

−1+βb(x)
∂xϕ(t, x, z)dz
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Also, we are going to use the Taylor expansion of ϕ:

ϕapp =

N∑
j=0

µjϕj

Since we are seeking to find these equations up to
O(µ3), we need to find ϕ0, ϕ1, and ϕ2.

After a long calculations and brainwork we get the
one dimensional Green-Naghdi system of equations,
for uneven bottom:


∂t ζ + ∂x(hu) = 0,
(h+ µT[h, βb]+ µ2I[h, βb])∂tu+ h∂xζ + εhuux

+µεQ1[U]u+ µεβB1[U]u+ µεβ2B2[U]u
+µ2εQ2[U]u+ µ2εβB3[U]u+ µ2β2εB4[U]u =O(µ3),

(6)

where U = (ζ,u)T and denoting by h = h(t, x) =
1+ εζ(t, x) − βb(x) the total non-dimensional height
of the liquid, with

T[h, βb]u = −
1
3
∂x(h3∂xu)+

β

2
[∂x(h2bxu)− h2bxux]

+ β2hb2
xu,

I[h, βb]u = −
1
45
∂2
x (h

5∂2
xu)

+
β

24
[∂x(∂x(h4bx)∂xu)+ ∂2

x (h
4∂x(bxu))− bx∂x(h4∂2

xu)]

+
β2

12
[2∂x(h3b2

x∂xu)+ ∂x(h3bxbxxu)+2bx∂x(h3bx∂xu)]

+
β2

12
bx∂x(h3bxxu),

where the non-topographical terms are represented by

Q1[U]u = −
1
3
∂x

(
h3(uuxx −u2

x)

)
,

Q2[U]u = −
1
45
∂x

(
∂x(h5(uuxxx −5uxuxx))−3h5(uxx)

2
)

while the purely-topographical terms are introduced
by

B1[U]u =
1
2
[∂x(h2bxxu2)+ ∂x(h2bxuux)]

−
1
2

h2(uuxx −u2
x)bx,

B2[U]u = h(bxxu2+ bxuux)bx,

B3[U]u =
1
24
∂2
x

(
h4(bxxxu2− bxxuux −8bxu2

x)

)
−

1
4

h4bxxuxuxx +
1
24
∂x(h4bxuuxx)

−
5
24
∂x(h4bxxuuxx)−

1
24

bx∂x

(
h4(uuxxx +uxuxx)

)
,

B4[U]u =
1
12
∂x

(
h3(bxxxbxu2+2b2

xuuxx +10bxbxxuux)

)
+

1
12
∂x

(
h3(2b2

xu2
x +3b2

xxu2)
)

+
1
12

h3(bxxu+2bxux)bxxux

+
1
12

bx∂x

(
h3(bxxxu2+2bxuuxx −6bxu2

x)

)
.

In as mush as this water waves problem is a difficult
nonlinear problem to solve, approximate theories have
been developed. Under the KdV regime ε = O(µ),
Boussinsq model of equations for flat bottom (b = 0)
can be derived:

(7)


∂t ζ + [(1+ εζ)u]x = 0
ut + ζx + εuux =

µ
3 uxxt − µε

[ 1
2u2

x +
1
3uuxx

]
x

+
µ2

45 ∂
2
x (uxxt )

A large body of literature has been dedicated to the de-
velopment of efficient techniques to solve these equa-
tions. An innovative technique was the derivation of
consistent asymptotic models with the main models,
like Camassa-Holm and KdV equations.
The most renowned KdV equation is [5]:

ut +ux +
3
2
εuux +

µ

6
uxxx = 0

that was originally derived for flat bottom. What at-
tracted the focus of scientists in this equation, was
its integrability property, and thus its solitons (solitary
waves) solutions. Since the derivation of the equation
mentioned before, several methods have been used to
derive new extended KdV equations, with different
ocean conditions and properties. General derivations
of this equation were justified with bottom, and with
non constant coefficients, with topography (called
KdV-top equation) [5,6]. A formal derivation of KdV
equation was provided using Whitham method, in the
presence of surface tension [2], all these previous
works were done up to O(µ2). Also, using some
physical principles, an extended KdV equation was

