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Abstract: - We propose a one-equation turbulence model based on a modified closure relation for the length 
scale of turbulence. The proposed model is able to adequately represent the energy dissipation due to the wave 
breaking and does not need any criterion to a priori locate the wave breaking point and the region in which the 
turbulence model has to be activated. The numerical simulation of wave transformation is carried out by 
solving the Navier-Stokes equations expressed in an integral formulation on a time dependent curvilinear 
coordinate system where the vertical coordinate varies in time and vectors and tensors are represented in a 
Cartesian base system. The model performance is assessed by numerically reproducing a laboratory test which 
consists in producing the breaking of a spilling wave on a sloping beach.  
 
Key-Words: - three-dimensional model, time-dependent coordinate, wave propagation, wave breaking, 
turbulence model, energy dissipation. 
 

1 Introduction 
In recent years many models have been developed 
for the simulation of hydrodynamic phenomena 
related to wave motion. One of the most used 
methodology is based on the depth-averaged motion 
equations. Some of the most recent models based on 
this approach make use of the extended Boussinesq 
equations [1-3] to simulate the propagation of wave 
motion in deep and intermediate waters, where the 
dispersive effects are dominant, and make use of the 
nonlinear shallow water equations to simulate the 
wave breaking in the surf zone [4,5]. In the above 
models the necessity arises to introduce a criterion 
to establish where and when to switch from a 
system of equations to the other one.  
 A different methodology is based on three-
dimensional models based on the numerical 
integration of the Navier-Stokes equations [6-10]. 
 In the first three dimensional models for free 
surface flows, the Navier-Stokes equations were 
numerically integrated by using Cartesian 
coordinates and by adopting the volume of fluid 
technique (VOF) to track the location of 
discontinuous free surface [11-12]. 
By this way vertical fluxes cross the calculus cell 
arbitrarily: therefore, it is difficult to correctly 
assign the pressure boundary condition and the 
kinematic at free surface [13]. 
 A more recent class of models [14] overcomes 
the above-mentioned drawbacks by mapping the 

physical Cartesian grid, that varies over time with 
the free surface movement, in a computational grid 
which has always a rectangular prismatic shape (𝜎-
coordinate transformation [15]). By doing so, the 
free surface is always located at the upper 
computational boundary and its position can be 
determined by applying the free surface kinematic 
boundary condition. Furthermore, it is possible to 
assign the zero-pressure boundary condition at the 
free surface without any approximation [16-17].  
 These two aforementioned types of model are 
not able to directly simulate the breaking waves and 
consequently introduce, within the motion 
equations, turbulence models aimed to reducing the 
wave height in the surf zone. In order to avoid the 
numerical instabilities produced by the strong free 
surface elevation gradients, these models need to 
use highly dissipative turbulence models and to 
locate the initial break point by means of an “a 
priori” criterion. The main limitation of these 
models is given by the fact that they are not able to 
simulate the steep fronts related to the wave 
breaking and underestimate the wave height
 Another type of model directly simulates the 
wave breaking, by introducing, in the 𝜎-coordinates 
contest, shock-capturing methods that give the 
possibility of tracking the actual location of the start 
of wave breaking without requiring any criterion “a 
priori” [13, 16-18]. 
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 In the 𝜎-coordinates shock capturing models the 
3D motion equations are formulated in terms of 
cartesian based conserved variables on a time 
dependent coordinate system, in which the vertical 
coordinate varies in time (𝜎-coordinates 3D model). 
These models provide an excellent agreement 
between the numerical results and the experimental 
measures regarding the wave heights before 
breaking and the identification of the breaking itself, 
without the need of imposing “a priori” criterions 
aimed at localizing the initial break point. 
 As described by Derakhti et al. [19], the 3D 
shock-capturing models without any turbulence 
model, generally underestimate the specific energy 
dissipation at breaking and, consequently, 
overestimate the wave height in the surf zone. 
 In this paper, the numerical simulation of wave 
transformation relies on the resolution of the 
Navier-Stokes equations expressed in an integral 
formulation on a time dependent curvilinear 
coordinate system where the vertical coordinate 
varies in time and vectors and tensors are 
represented in a Cartesian base system. The pressure 
boundary conditions are placed on the upper face of 
each computational cell. The proposed integral 
formulation represents a generalization of the 
conservative differential formulation of the Navier-
Stokes equations expressed in a 𝜎-coordinate 
system.   

