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Abstract: - Today especially important to study the filtration process in the reservoir with fractures. The 

fracture may be either natural, in case of tectonic fault, or artificial, in case of well simulation, and it may have 

various permeability values. This paper considers the steady-state flow process of incompressible fluid to the 

production well in a reservoir of constant height and permeability. There is a thin area in the reservoir with 

constant permeability kf, which might be highly permeable crack or low permeable barrier. The characteristics 

of filtration process are studied for various kf values. The nature of fluid flow to the wellbore is analyzed at 

different locations of the well and the crack for different values of the fracture conductivity in this paper and 

the analytical expression for skin effect is defined. 
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1 Introduction 
In spite of the most oil fields are on the final stage 

of the field development, there are a lot of ways to 

maintain and to increase the production. The 

modern level of science and technology allows 

extracting oil more efficiently, taking into account 

the individual characteristics of reservoir and the 

behavior of fluids.  

The main part of fluid flow occurs through the 

more permeable zones, therefore any deviation in 

the reservoir homogeneity acts on the production 

[1]. For example, in fractured reservoirs the main 

flow of oil to the well occurs through the fractures 

[2]. A characteristic feature of the development 

process of such reservoirs has the deviation in well 

productivity and rock permeability, significant 

dependence of IPR curves (Inflow Performance 

Relationship) on the pressure, etc.  

Oil filtration modelling in fractured reservoirs is 

also interesting from the point of view of application 

for hydraulic fracturing. Hydraulic fracturing is 

currently one of the most effective methods to 

increase oil production [3, 4]. Therefore these days 

especially important to study the filtration process in 

the reservoir with tectonic faults, hydraulic fractures 

(HF) and impermeable boundaries (Fig. 1-2).   

 
Figure 1 Locations of the well and a fracture for 

Hydraulic fracturing case. 

 

 
Figure 2 Locations of the well and a fracture for 

tectonic fault case. 
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This paper discusses the modelling of the fluid 

flow process to the well in the presence of cracks 

(inclusions) with different permeability, studies the 

impact of such inclusions on the nature of the fluid 

flow process to the production well. The task is 

modified by the representation of cracks in the 

section view of zero thickness but finite 

conductivity and by the difference of pressure above 

and below the section. The issues of flow modeling 

inside the fracture have been investigated in the 

article [5]. 

At the first paragraph, the problem formulation 

issue will be presented. The solution of the problem 

will be shown in the second section, and it includes 

the brief review of previous solutions and more 

general solution, which takes into account all cases 

of the well and the fracture locations and all values 

of fracture permeability. In the last part of this 

section the flow lines of fluid filtration will be 

presented and discussed. And finally the equations 

for skin effect will be solved for each considered 

case.  

 

 

2 Problem Formulation 
Let us consider a plane stationary flow of 

incompressible fluid to the vertical production well 

in an isotropic porous medium. This process in the 

plane (x,y) is described by the equation of 

incompressibility and the Darcy's law of filtration 

[1]: 

                         

pgradkVyxVdiv )/(,0),( 


   (1) 

 

where (x,y) is the velocity vector of fluid filtration, 

p(x,y) is the pressure in the liquid, μ is the fluid 

viscosity and k is the reservoir permeability by the 

thickness h. 

In the works of other authors the high permeable 

area is usually represented by ellipse [6, 7], while, 

the different way of problem solution uses the 

integrals of Cauchy type [8]. 

Let us consider, that in the reservoir with the 

external boundary of radius Rc at the point M(x0,y0) 

is placed the production well of radius rw with a 

flow rate Q. Inside the external boundary there is a 

crack with length 2l and thickness 2δ (δ << l) and 

permeability kf. Let us consider the crack is oriented 

along the axis x, and its center coincides with the 

origin plane (x, y) (Fig. 3). 

 

 
Figure 3 Well and fracture places in the plane 

 

In the paper, published early by Astafiev and 

Fedorchenko (2007) [9], the problem was solved 

with assuming that the pressure is the same on the 

upper and lower banks of the crack. In this paper we 

consider the case with the difference of pressure. 

 

 

3 Problem Solution 
Suppose the crack is oriented along the x-axis, and 

its center coincides with the origin of the plane (x, 

y). Next we assume the borehole at the point 

z0=x0+iy0, well flow rate Q, the radius of the 

drainage area Rc and well radius rw (Fig. 3). 