WSEAS TRANSACTIONS on FLUID MECHANICS 
DOI: 10.37394/232013.2020.15.10 Marwa Berjawi, Marwa Berjawi, Samer Israwi

E-ISSN: 2224-347X 102 Volume 15, 2020



formally derived up to O(µ3) [8]. Characterized with
its integrable property, KdV equation catch the atten-
tion of scientists, since it was solved using some suc-
cessive integrations by parts. With the extension of
this equation, more nonlinear terms appeared, causing
difficulties in finding its explicit solution. Therefore,
scientists tried to use new techniques for solving ex-
plicitly these extended equations. In [9], an explicit
solution for a generalized KdV equation of third order
was derived using sine-cosine method.
In the paper at hand, we deal with an irrotational, in-
compressible, inviscid fluid with a free surface, and
constant density, acted on only by gravity. Knowing
that a is the amplitude of the wave, λ is the wave-
length of the wave, h0 is the reference depth, denote
by Ωt = {(x, z) ∈ R×R;−h0+ b < z < ζ } the domain
of the fluid for each time t where the surface of the
fluid is a graph parametrized by ζ and its bottom is
parametrized by −h0+ b.
In this paper we consider the extended Boussinesq
system of equations 7, describing the motion of an
incompressible, irrotational, inviscid fluid with free
surface, under the influence of gravity. Recall that
the KdV scaling is ε = O(µ), with 0 < ε ≤ 1 and
0 < µ� 1. The organization of this paper is as fol-

lows: in the secind section, a derivation of the ex-
tended KdV equation will be done, in the first subsec-
tion 2.1, we will derive rigorously an extended KdV
equation on the velocity u. In the second subsection
2.2, a rigorous mathematical derivation of extended
KdV equation on the surface elevation ζ will be pro-
vided, and hence a rigorous verification of this im-
posed equation in [8]. In the third section, we will
use the sine-cosine method to find an explicit solution
for the derived extended KdV equation on the velocity.
The aim of this paper is to give a rigorous mathemat-
ical derivation of the extended KdV equations, up to
µ3, and solve it explicitly. Concerning the method-

olgy, after the examination of some previous works,
we will proceed as in [1], so we will use the definition
of consistency to provide these rigorous derivations,
which guarantee the relevance of these equations with

(7), and serve in the construction of approximate solu-
tions of Boussinesq equations. Also, we will apply a
new technique called sine-cosine method to solve ex-
plicitly the one on the velocity.

2 DERIVATION OF NEW EX-
TENDED KDV EQUATIONS

The main goal of this section is to find extended
KdV equations on velocity and on surface elevation.
The new derived KdV equation on the velocity will
be:

ut +ux +
3
2
εuux +

µ

6
uxxx

+ µε

[
5
12

uuxxx +
21
24

uxuxx

]
+

11
360

µ2∂2
x (uxxx) =O(µ3)

(8)

And one on the surface elevation will be:

ζt + ζx +
3
2
εζζx −

3
8
ε2ζ2ζx +

µ

6
ζxxt

+ µε

[
5
12
ζ ζxx +

23
24
ζ2
x

]
+

19
360

µ2∂2
x (ζxxx) =O(µ3)

(9)

2.1 Equation on the velocity.

In order to get (8), we will introduce the following
equation on u

ut +ux +
3
2
εuux + µαuxxx

= µε [βuuxxx +γuxuxx]+ µ
2δ∂2

x (uxxx)

(10)

where α, β, γ, δ are parameters in R.
Next, we need to find the values of parameters men-
tioned above, that will be done in three steps.