 In this paper we propose a modified 𝑘 − 𝑙 
turbulence model (where 𝑘 is the turbulent kinetic 
energy and 𝑙 is length scale of turbulence) which is 
able to adequately represent the energy dissipation 
due to the wave breaking. 
Unlike the model of Bradford [12], in the proposed 
closure relation for the turbulent kinetic energy 
production, all the non-linear terms are taken into 
account. Furthermore, the proposed closure relation 
for the dissipation rate of the turbulent kinetic 
energy is expressed by a length scale of turbulence 
𝑙, which is a function of the wave height. This 
choice allows as to formulate a 𝑘 − 𝑙 turbulence 
model in which the length scale of the turbulence, 𝑙, 
does not depend on any empirical coefficient. 
Consequently, the proposed model does not need 
any criterion to “a priori” locate the wave breaking 
point and the region in which the turbulence model 
has to be activated. 

 
2 The proposed model 
2.1 Governing integral three-dimensional 𝝈-
coordinate equations 

Let (𝜉ଵ, 𝜉ଶ, 𝜉ଷ, 𝜏) be a system of curvilinear 
coordinates, the transformation from Cartesian 
coordinates (𝑥ଵ, 𝑥ଶ, 𝑥ଷ) to the  generalized 
curvilinear coordinates (𝜉ଵ, 𝜉ଶ, 𝜉ଷ) is: 

𝜉ଵ = 𝜉ଵ(𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑡);      𝜉ଶ = 𝜉ଶ(𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑡) 
 

𝜉ଷ = 𝜉ଷ(𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑡) 
(1) 

 
  𝑔⃗(௟) = 𝜕𝑥⃗/𝜕𝜉௟ and 𝑔⃗(௟) = 𝜕𝜉௟/𝜕𝑥⃗ are the 
covariant and contravariant base vectors. 
 The Jacobian of the transformation is given by 

ඥ𝑔 = 𝑔⃗(ఈ) ∙ (𝑔⃗(ఉ) ∧ 𝑔⃗(ఊ)) . 
 Δ𝑉(𝑡) is considered as a volume element 
defined by surface elements bounded by curves 
lying on the coordinate. The volume element 
𝛥𝑉(𝑡) = 𝛥𝑥ଵ𝛥𝑥ଶ𝛥𝑥ଷ = ඥ𝑔𝛥𝜉ଵ𝛥𝜉ଶ𝛥𝜉ଷ is defined 
in the physical space that is time dependent and it is 
also defined the volume element in the transformed 
space Δ𝑉∗ = Δ𝜉ଵΔ𝜉ଶΔ𝜉ଷ that is not time dependent. 
In the same way it is indicated the surface element 
in the physical space Δ𝐴(𝑡) = Δ𝑥ఈΔ𝑥ఉ =

ඥ𝑔Δ𝜉ఈΔ𝜉ఉ and the surface element in the 

transformed space Δ𝐴∗ = Δ𝜉ఈΔ𝜉ఉ (𝛼, 𝛽 = 1,3 are 
cyclic). 
 The Cartesian components of vector 𝑛ሬ⃗ 𝑑𝐴ఈ, 
where 𝑑𝐴ఈ  is the surface element in which 𝜉ఈ is 
constant and 𝑛ሬ⃗  is the unit vector normal to  𝑑𝐴ఈ, can 
be written in the form  

𝑛௠𝑑𝐴ఈ = 𝑔௠
(ఈ)

ඥ𝑔 𝑑𝜉ఉ𝑑𝜉ఊ (2)   

in which 𝛼, 𝛽, 𝛾 are cyclic. Let ℎ be the still water 
level, 𝐻 the total water depth and 𝜂(𝑥ଵ, 𝑥ଶ, 𝑡) =
𝐻(𝑥ଵ, 𝑥ଶ, 𝑡) − ℎ(𝑥ଵ, 𝑥ଶ, 𝑡) the free surface elevation 
with respect to the still water level ℎ. 

We define 𝑢௠ as the Cartesian components of 
the fluid velocity, 𝑣௠ the Cartesian components of 
the velocity of the control volume, 𝐺 the constant of 
gravity, 𝑞 the dynamic pressure and 𝑇௟௠ the 
Cartesian components of the stress tensor.   