Then, as described in work written by Astafiev 

and Fedorchenko [9], the flow potential, can be 

represented in the form: 

 


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where q= µQ/(2πkh)  is the modified flow rate, cn is 

unknown coefficients in the expansion in a Laurent 

series of the disturbance caused by the presence of 

reservoir heterogeneity and decaying at infinity.  

Because of δ<<l, it was proposed [10, 11] to 

replace the ellipse with semi-axes l and δ by 

straight-line section of zero thickness (-1 ≤ ξ =x/l= 

≤1). Then the fluid flow in the fracture can be 

modeled as the following additional boundary 

conditions on the cut: 
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where Φ
+ 

 and Φ
- 

is the flow potentials above and 

below the section, coefficient 
kl

k f







 0  is 

similar to Fcd for the hydraulic fractures [3] and 

fkl

k







0  is very important for the impermeable 

case. 
 

We will look the function Φ(z) as the sum of 

even and odd function or as Φ(z)= Φ1(z)+ Φ2(z), 

which are related as follows:  

 

Re Φ1
+
(z) = ReΦ1

-
(z); 

Im Φ1
+
(z) = -Im Φ1

-
(z); 

Re Φ2
+
(z) = -ReΦ2

-
(z); 

ImΦ2
+
(z) = ImΦ2

-
(z). 

 

Then the boundary conditions (3) will be as: 
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Mapping by the Zhukovsky function z=l(ν+ν
-1

)/2 

the exterior of the section –l<x<l, y=0 on the 

exterior of a unit circle |ν|=1,  we can rewrite 

functions from the equation (2) as 
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where nk  is new unknown coefficients in the 

expansion in a Laurent series of the disturbance in a 

variable ν caused by the presence of reservoir 

heterogeneity and decaying at infinity.  

That is, the series from the equation (2) can be 

presented in the form: 
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Then if we substitute (5)-(7) in the equation (2), 

the potential in a new variable ν can be written as: 

 

.)ln()(
0
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where
22)( lzzzlv  , 22

000 )( lzzzlv  , 

|ν|>1, 
na  is new unknown coefficients in the 

expansion in a Laurent series of the disturbance in a 

variable ν caused by the presence of reservoir 

heterogeneity and decaying at infinity.  

Let us consider the variable ν in the form 
 ieiv  , where  cos  and 

 sin . We consider the segment 11   , 

therefore 1 . The upper part of the section will 

be  =0+ , that is  0 , while the lower part of 

the cut will be  =0- , that is 0  . Therefore, 

the system (4) can be presented in the next form: 
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 As it is given that 1 , we can rewrite 

 ie , that is 



 d

d
i

d

d
 . Thus the system (9) 

will be presented as: 
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 Also, taking into account that Re(iz)=-Im(z), 

and Im(iz)=Re(z), then the system of equations (10) 

can be rewritten in the form: 
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The first equation in the system (11) is 

equivalent to the equation: 
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And the second equation in the system (11) is 

equal to the equation: 
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It remains to split )(  into even and odd 

functions, that is, to find )(1   and )(2  . So, 

if
 ie , we can rewrite (4) for even and odd 

functions separately in the form: 
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If we take into account that 
 ie , the 

equations (14) and (15) can be rewritten: 
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The real parts of the equations (16) и (17) are: 
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That is, to satisfy Re Φ(θ) = ReΦ (-θ) it is 

necessary 0Im 0 
n
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always image, and so the flow potential: 
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Now let us consider general case when 
 ie 00  and 

)()( 
nnn iaaa  . Thus, the flow 

potential in this case would be: 
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The real and the image parts of the coefficients 

φ1 and φ2 are: 
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Let find 
)(

na  and 
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na  from the condition (6) as: 
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If we substitute (19) and (20) in the equation (2), 

we will find: 
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In a case when 
 ,00  , or if the well is 

located on the x axis, this solution coincides with 

the solution obtained in the works written by 

Astafiev and Fedorchenko this solution coincides 

with the solution obtained in the works written by 

[9]: 
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where Fcd=kfδ/kl is the dimensionless fracture 

conductivity [3]. 

The nature of fluid flow to the wellbore at 

different locations of the crack and the well for 

different values of the coefficients α0 and β0 are 

shown in Fig.4 - Fig. 7. As we can see, the obtained 

flow potential equation allow us to solve the 

problem for any well and fracture location and for 

different fracture conductivity. On the Fig. 4 and 

Fig. 5 there is permeable fracture, and if we place 

the well in the center of the fracture, we can see the 

hydraulic fracturing case. On the Fig. 6 and Fig. 7 

there is the impermeable fracture, which acts like 

impermeable boundary.  