• Step1:
From (10) we get:

ux = −ut −
3
2
εuux − µαuxxx +O(ε, µ)

uxxx = −uxxt −
3
2
ε∂2

x (uux)− µα∂
2
x (uxxx)+O(ε, µ)

2 Derivation of the new extended KDV
   Equations
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Substitute the expression of uxxx in (10) to get:

ut +ux +
3
2
εuux − µαuxxt − µε

[
3α
2

u2
x +

3α
2

uuxx

]
x

− µ2∂2
x (uxxx) = µε [βuuxxx +γuxuxx]

+ µ2δ∂2
x (uxxx)+O(µ3)

But

βuuxxx +γuxuxx

= βuuxxx + βuxuxx − βuxuxx +γuxuxx

= β(uuxx)x −
β

2
(u2

x)x +
γ

2
(u2

x)x

=

[
βuxuxx +

γ− β

2
u2
x

]
x

Then

ut +ux +
3
2
εuux − µαuxxt

= µε

[(
3α
2
+ β

)
uuxx +

(
3α+γ− β

2

)
u2
x

]
x

+ µ2
(
α2+ δ

)
∂2
x (uxxx)+O(µ3)

One can get

ut +ux +
3
2
εuux − µαuxxt = µε

[
auuxx + bu2

x

]
x

+ µ2c∂2
x (uxxx)+O(µ3)

(11)

where

a =
3α
2
+ β; b =

3α+γ− β
2

; c = δ+α2.

To find another equation on a,b,c and α we
need to use the equations of (7).
In the next step, the second equation of (7) we
will be used.

• Step2:
Let v be a smooth enough function such that
ζ = u+ εv. Then (7)2 becomes

ut +ux + (εv)x + εuux =
µ

3
uxxt − µε

[
1
2

u2
x +

1
3

uuxx

]
x

+
µ2

45
∂2
x (uxxt )

We know from (11) that

ut +ux +
3
2
εuux − µαuxxt − µε

[
auuxx + bu2

x

]
x

− µ2c∂2
x (uxxx) =O(µ3)

Then

(εv)x +ut +ux +
3
2
εuux − µαuxxt − µε

[
auuxx + bu2

x

]
x

− µ2c∂2
x (uxxx)

= ut +ux + (εv)x + εuux +
ε

2
uux − µαuxxt

− µε
[
auuxx + bu2

x

]
x
− µ2c∂2

x (uxxx)

So we can deduce up to O(µ3)

(εv)x =
ε

2
uux + µ

(
1
3
−α

)
uxxt

− µε

[(
a+

1
3

)
uuxx +

(
b+

1
2

)
u2
x

]
x

+ µ2
(

1
45
− c

)
∂2
x (uxxx)+O(µ3)

Hence

εv =
ε

4
u2+ µ

(
1
3
−α

)
uxt − µε

[(
a+

1
3

)
uuxx +

(
b+

1
2

)
u2
x

]
+ µ2

(
1
45
− c

)
∂x(uxxx)

(12)

Now, we will use the first equation of (7).

• Step3:
Put ζ = u+ εv in (7)1 that is

ut +ux +2εuux + (εv)t + ε
2(uv)x = 0

From (11) we have

ut = −ux +O(ε, µ)

uxt = −uxx +O(ε, µ)
(13)

Multiply (12) by εu, derive with respect to x
and use (13) to get

ε2uv =
ε2

4
u3+ µε

(
1
3
−α

)
uuxt +O(µ3)

ε2(uv)x =
3
4
ε2u2ux + µε

(
1
3
−α

)
(uuxt )x +O(µ3)

=
3
4
ε2u2ux − µε

(
1
3
−α

)
(uuxx)x +O(µ3)
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Next, deriving (12) with repect to t one can
get

(εv)t =
ε

2
uut + µ

(
1
3
−α

)
uxtt

− µε

[(
a+

1
3

)
uuxx +

(
b+

1
2

)
u2
x

]
t

+ µ2
(

1
45
− c

)
∂2
xt (uxxx)+O(µ3)

From (11) we get

ut = −ux −
3
2
εuux + µαuxxt +O(ε, µ)

uxtt = −uxxt −
3
2
ε∂xt (uux)+ µα∂xt (uxxt )+O(ε, µ)

uxxt = −uxxx −
3
2
ε∂xx(uux)+ µα∂

2
x (uxxt )+O(ε, µ)

Remark that

∂xt (uxxt ) = ∂
2
x (uxxx)+O(ε, µ)

∂xt (uxxx) = −∂
2
x (uxxx)+O(ε, µ)

Also we have

∂2
xt (uux) = −∂x(utux +uuxt )