In order to simulate the fully dispersive wave 
processes and accurately assigned the dynamic and 
kinematic boundary conditions at the free surface, 
we adopt the following transformation from 
Cartesian coordinates to curvilinear ones, in which 
the vertical coordinate varies in time so as the 
follow the time variation of the free surface 
elevation 

𝜉ଵ = 𝑥ଵ;     𝜉ଶ = 𝑥ଶ;    𝜉ଷ =
𝑥ଷ + ℎ

𝐻
;     𝜏 = 𝑡 (3) 
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The following relation is valid: 

𝑣ଷ =
𝜕𝑥ଷ

𝜕𝜏
 (4) 

This coordinate transformation basically maps the 
varying vertical coordinates in the physical domain 
to a uniform transformed space where 𝜉ଷ spans from 
0 to 1. In addition, the Jacobian of the 
transformation becomes 

ඥ𝑔 = 𝐻 (5) 
We define the cell-averaged value (in the 
transformed space) of primitive variable and 
conservative one 

𝐻ഥ =
1

Δ𝑉∗
න 𝐻𝑑𝜉ଵ𝑑𝜉ଶ𝑑𝜉ଷ

୼௏

 

𝐻𝑢௟
തതതതത =

1

Δ𝑉∗
න 𝐻𝑢௟𝑑𝜉ଵ𝑑𝜉ଶ

୼௏∗
𝑑𝜉ଷ 

(6) 

By using Eqs. (5) and (6) the momentum equation 
can be expressed in the form [17] 

𝜕𝐻𝑢௟
തതതതത

𝜕𝜏
= −

1

Δ𝑉∗
෍

ଷ

ఈୀଵ

 

ቊන ቂ𝑢௟(𝑢௠ − 𝑣௠)𝑔௠
(ఈ)

𝐻ቃ 𝑑𝜉ఉ𝑑𝜉ఊ

୼஺∗ഀశ
 

− න ቂ𝑢௟(𝑢௠ − 𝑣௠)𝑔௠
(ఈ)

𝐻ቃ 𝑑𝜉ఉ𝑑𝜉ఊ

୼஺∗ഀష
ቋ 

−
1

Δ𝑉∗
෍ ቊන ቂ𝐺𝜂𝑔௠

(ఈ)
𝐻ቃ 𝑑𝜉ఉ𝑑𝜉ఊ

୼஺∗ഀశ

ଷ

ఈୀଵ

 

− න ቂ𝐺𝜂𝑔௠
(ఈ)

𝐻ቃ 𝑑𝜉ఉ𝑑𝜉ఊ

୼஺∗ഀష
ቋ 

−
1

Δ𝑉∗

1

𝜌
න

𝜕𝑞

𝜕𝜉ఈ
𝑔௠

(ఈ)
𝐻𝑑𝜉ଵ𝑑𝜉ଶ𝑑𝜉ଷ

୼௏∗
 

−
1

Δ𝑉∗
෍ ቊන ൤

𝑇௟௠

𝜌
𝑔௠

(ఈ)
𝐻൨ 𝑑𝜉ఉ𝑑𝜉ఊ

୼஺∗ഀశ

ଷ

ఈୀଵ

 

− න ൤
𝑇௟௠

𝜌
𝑔௠

(ఈ)
𝐻൨ 𝑑𝜉ఉ𝑑𝜉ఊ

୼஺∗ഀష
ቋ 

(7) 

Where Δ𝐴∗ఈା and Δ𝐴∗ఈି indicate the contour 
surfaces of the volume element Δ𝑉∗ on which 𝜉ఈ is 
constant and which are located at the larger and the 
smaller value of 𝜉ఈ respectively.  
 Here the index 𝛼, 𝛽 and 𝛾 are cyclic. The total 
time derivative on the left side hand of (7)) became 
a local time derivative because the integral is a 
function of (𝜉ଵ, 𝜉ଶ, 𝜉ଷ, 𝜏). It is possible to see that 

the time varying of geometric components is 
expressed by the metric terms.  
 By integrating the continuity equation over the 
water column and applying the bottom and surface 
kinematic boundary conditions, we obtain  
 