 

 

  

Figure 4 Streamlines of the fluid flow to the well, 

located at the point (0.2, 0.5) for the values of 

α0=∞; β0=0. 

 

 
 

Figure 5 Streamlines of the fluid flow to the well, 

located at the point (0.5, 1) for the values of α0= ∞; 

β0=0. 
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Figure 6 Streamlines of the fluid flow to the well, 

located at point (0.2, 0.5) for the values of α0= 0; 

β0=∞. 

 

 

 
 

Figure 7 Streamlines of the fluid flow to the well, 

located at point (0.5, 1) for the values of α0= 0; 

β0=∞. 

 

 

 

 

 

4 Coefficient of well productivity 
The main value, which can express effectiveness of 

HF, is the skin factor (can be measured only by well 

test analysis). The skin factor reflects any physical 

or mechanical impact decreasing flow to the well 

[12]. Firstly, A.F. Van Everdingen and W. Hurst 

[13] introduced in practice the term skin-effect to 

evaluate the near wellbore condition. According to 

the authors, change of buttonhole pressure as the 

result of increasing or decreasing permeability is 

proportional to skin effect. In that way, the skin 

effect expresses the value of additional pressure 

drawdown as a consequence of a deviation from the 

radial flow [14]. Mainly the damaged by drilling 

zone causes the decrease of permeability near 

wellbore. However, the permeability of skin-area 

may be increased in case of hydraulic fractures, and 

negative skin effect can be imposed if a successful 

hydraulic fracture is created.  

All of the components of petroleum production 

system can be condensed into the productivity 

index, which can be presented in the next form [3]: 

 

1)(ln 


 S
r

R

pp

q
J

w

c

wc

            (22) 

 

where pc – pressure on the external boundary, pw – 

pressure on the well bottom, S – skin factor of the 

well.  

The case when the well is placed on the fracture 

and pressure is equal by both sides from the 

discontinuity was considered in [15]. Let us find the 

value of the skin factor for more general case from 

the equation (21) for the potential φ(z) from the 

following conditions: 

 

 

pc=Re φ(z), z = zc = z0+Rce
iϴ

, 

(23) 

pw=Re φ(z), z = zw = z0+rwe
iϴ

.  

 

 

We can rewrite the coefficients in the equation 

for flow potential in such form: 
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So we can get potential from the (21) in the next 

form: 
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Consequently we can find pressure on the 

external boundary as the real part of the flow 

potential: 
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Taking into account that 1/ cRl , or 

cccc zlzzzlv 2)( 22
 , we can write pc 

from the (21) in the form:  

 

)/2ln()/()/2(ln(/ lRRlOlRqp cccc  . 

 

Similarly, considering that 1/ wrl  

or 0

22
)( lvlzzzlv www  , we get equation 

for pw from the (21):  
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Consequently, skin factor can be expressed from 

(22) as: 
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Particularly, from the (24) we can conclude that, 

for a highly permeable fracture α0= ∞; β0=0: 
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and for an impermeable fracture α0= 0; β0=∞: 
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Additionally we can show that for a case than the 

well is placed on the x axis or for θ0=0,π, skin factor 

is: 
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Therefore, impermeable fracture for such well 

location gives skin S=0, while highly permeable 

gives S=2 ln (1-ρ0
-2

)<0.  

For a case than θ0=π/2, skin factor is: 
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5 Conclusion 
In this work the formulation and solution of the 

problem of fluid flow to the well at the presence of a 

crack of different conductivity has been done. The 

solution obtained by the replacement of ellipse like 

approximation to the section view of zero 

thickness but finite conductivity. More general 

boundary conditions were considered taking into 

account the pressure difference above and below the 

section. Thus we obtained more general equation for 

the flow potential which coincides with previous 

solutions. This s solution is suitable for any cases of 
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various well and crack places and for different 

values of a fracture permeability and allow us to 

analyze the nature of fluid flow.  

The skin factor is one of the most important 

parameter for the evaluation of well productivity, 

which can reflect additional pressure dropdown as 

the result of a deviation from the radial flow. 
Therefore in the last part, the equation for skin 

effect is defined for different values of fracture 

conductivity and various well-crack locations. 

As we can see, the problem has enough interest 

from the petroleum engineers. Further development 

of the solutions is to present the flow potential 

through singular integral equations, which will 

greatly expand the applications.  
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