= −∂x(u2
x +uuxx) = −∂

2
x (uux)+O(ε, µ)

Then

uxtt = −uxxt +
3
2
ε
[
u2
x +uuxx

]
x

+ µα∂2
x (uxxx)+O(ε, µ)

Gathering all the computations done above one
can get

(εv)t = −
ε

2
uux −

3
4
ε2u2ux + µε

α

2
uuxxt

− µ

(
1
3
−α

)
uxxt

+ µε
3
2

(
1
3
−α

) [
u2
x +uuxx

]
x

+ µ2α

(
1
3
−α

)
∂2
x (uxxx)

+ µε

[(
a+

1
3

)
uuxx +

(
b+

1
2

)
u2
x

]
x

− µ2
(

1
45
− c

)
∂2
x (uxxx)+O(µ3)

But

µε
α

2
uuxxt = −µε

α

2
uuxxx +O(µ3)

= −µε
α

2

[
uuxx −

1
2

u2
x

]
x

+O(µ3)

So

(εv)t = −
ε

2
uux −

3
4
ε2u2ux − µ

(
1
3
−α

)
uxxt

+ µε

[(
a−2α+

5
6

)
uuxx +

(
1+ b−

5α
4

)
u2
x

]
x

+ µ2
(
α

(
1
3
−α

)
+ c−

1
45

)
∂2
x (uxxx)+O(µ3)

Substitute ε2(uv)x and (εv)t in (7)1 to get

ut +ux +
3
2
εuux + µ

(
α−

1
3

)
uxxt

= µε

[(
α− a−

1
2

)
uuxx +

(
−1− b+

5α
4

)
u2
x

]
x

+ µ2
(
−α

(
1
3
−α

)
− c+

1
45

)
∂2
x (uxxx)+O(µ3)

(14)

Compare the equations (11) and (14) to deduce

α =
1
6

; a = −
1
6

; b = −
19
48

; c = −
1

360
.

Doing some calculations one can get

β = −
5
12

; γ = −
21
24

; δ = −
11
360

.

2.2 Equation on the surface elevation.

In this subsection, we are going to derive the ex-
tended KdV equation on the surface elevation ζ as a
rigorous verification of a previous work [8], where it
was imposed formally.
For this purpose, let us introduce the following equa-
tion

ζt + ζx +
3
2
εζζx −

3
8
ε2ζ2ζx + µαζxxx

= µε [βζζxxx +γζxζxx]+ µ
2δ∂2

x (ζxxx)+O(µ3)

(15)

where α, β, γ, δ are parameters in R, and
will be determined next.
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• Step1:
From (15) one can get

ζx = −ζt −
3
2
εζζx +

3
8
ε2ζ2ζx − µαζxxx +O(ε, µ)

ζxxx = −ζxxt −
3
2
ε∂2

x (ζ ζx)+
3
8
ε2∂2

x (ζ
2ζx)

− µα∂2
x (ζxxx)+O(ε, µ)

Substitute ζxxx in (15) to get

ζt + ζx +
3
2
εζζx −

3
8
ε2ζ2ζx − µαζxxt

−
3
2
αµε∂2

x (ζ ζx)− µ
2α2∂2

x (ζxxx)

= µε [βζζxxx +γζxζxx]+ µ
2δ∂2

x (ζxxx)

+O(µ3)

Use the fact that

βζζxxx +γζxζxx =

[
βζζxxx +

γ− β

2
ζ2
x

]
x

To get the following equation

ζt + ζx +
3
2
εζζx −

3
8
ε2ζ2ζx − µαζxxt

= µε
[
aζ ζxx + bζ2

x

]
x
+ µ2c∂2

x (ζxxx)+O(µ3)

(16)

where

a =
3α
2
+ β; b =

3α+γ− β
2

; c = δ+α2.

• Step2:
Let w be a smooth enough function such that
u = ζ + εw.