𝜕𝐻ഥ

𝜕𝜏
+

1

Δ𝐴௫௬
∗ න ෍ ቈන 𝐻𝑢ఈ𝑑𝜉ఉ

୼కഀశ

ଷ

ఈୀଵ

ଵ

଴

 

− න 𝐻𝑢ఈ𝑑𝜉ఉ

୼కഀష
቉ 𝑑𝜉ଷ = 0 

(8) 

in which 𝜉ఈା and 𝜉ఈି indicate the contour line of 
the surface element Δ𝐴∗ on which  𝜉ఈ is constant 
and which are located at the larger and the smaller 
value of 𝜉ఈ respectively. Δ𝐴௫௬

∗ = Δ𝜉ଵΔ𝜉ଶ is the 
horizontal surface element in the transformed space. 
This equation represents the governing equation for 
the surface movements. Equations (7)) and (8)) 
represent the three-dimensional motion equations in 
time dependent coordinate system (𝜉ଵ, 𝜉ଶ, 𝜉ଷ, 𝜏) in 
which the variables are  𝐻𝑢௟

തതതതത and 𝐻ഥ . 
 Equations (7) and (8) are numerically solved by 

means of a finite-volume shock-capturing scheme 
which uses an approximate HLL Riemann solver. 
The solution of the system formed by Equations (7) 
and (8) is advanced in time by using a three-stage 
strong-stability-preserving Runge-Kutta (SSPRK) 
fractional step method. Further details on the 
numerical scheme can be found in [16]. 

 

2.2 Turbulence model 
 By adopting the same time dependent 
curvilinear coordinate system, the integral form of 
the turbulent kinetic energy transport equation reads 

𝜕𝐻𝑘തതതത

𝜕𝜏
= 

−
1

Δ𝑉∗
෍ ቊන ቂ𝑘(𝑢௠ − 𝑣௠)𝑔௠

(ఈ)
𝐻ቃ 𝑑𝜉ఉ𝑑𝜉ఊ

୼஺∗ഀశ

ଷ

ఈୀଵ

 

− න ቂ𝑘(𝑢௠ − 𝑣௠)𝑔௠
(ఈ)

𝐻ቃ 𝑑𝜉ఉ𝑑𝜉ఊ

୼஺∗ഀష
ቋ 

−
1

Δ𝑉∗
෍ ቊන ቈ൬𝜈 +

𝜈்

𝜎௞
൰

𝜕𝑘

𝜕𝜉ఈ
 

𝑔௠
(ఈ)

𝑔௡
(ఈ)

𝐻቉ 𝑑𝜉ఉ𝑑𝜉ఊ

୼஺∗ഀశ

ଷ

ఈୀଵ

 

− න ቈ൬𝜈 +
𝜈்

𝜎௞
൰

𝜕𝑘

𝜕𝜉ఈ
 

𝑔௠
(ఈ)

𝑔௡
(ఈ)

𝐻቉ 𝑑𝜉ఉ𝑑𝜉ఊ

୼஺∗ഀష
ቋ 

(9) 
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−
1

Δ𝑉∗
න (𝑃 − 𝜀)𝐻𝑑𝜉ଵ𝑑𝜉ଶ𝑑𝜉ଷ

୼௏∗
 

where 𝑘 is the turbulent kinetic energy, 𝜀 is the 
dissipation rate, 𝑃 is the turbulent kinetic energy 
production, 𝜈 is the viscosity of the fluid, 𝜈்is the 
turbulent eddy viscosity and 𝜎௞ is a coefficient. 
 The dissipation rate is expressed in the form of 

𝜀 =
𝑘ଷ/ଶ

𝑙
 (10) 

and the turbulent eddy viscosity is given by 

𝜈் = 𝐶ఓ√𝑘𝑙 (11) 
 where 𝐶ఓ is an empirical coefficient and 𝑙 is the 
length scale of turbulence.  
 In the work of Bradford [12] the length scale 𝑙 is 
expressed as 𝑙 = 𝜙ℎ, in which 𝜙 = 0.1 and ℎ is the 
still water depth. This choice implies that the length 
scale of turbulence 𝑙 is high before breaking and 
excessively decreases downstream the initial break 
point. Consequently (as shown in Section 3) this 
model proves to be excessively dissipative before 
the breaking (where it underestimates the wave 
height), while it vanishes in the shallow water zones 
downstream the break point (where the wave 
heights result to be overestimated).  
 In this work, in order to overcome the drawback 
of the model proposed by Bradford, we propose an 
original closure relation for the length scale of 
turbulence 𝑙. Let 𝜉ଶ the curvilinear coordinate 
approximately parallel to the shoreline and 𝜉ଵ the 
curvilinear coordinate approximately orthogonal to 
it. Let 𝑇 be the wave period. We define 
𝜂௠௔௫(𝜉ଵ, 𝜉ଶ) = max

