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Abstract: -     A joint solution of the Navier-Stokes equations and the continuity equation for a disc of finite 
radius R  rotating at a constant angular frequency of ω  are found. The gas compressibility and, accordingly, 
the second viscosity in the Navier-Stokes equation are taken into account. An analytical solution of the problem 
is found, and velocity distributions, as well as density and pressure near the surface of the disk under conditions 
of purely laminar flow, are obtained as functions of the cylindrical coordinates r  and z .  It is shown that if a 
disk is a sandwich type structure consisting of two identical disks but rotating in opposite directions, a lifting 
force effect appears.  
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1 Introduction 
The problem that will be discussed here is related 

to the general problems of theoretical gas 
dynamics, and will consist in clarifying the 
distribution of velocities, density, and pressure near 
a surface of a disk of finite size rotating at a 
constant angular velocity under steady-state 
conditions. This problem will be quite different 
from the classical problem of T. Karman [1] (also 
described in the monograph [2], p. 112) for the 
perfectly understandable reason that it is a question 
of gas, and not of an incompressible fluid. In 
addition, we will not consider an infinite disk, as in 
[1], [2], but a finite disk. When the gas 
compressibility is taken into account, the stationary 
equation of continuity does not allow us to take the 
gas density behind the sign of the divergence 
operator (see below). The latter circumstance 
complicates the problem quite considerably, 
however, an analytical solution, nevertheless, can 
be found by compensating for this complication by 
the condition of laminar flow near the surface of 
the disk. By this condition, we mean a completely 
simple assumption about the small Reynolds 

numbers, which is satisfied exactly in the region of 
the laminar flow, for which the solutions found 
below are valid. We should also pay attention to the 
fact that unlike the solution [1], where the solution 
was sought as a function of only one coordinate z .  
We will look for the dependencies of all physical 
parameters of interest to us, namely, the velocity 
projections v , v , vr zϕ ,  as well as the density ρ  
and pressure distribution P  near the surface of the 
disk as functions of two independent variables r  
and z .     

2 The solution of the problem 
To solve the problem, we write down the general 
system of Navier-Stokes equations and the 
continuity equation under steady flow conditions in 
the form of the following system: 
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where ρ −  a density of gas, P −  a pressure, η −  a 
dynamic viscosity, ς −  the second viscosity, 

( )v , v , vr zϕ=v  -  velocity in cylindrical 
coordinates. For the laminar flow region (in the 
case of small Reynolds numbers), we have the right 
to disregard the quadratic velocity terms on the left-
hand side of the first three equations. Although 
such an approximation greatly simplifies the 
system (1), the resulting equations still remain 
nonlinear, since the dependence of the gas density 
in the immediate vicinity of the disk on the 
coordinates must be taken into account. Indeed, in 
the end we find: 
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The lower equation in (1) and (2) is the 
continuity equation written in a cylindrical 
coordinate system. During researching of the 
problem, due to its axial symmetry, we can assume 
that all the unknown functions are functions of only 
two independent arguments r  and z , and do not 
depend on the angular variable ϕ , i.e: 
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We formulate the boundary conditions here in 
this way:  
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where 0u −  some small but finite value of radial 

velocity. The function  ( )f r  is well known one 
and it satisfies only the following requirement 
( ) 0f r →  if r →∞  (see below). Since laplacian 

operator in a cylindrical coordinate system is 

defined as 
2

2

1 r
r r r z
∂ ∂ ∂

∆ = +
∂ ∂ ∂

, then due to the 

linearity of the second equation of the system (2), it 
is completely solved using the Fourier method, and 
allows us to write the physical solution of interest 
to us, which satisfies the boundary conditions (4) as 
expansion of eigenfunctions:  
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where ( )1J a −  cylindrical functions of the first 

order, nλ −  eigenvalues of the Sturm-Liouville 
problem. From the condition that the gas "adheres" 
to the disk surface, according to which 

( )
0
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z
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= , and due to the solution (5), we 

obtain an equation for determining the constants  
nC : 
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Using here the orthogonality property of cylindrical 
functions, we obtain:  
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We return to solutions (5), (6) below. As for 
calculating the velocity components vr  and vz , we 
shall find them in the form:  

              ( )[ ]( ),rot f r z ω= ×v r

,            (7)  
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where ( ),f r z −  the required function, depending  
on two independent arguments. 

Opening the expression (7), we are finding:  

f fr
z r
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 - unit vectors. For further 

calculations, we need a projection of the vector 
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antisymmetric due to all the indices, the unit tensor 
of the third rank, i

klΓ −  Christoffel symbol of the 
second type. In a cylindrical coordinate system, we 
easily find for the projection onto the axis ϕτ

 , 
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we have from here: 
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we rewrite the system of equations (1) in vector 
form, we are getting:  
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Due to equation of condition, we can assume 
( )P P ρ= , hence PP ρ

ρ
∂
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 and therefore the 

substitution in (11) because of the disappearance of 
the left-hand side, leads us to a much simpler 
equation (compare with the results of [5], see also 
[6]):  

                                0rot∆ =v .   