Compute

(1+ εζ)u = (1+ εζ)(ζ + εw) = ζ + εζ2+ (1+ εζ)(εw)

Then the first equation of (7) gives

ζt + ζx +2εζζx + [(1+ εζ)(εw)]x = 0

Use (16) to compute

[(1+ εζ)(εw)]x + ζt + ζx +
3
2
εζζx −

3
8
ε2ζ2ζx

− µαζxxt − µε
[
aζ ζxx + bζ2

x

]
x
− µ2c∂2

x (ζxxx)

= ζt + ζx +2εζζx + [(1+ εζ)(εw)]x −
ε

2
ζ ζx

−
3
8
ε2ζ2ζx − µαζxxt − µε

[
aζ ζxx + bζ2

x

]
x
− µ2c∂2

x (ζxxx)

+O(µ3)

Then

[(1+ εζ)(εw)]x = −
ε

2
ζ ζx −

3
8
ε2ζ2ζx − µαζxxt

− µε
[
aζ ζxx + bζ2

x

]
x
− µ2c∂2

x (ζxxx)

+O(µ3)

Hence

(1+ εζ)(εw) = −
ε

4
ζ2−

1
8
ε2ζ3− µαζxt

− µε
[
aζ ζxx + bζ2

x

]
− µ2c∂x(ζxxx)

(17)

• Step3:
Here we will use the second equation of (7).
Since we need to keep the terms ζt and ζx , and
since the latter derived term is (1+ εζ)(εw) and
not εw, we will multiply the second equation of
(7) by (1+ εζ). Hence, one can get

(1+ εζ)ut + ζx + εζζx + (1+ εζ)εuux

=
µ

3
ζxxt +

µ

3
(εw)xxt +

µε

3
ζ ζxxt

− µε

[
1
2

u2
x +

1
3

uuxx

]
x

+
µ2

45
∂2
x (ζxxt )+O(µ3)

(18)

For the right hand side of (18):

•
µ

3
(εw) = −

µε

12
ζ2− µ2α

3
ζxt +O(µ3)

µ

3
(εw)xxt = −

µε

12
∂xxt (ζ

2)− µ2α

3
∂xxt (ζxt )+O(µ3)

Recall that (16) gives:

ζt = −ζx +O(ε, µ)

ζxtt = −ζxxt +O(ε, µ)

Also

∂xxt (ζxt ) = ∂
2
x (ζxxx)+O(ε, µ)

Therefore

µ

3
(εw)xxt =

µε

6
[
ζ2
x + ζ ζxx

]
x
− µ2α

3
∂2
x (ζxxx)+O(µ3)
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Now, use

ζxxt = −ζxxx +O(ε, µ)

to get

•
µε

3
ζ ζxxt = −

µε

3
ζ ζxxx +O(µ3)

= −
µε

3

[
ζ ζxx −

1
2
ζ2
x

]
x

+O(µ3)

Obviously, one gets

µε

[
1
2

u2
x +

1
3

uuxx

]
x

= µε

[
1
2
ζ2
x +

1
3
ζ ζxx

]
x

+O(µ3)

Using the identity

∂2
x (ζxxt ) = −∂

2
x (ζxxx)+O(ε, µ)

one can deduces

µ2

45
∂2
x (ζxxt ) = −

µ2

45
∂2
x (ζxxx)+O(µ3)

Gathering all the informations found above in the
right hand side of (18) we get

µ

3
ζxxt +

µ

3
(εw)xxt +

µε

3
ζ ζxxt − µε

[
1
2

u2
x +

1
3

uuxx

]
x

+
µ2

45
∂2
x (ζxxt ) =

µ

3
ζxxt − µε

[
1
2
ζ ζxx +

1
6
ζ2
x

]
x

− µ2
(
α

3
+

1
45

)
∂2
x (ζxxx)+O(µ3)

(19)

For the left hand side of (18):

• εuux = εζζx + [(εw)(εζ)]x +O(µ3)

(1+ εζ)(εuux) = εζζx + [(εw)(εζ)]x + ε
2ζ2ζx +O(µ3)

We have

(εw)(εζ) = −
ε2

4
ζ3− µεαζζxt +O(µ3)

[(εw)(εζ)]x = −
3ε2

4
ζ2ζx − µεα(ζ ζxt )x +O(µ3)

= −
3ε2

4
ζ2ζx + µεα(ζ ζxx)x +O(µ3)