୲
𝜂(𝜉ଵ, 𝜉ଶ, 𝑡) and 

𝜂௠௜௡(𝜉ଵ, 𝜉ଶ) = min
୲

𝜂(𝜉ଵ, 𝜉ଶ, 𝑡), where 𝑡 ∈ 𝑇. 

Let be the local wave height as 𝜆(𝜉ଵ, 𝜉ଶ) =
𝜂௠௔௫(𝜉ଵ, 𝜉ଶ) − 𝜂௠௜௡(𝜉ଵ, 𝜉ଶ) the local maximum 
water depth as 𝐻∗(𝜉ଵ, 𝜉ଶ) = 𝜂௠௔௫(𝜉ଵ, 𝜉ଶ) +
ℎ(𝜉ଵ, 𝜉ଶ) and the maximum wave height as 
𝜆∗(𝜉ଶ) = max

ஞభ
𝜆(𝜉ଵ, 𝜉ଶ).  

The length scale of turbulence is given by  

𝑙(𝜉ଵ, 𝜉ଶ) = 𝜆∗(𝜉ଶ)
𝜆(𝜉ଵ, 𝜉ଶ)

𝐻∗(𝜉ଵ, 𝜉ଶ)
    (12) 

Furthermore, in the proposed model, the turbulent 
kinetic energy production term is given by 

𝑃 = න −𝑇௟௠

𝜕𝑢௠

𝜕𝜉ఈ
୼௏∗

𝑔௠
(ఈ)

𝐻𝑑𝜉ଵ𝑑𝜉ଶ𝑑𝜉ଷ 
(13) 

in which the Reynolds stress tensor 𝑇௟௠ is expressed 
by a non-linear model proposed by Lin and Liu [20]. 

𝑇௟௠ = −𝐶ௗ

𝑘ଶ

𝜀
൬

𝜕𝑢௟

𝜕𝜉ఈ
𝑔௠

(ఈ)
+

𝜕𝑢௠

𝜕𝜉ఈ
𝑔௟

(ఈ)
൰ 

+
2

3
𝑘𝛿௟௠ 

−𝐶ଵ

𝑘ଷ

𝜀ଶ
ቊቈቆ

𝜕𝑢𝑙

𝜕𝜉𝛼 𝑔𝑚
(𝛼)  

𝜕𝑢𝑙

𝜕𝜉𝛼 𝑔𝑚
(𝛼)ቇ 

+ ቆ
𝜕𝑢𝑚

𝜕𝜉𝛼 𝑔
𝑙

(𝛼)
 
𝜕𝑢𝑚

𝜕𝜉𝛼 𝑔
𝑙

(𝛼)
ቇ቉ 

−
2

3
ቆ

𝜕𝑢𝑙

𝜕𝜉𝛼 𝑔𝑚
(𝛼)  

𝜕𝑢𝑙

𝜕𝜉𝛼 𝑔𝑚
(𝛼)ቇ 𝛿𝑙𝑚ቋ 

−𝐶ଶ

𝑘ଷ

𝜀ଶ
ቊቆ

𝜕𝑢𝑙

𝜕𝜉𝛼 𝑔𝑚
(𝛼)  

𝜕𝑢𝑚

𝜕𝜉𝛼 𝑔
𝑙

(𝛼)
ቇ 

−
1

3
ቆ

𝜕𝑢𝑙

𝜕𝜉𝛼 𝑔𝑚
(𝛼)  

𝜕𝑢𝑚

𝜕𝜉𝛼 𝑔
𝑙

(𝛼)
ቇ 𝛿𝑙𝑚ቋ 

−𝐶ଷ

𝑘ଷ

𝜀ଶ
ቊቆ

𝜕𝑢𝑚

𝜕𝜉𝛼 𝑔
𝑙

(𝛼)
 