Substituting here the solution (8) allows us to 
obtain the following equation:  
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After spatial derivation, we find: 
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Projecting this equation on the direction of the 
mobile basis ϕe , we will have as a result:  
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laplacian operator. To solve equation (14) it is 
convenient to introduce a new function: 
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We will find the solution of equation (17) in a 
factorized form, setting:  
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As a result of the substitution in (17), we find:  
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where constλ = . The resulting two equations  
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have two solutions that are finite at zero and at 
infinity:  
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( )1~ , ~zF e E J rµ µ− , 

where 1( )J x −  cylindrical function of the first 

order and  
1
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some constant of separation of variables, which we 
calculate later. Therefore, according to (15) and 
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where 2C −  integration constant. We find a solution 
of this equation also in a factorized form, setting  
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In the result, we find such equation for the function 
Φ :  
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 Therefore, substituting (24) into (23), and then 
(21), we find the required solution for the 
determining function in the form:  
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The obtained solution allows us to find the velocity 
components in the laminar layer. In fact, according 
to the solution of (7), we have for them:  
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Substituting here the solution of (26), we obtain:  
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The above general solution, both qualitatively and 
quantitatively, correctly describes the velocity 
distribution near the surface of revolution. In this 
case, as can be seen from the solutions (27), all four 
terms for each of the velocity components both at 
zero and at infinity behave approximately 
identically. This circumstance allows us to rewrite 
the solutions of (27) in a simpler and much more 
compact form, without restricting, however, the 
generality of the solutions found. Therefore, the 
constants 2C  и 4C  has been set to zero. As a 
result, we shall have:  
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where we used the well-known property of 
cylindrical functions, according to which the 
derivative was replaced by 0 ( )J x′  for 1( )J x− . 
With the help of solutions (28), we can now easily 
find the distribution of the gas density near the 
surface of revolution. According to the continuity 
equation, which we have not yet used, we have   
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solutions (28), we find:  
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The equation (29) is a first-order linear differential 
equation whose solution can be found in general 
form, for example, using the method of 
characteristics [3]. Since we are interested in a 
purely physical solution, the general form of the 
solution is of little interest to us, and we can 
integrate this equation in order to establish exactly 
the particular solution of interest to us with the help 
of the remarkable method of separation of 
variables. Because of simple actions, the solution 
can be represented in the form of quadratures:  
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where 0
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= .  To calculate the force acting on 

the surface of the disk from the gas side, we write 

down the general formula for viscous stress tensor 
[2]:  
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Because of substituting the found solutions (28) 
and (31) in none-dimensionless variables, we have:  
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surface of the disk must be determined by the 
expression (34) taken at the coordinate value 
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The value of  (0)zF  force can be easily estimated 
if we take into account the rapid decay of 
cylindrical functions with distance. This allows us, 
in a crudely approximation, to assume that 
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( )1J x xλ λ≈ , and ( )0 1J xλ ≈ . As a result, a 
simple calculation leads us to the following 
estimate for the strength (0)zF . 
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                                                   (36) 

Numerical integration of the general expression 
(35) allows us to obtain an exact dependence for 
the force zF , as a function of the rotational speed 
(see Fig. 1). It should be noted that the 3, ,a Cλ  
constants in (35) and (36) do not influence on the 
qualitative picture of the dependence ( )zF ω , 
illustrated in Fig. 1.  

 

Fig.1. The dependent of  the  force (35) on the 
rotational frequencies with . Along the horizontal 
axis is got the value 

1
x R v

ω= , where ω - the 

rotational frequencies and  the kinematic 
viscosity 1ν  is equal ( )21

1 10 cm
sν −= .  The 

air density is ( )2
310 g

cmρ −= . 

 

In the case when we have a system of two wheels 
rotating in parallel with different angular velocities 

1ω


 and 2ω


 (see Fig. 2), the forces arising from 
above and below create a certain force difference 

zF∆ , which, in accordance with the solution (36), 
can be estimated as: 
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3 1 0

2 2 2 2
1 2 41 2 1 2

0
1 1
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R
P R a
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 −  − − × + +      
  

(37) 

 

Fig.2. The graphic illustration of rotating discs with 
different angular velocities. 

 

As we can see from (37), the force can be either 
pressing against the surface or lifting, depending on 
the relationship between the rotational frequencies. 
It is quite obvious that 1 2~zF ω ω∆ − ,  the higher 
the speed of rotation, the higher the lifting force. 
This effect, by the way, is similar to a spin of a top: 
if it turns in one direction, its weight increases, and 
if it goes to the other, it decreases. The above 
calculations prove this purely physical effect by the 
example of two rotating coaxial disks. A great 
curiosity on our part is the experimental 
verification of such an opportunity, which is 
dcaused not so much by academic interest as by 
purely scientific one, since the practical importance 
of the task considered above is beyond doubt.  
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Conclusion  
In conclusion, we should note that: 

1. A solution of the stationary hydrodynamic 
problem on the rotational dynamic motion of a disk 
in a compressible gas is found; 
2. A steady-state velocity distribution is 
obtained in the laminar layer immediately adjacent 
to the flat disk surface; 
3. The pressure difference is calculated to 
provide the effect of a lifting force, provided that 
there are two coaxial discs rotating in opposite 
directions.  
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