(1+ εζ)(εuux) = εζζx +
ε2

4
ζ2ζx + µεα(ζ ζxx)x +O(µ3)

Next,

• (1+ εζ)ut = (1+ εζ)(ζt + (εw)t )

= ζt + (εw)t + εζζt + ε
2ζwt

= ζt + εζζt + [(1+ εζ)(εw)]t − ε2ζtw

= ζt + εζζt + [(1+ εζ)(εw)]t + ε2ζxw

+O(µ3)

Multiply (17) by εζx to get

ε2ζxw = −
ε2

4
ζ2ζx − µεα(ζxζxt )+O(µ3)

= −
ε2

4
ζ2ζx + µε

α

2
[
ζ2
x

]
x
+O(µ3)

Also

εζζt + [(1+ εζ)(εw)]t =
ε

2
ζ ζt −

3
8
ε2ζ2ζt

− µαζxtt − µε
[
aζ ζxx + bζ2

x

]
t
− µ2c∂xt (ζxxx)

+O(µ3)

Recall that

ζt = −ζx −
3
2
εζζx + µαζxxt +O(ε, µ)

To compute

∂xt (ζxxx) = −∂
2
x (ζxxx)+O(ε, µ)

∂xt (ζxxt ) = ∂
2
x (ζxxx)+O(ε, µ)

∂xt (ζ ζx) = ∂t [ζ
2
x + ζ ζxx] = −

[
ζ2
x + ζ ζxx

]
x
+O(ε, µ)

And

ζxtt = −ζxxt −
3
2
ε∂xt (ζ ζx)+ µα∂xt (ζxxt )+O(ε, µ)

= −ζxxt +
3
2
ε
[
ζ2
x + ζ ζxx

]
x
+ µα∂2

x (ζxxx)+O(ε, µ)

Therefore

εζζt + [(1+ εζ)(εw)]t = −
ε

2
ζ ζx −

3
8
ε2ζ2ζx + µαζxxt

+ µε
α

2
ζ ζxxt − µε

[
3α
2
ζ2
x +

3α
2
ζ ζxx

]
x

+ µε
[
aζ ζxx + bζ2

x

]
x

+ µ2(c−α2)∂2
x (ζxxx)+O(µ3)
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Hence

(1+ εζ)ut + ζx + εζζx + (1+ εζ)εuux

= ζt + ζx +
3
2
εζζx −

3
8
ε2ζ2ζx + µαζxxt

+ µε

[
(a−α) ζ ζxx +

(
b−

3α
4

)
ζ2
x

]
x

+ µ2
(
c−α2

)
∂2
x (ζxxx)+O(µ3)

(20)

Eventually, gathering (20) and (19) we get the
equation

ζt + ζx +
3
2
εζζx −

3
8
ε2ζ2ζx + µ

(
α−

1
3

)
ζxxt

= µε

[(
α− a−

1
2

)
ζ ζxx +

(
3α
4
− b−

1
6

)
ζ2
x

]
x

+ µ2
(
α2− c−

α

3
−

1
45

)
∂2
x (ζxxx)+O(µ3)

(21)

Comparing (16) and (21) one gets

α =
1
6

; a = −
1
6

; b = −
1
48

; c = −
1
40
.

Do some calculations to deduce

β = −
5
12

; γ = −
23
24

; δ = −
19
360

.

3 An explicit solution of the extended
KdV equation

We will use the sine-cosine method to solve the
latter equation explicitly. It will need 3 steps.

• Step1: Use the traveling wave transformation
θ = x− ct. Then

ut = −cu′

ux = u′

uxx = u′′

Then we get

(1− c)u′+
3
2
εuu′+

µ

6
u
′′′

+ µε

[
5
12

uu
′′′

+
21
24

u′u
′′

]
+

11
360

µ2u(5) =O(µ3)

Integrate with respect to θ to get

(1− c)u+
3
4
εu2+

µ

6
u
′′

+ µε

[
5
12

uu
′′

+
11
48
(u′)2

]
+

11
360

µ2u(4) =O(µ3)

(22)

• Step2: Suppose that the solution of the equation
is:

u(θ) = pcos(qθ)s

where p , 0, q , 0, s , 0, and |θ | ≤ π
2q .