𝜕𝑢𝑙

𝜕𝜉𝛼 𝑔𝑚
(𝛼)ቇ 

−
1

3
ቆ

𝜕𝑢𝑚

𝜕𝜉𝛼 𝑔
𝑙

(𝛼)
+

𝜕𝑢𝑙

𝜕𝜉𝛼 𝑔𝑚
(𝛼)ቇ 𝛿𝑙𝑚ቋ 

(14) 

where the coefficients 𝐶ௗ, 𝐶ଵ, 𝐶ଶ and 𝐶ଷ are 

𝐶ௗ =
2

3
 ൬

1

7.4 + 2𝑆௠௔௫

൰ ; 𝐶ଵ =
1

185.2 + 3𝐷௠௔௫
ଷ

; 

𝐶ଶ = −
1

58.8 + 2𝐷௠௔௫
ଶ

; 𝐶ଷ =
1

370.4 + 3𝐷௠௔௫
ଶ

 
(15) 

in which  

𝑆௠௔௫ =
௞

ఌ
𝑚𝑎𝑥 ቄቚ

𝜕𝑢𝑙

𝜕𝜉
𝛼 𝑔

𝑙

(𝛼)
ቚቅ (indices not 

summed) 

𝐷௠௔௫ =
𝑘

𝜀
𝑚𝑎𝑥 ቊቤ

𝜕𝑢𝑙

𝜕𝜉𝛼 𝑔𝑚
(𝛼)ቤቋ 

(16) 

 
 

3 Results 
 In this section, the laboratory test performed by 
Thing and Kirby [21], is numerically reproduced. 
This test consists in realizing a spilling wave 
breaking on a sloping beach. By means of this test, 
the role of the turbulence model on the wave energy 
dissipation processes in the surf zone is examined. 
Fig. 1 shows a schematic representation of the 
experimental arrangement. 
 The numerical simulations are performed by 
means of a computational grid whose cell number is 
13728. A grid spacing Δ𝑥 = 0.025𝑚 is used in the 
horizontal direction, while 13 layers are used in the 
vertical direction. At the western boundary, a 
cnoidal wave train is generated whose height in the 
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constant-depth water region is 𝐻 = 0.125𝑚 and the 
period is 𝑇 = 2𝑠. 
 

 

Fig. 1 - Experimental arrangement of Ting and Kirby [21] 

 Fig. 2 shows the distribution of the wave crest 
and wave trough along the cross-shore direction, 
together with the mean water level, obtained by the 
proposed numerical model in which the turbulent 
stress terms are switched off. Fig. 2 also shows the 
corresponding quantities obtained experimentally by 
Ting and Kirby [21] and numerically by Ma et al. 
[13]. By observing Fig. 2 it is possible to notice that 
the numerical results fit quite well the experimental 
data in the shoaling zone: as far the model presented 
in Ma et al. [13], only a slight overestimation of the 
wave crest results from the simulation. By observing 
Fig. 2 it is also possible to see that the proposed 
model provides an early initiation of the wave 
breaking in the case in which the turbulent stress 
terms are switched off. With respect to the model 
presented by Ma et al. [13], this early initiation of 
wave breaking is slightly less pronounced. Lastly, 
Fig. 2 shows that, if turbulence stress terms are 
switched off, the proposed model overestimates the 
wave crest in the surf zone: this overestimation is 
very close to that obtained by the model of Ma et al. 
[13].  
  

 

Fig. 2 – Mean water level and distribution of crest and 
trough elevations along the cross-shore direction for the 
surf zone spilling breaking case of Ting and Kirby [21]. 
Comparison between experimental data (empty circles), 
numerical results from Ma et al. [13] (cross) and 
numerical results obtained by the proposed model 
without turbulence model (solid line). 

Fig. 3 shows the cross-shore distribution of the 
wave crest and the wave trough and the mean water 
level obtained by including the turbulent stress 
terms in the proposed model. Fig. 3 also shows the 
corresponding quantities obtained experimentally by 
Ting and Kirby [21] and numerically by Bradford 
[12]. For this test, Bradford [12] used a VOF 
technique for the free surface elevation and a one-
equation turbulence model in which the length scale 
of turbulence is given by 𝑙 = 0.1ℎ. In the model 
proposed by Bradford, the dissipation rate 𝜀 
increases as 𝑙 reduces, and both the turbulent kinetic 
energy and the turbulent kinematic viscosity 
decrease. This provides an overestimation of the 
crest and trough elevation in the shallow water zone, 
as shown in Fig. 3. Furthermore, in the zone before 
breaking, the model proposed by Bradford provides 
underestimated values of the crest and trough 
elevation with respect to the experimentally 
measured data. In order to overcome these 
limitations, in the proposed turbulence model the 
direct dependence of 𝑙 from the still water depth is 
suppressed and the length scale of turbulence is 
expressed as a function of the wave height. By 
observing Fig. 3 it is possible to notice that the 
modified 𝑘 − 𝑙 turbulence model proposed in this 
work well fits the experimental distribution of the 
wave crest both before and after the breaking. 
Furthermore, by comparing Fig. 2 and Fig. 3 it is 
evident how, with respect to the results obtained 
without including the turbulence stress terms, the 
turbulence model proposed in this work provides a 
better estimation of the break point location and 
correctly predicts the wave height in the entire surf 
zone.  

 

Fig. 3 - Mean water level and distribution of crest and 
trough elevations along the cross-shore direction for the 
surf zone spilling breaking case of Ting and Kirby [21]. 
Comparison between experimental data (empty circles), 
numerical results from Bradford [12] (cross) and 
numerical results obtained by the proposed model with 
the modified 𝑘 − 𝑙 (solid line) 
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Fig. 4a-c show the time evolution of the water 
surface elevation, during a time interval equal to the 
wave period, evaluated respectively at 𝑥 = 1𝑚 
(after the toe of the slope), 𝑥 = 5.95𝑚 (before the 
break point) and 𝑥 = 8.49𝑚 (after the break point). 
For each of these figures, numerical results 
(obtained with and without including the turbulence 
stress terms) and experimental data are reported. By 
observing Fig. 4a and Fig. 4b, it is evident that the 
turbulence model proposed in this work has not 
significant effect on the solution before the break 
point. From Fig. 4c it can be deduced that in the surf 
zone the wave heights predicted without using any 
turbulence model are overestimated with respect to 
the experimental data. On the other hand, the wave 
heights predicted by using the proposed turbulence 
model are in good agreement with the experimental 
data. 

Figs. 5a-c show an instantaneous wave field 
along the cross-shore direction. Fig. 5a shows the 
time-varying computational grid in which the lower 
and upper layers are refined in order to improve the 
accuracy of the numerical solution near the bottom 
and the free surface. Figs. 5b and 5c show an 
instantaneous representation of the velocity vectors 
and the turbulent kinetic energy contours 
respectively. From Figure 5b it is possible to see 
that the proposed model is able to capture the 
steeping of the wave fronts as the wave train 
approach the shore, and the increasing of the 
vertical velocity component which occurs as the 
wave front steepen. Fig. 5c shows how the 
turbulence model mainly acts in the surf zone, 
where the wave turbulence processes are significant, 
while it has no significant effect before the break 
point (shoaling zone). 
 
 

4 Conclusion 
In this work, a modified 𝑘 − 𝑙 turbulence model 
(where 𝑘 is the turbulent kinetic energy and 𝑙 is 
length scale of the turbulent eddies) has been 
proposed which is able to adequately represent the 
energy dissipation due to the wave breaking. The 
model performance has been assessed by 
numerically reproducing a laboratory test which 
consists in realizing the breaking of a spilling wave 
on a sloping beach. It has been shown that the 
proposed turbulence model spontaneously activates 
after the break point, where the wave turbulence 
processes are significant, and makes it possible to 
avoid the significant underprediction of the energy 
dissipation induced by the wave breaking in the surf 

zone, which is observed when no turbulence stress 
terms are included in the numerical simulation. 

(a) 

(b) 

(c) 

Fig. 4 – Phase-averaged water surface elevations for the 
surf-zone spilling breaking case at different cross shore 
locations. Comparison between experimental data (empty 
circles), numerical results obtained by the proposed 
model without turbulence model (dashed line) and 
numerical results obtained by the proposed model with 
the modified 𝑘 − 𝑙 (solid line). 
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(a) 

 

(b) 

 

(c) 

Fig. 5 - Instantaneous representations of: (a) computational grid, (b) velocity vectors, (c) turbulence kinetic energy 
obtained in the modified 𝑘 − 𝑙 model.  
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