Differentiate with respect to θ

u′(θ) = −pqssin(qθ)cos(qθ)s−1

u
′′

(θ) = pq2s(s−1)cos(qθ)s−2− pq2s2cos(qθ)s

u
′′′

(θ) = −pq3s(s−1)(s−2)sin(qθ)cos(qθ)s−3

+ pq3s3sin(qθ)cos(qθ)s−1

u(4)(θ) = pq4s4cos(qθ)s

+ pq4s(s−1)(s−2)(s−3)cos(qθ)s−4

−2pq4s(s−1)(s2−2s+2)cos(qθ)s−2

• Step3: Put u,u
′

,u
′′

,u(4) in (22) to get

(1− c)pcos(qθ)s +
3
4
εp2cos(qθ)2s

+
µ

6
pq2s(s−1)cos(qθ)s−2−

µ

6
pq2s2cos(qθ)s

+
5
12
µεpcos(qθ)s

[
pq2s(s−1)cos(qθ)s−2− pq2s2cos(qθ)s

]
+

11
48
µεp2q2s2sin(qθ)2cos(qθ)2s−2+

11
360

µ2pq4s4cos(qθ)s

+
11
360

µ2pq4s(s−1)(s−2)(s−3)cos(qθ)s−4

−
11
180

pq4s(s−1)(s2−2s+2)cos(qθ)s−2

=O(µ3)
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Use sin(qθ)2 = 1− cos(qθ)2 to get

(1− c)pcos(qθ)s +
3
4
εp2cos(qθ)2s

+
µ

6
pq2s(s−1)cos(qθ)s−2−

µ

6
pq2s2cos(qθ)s

+
5
12
µεp2q2s(s−1)cos(qθ)2s−2

−
5
12
µεp2q2s2cos(qθ)2s

+
11
48
µεp2q2s2cos(qθ)2s−2

−
11
48
µεp2q2s2sin(qθ)2cos(qθ)2s

+
11
360

µ2pq4s4cos(qθ)s

+
11
360

µ2pq4s(s−1)(s−2)(s−3)cos(qθ)s−4

−
11
180

pq4s(s−1)(s2−2s+2)cos(qθ)s−2 =O(µ3)

1. Higher order of power = Lower order of
power of cos:

2s = s−4 =⇒ s = −4

2. Terms of cos(qθ)s−2:

µ

6
pq2s(s−1) =

11
180

µ2pq4s(s−1)(s2−2s+2)

Use the fact s = −4 and p , 0 and q , 0 to
get

q2 =
15

143µ

3. Terms of cos(qθ)s:

(1− c)p =
µ

6
pq2s2−

11
360

µ2pq4s4

After some calculations, using s = −4 and
p , 0 and the term of q2 we get

c =
1499
1859

4. Terms of cos(qθ)2s: Since 2s = s−4 we de-
duce that the cos(qθ)s−4-terms are equal to
cos(qθ)2s ones. So we deduce

3
4
εp2+

11
360

µ2pq4s(s−1)(s−2)(s−3)

=
5
12
µεp2q2s2+

11
48
µεp2q2s2

Do some calculations to get

p =
2100
2483ε

Hence the solution of (8) is

u(x, t) =
2100
2483ε

sec4

(√
15

143µ

(
x−

1499t
1859

))
or

u(x, t) =
2100
2483ε

sec4

(
−

√
15

143µ

(
x−

1499t
1859

))
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4 Conclusion

The ocean energy sector is all about innovation and
has been evidence of some notable progress. Many
studies in this domain have been done, and many
questions have given insight into new studies. After
providing a rigorous derivation of KdV equation on
u, and a rigorous verification of one on ζ , for flat

bottom, new lights have been casted on some future
researches, the extended KdV equation on the veloc-
ity could be derived with the presence of surface ten-
sion effect, this study could be done using the pseudo-
differential operator theory. Also, a numerical frame-
work could be done using the finite element method.
Finally, we would study its well-posedness employing
the modified-energy method.
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