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Abstract: In this study, several numerical analysis methods were performed for solving 

boundary layer flow model development due to a moving surface ('sheet').  This model obeys 

to general stretching law and was presented by Kuiken in 1981. The numerical simulation 

methods which were used are the shooting method and finite difference method (FDM). 

Creating the final simulation model involved a calibration step. It was found that the shooting 

method does not describe properly the fluid physics as compared to finite difference method 

(FDM). Additionally, comparison between numerical and suggested approximate solutions 

was done while qualitative compatibility was found between solutions. Kuiken solution 

branch was found to be fully coincided with current FDM solution for 1/ 3  . Finally, 

comparison between ADM (Adomian Decomposition Method) and FDM has been done, 

while appropriate match was found between solutions. Quantitatively, all presented solutions 

have the same order of magnitude; nevertheless, inaccuracy between all kinds of solutions 

does exist. 

Key-words: Shooting method, FDM, Two-dimensional flow, Numerical solution, Approximate 

solution, Analytical solution, Literature solution, ADM 

 

1 Introduction 

Boundary layer problems were studied 

and developed by different researchers for 

many decades. In 1965, Goldstein [1] has 

proved that outer fringes in which are 

described by potential flow (harmonic 

functions) of the boundary layer cannot be 

algebraic but should rather be exponential. 

According to Kuiken [2], Brown & 

Stewartson [3] have showed that algebraic 

behavior can be obtained at singular points 

in special cases (sink, source or point of 

separation). Moreover, algebraic behavior 

was examined in 1969 by Van Dyke [4] in 

the case of axisymmetric vertical needle 

motion with free convection.  

During the last years, fresh studies on 

boundary layer flow have been published. 

In 2008, Ishak et al. [5] have published 

their study on incompressible viscous and 

electrically conducting fluid medium due  

 

 

 

to a moving extensible sheet that obeys a  

more general stretching law. According to 

Kuiken [2], the sheet suddenly (or 

"somehow") disappears in the origin while 

the flow medium has not been influenced 

by the sink presence. They found that dual 

solutions exist near 0x  , where the 

velocity profiles show a reversed flow. 

Similar studies have been done in 2011 

and 2012 by Ibrahim & Shanker [6] and 

Soid et al. [7]. However, Ibrahim & 

Shanker [6] have been focused on the 

influence of the heat transfer due to a heat 

source by quasi-linearization technique. 

Similar study in a porous medium on 

mixed convection flow was performed by 

Imran et al. [8].  

The present study concentrates on 

several numerical methods for solving 

boundary layer development equations due 

to moving extensible surface as originally 

brought by Kuiken [2] in 1981. The 
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numerical methods which will be dealt 

here are the shooting method and finite 

difference method (FDM). Current study 

finds the suggested numerical solutions 

limitations by making comparison between 

those solutions and other studies. 

Moreover, the author suggests four 

approximate analytic solutions which are 

based on boundary conditions only. The 

idea behind these solutions is to have a 

relatively quick solution type evaluation in 

the quantitative and qualitative aspects 

before finding an accurate solution for the 

non-linear differential equation. The 

analytic approximate solutions are inspired 

by the author mathematical approach on 

the study of laminar boundary layer [9]. 

Comparison between approximate and 

numerical solution is performed including 

other literature approximations and 

analytical solutions (like ADM - Adomian 

Decomposition Method and Kuiken 

analytical solution). 

The shooting method appears broadly in 

Stoer & Bulirsch book [10] and by Press et 

al [11]. This method is used for solving 

boundary value problem (B.V.P) by 

reducing it to the solution of an initial 

value problem. Here, the method will be 

used for solving non-linear third order 

differential equation. Second method of 

solution is called finite difference method 

(FDM). This method represents a group of 

numerical methods which are based on 

finite derivatives approximations [12-13] 

and will be elaborated in the context of this 

essay. 

2 Flow Field Equations 

Consider a moving extensible sheet in 

Cartesian flow field coordinates  ,x y as 

appear in Fig. 1. While the sheet occupies 

the negative x -axis as shown below in Fig. 

1. While the sheet occupies the negative x -

axis as shown below in Fig. 1. 

 
Fig. 1. 2D extensible sheet model. 

The sheet moves continually in the positive 

x-direction at a velocity [2]: 

0
0 , 0s

x
u u

x




 

   
 

,    (1) 

while 0x and 0u are the characteristic length 

and velocity, respectively. According to 

Kuiken [2], the sheet suddenly (or 

"somehow") disappears in the origin while 

the flow medium has not been influenced 

by the sink presence. Suppose, Reynolds 

number is large enough, so "backward" 

boundary layer equations are given by [2]: 

       

2

2
0,  

u v u u u
u v

x y x y y


    
   

    
,   (2) 

where ,u v are the velocity components in 

the ( , )x y directions, respectively. while 

represents constant viscosity.  Also, the 

boundary conditions are given by [2]: 

0 : 0,  

: 0

sy v u u

y u

  

 
,     (3) 

For parabolic equation, one should select 

specific value of ( ,0)u x . Hence, we will 

choose: 

( , ) 0u x y  .    (4) 

Using similarity transformation for solving 

Eq. (2) with B.C. (3-4), as follows: 

( ) 2 ,  
2

s
x

u
f u x y

x
   


  ,   (5) 

while represents stream function which is 

defined by the following derivatives: 

,  u v
y x

  
  
 

.       (6) 

Simplifying system Eqs. (1-3) into one 

non-linear differential equation using 

relations (5) and (6) with the appropriate 

boundary conditions is prescribed by [2]: 

 
2

( 1) 2 0f ff f        , (7) 

y  

x  

  , 0u u x x   
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With the following appropriate B.C.: 

 (0) 0, (0) 1, 0f f f     ,  (8) 

where differentiation is defined by the 

prime argument notation   .  

3  Numerical methods 

formulation 

Numerical solution procedure for 

solving parabolic equation has been 

studied by [14-17]. In order to simplify the 

problem, system order will be reduced 

using vector-matrix notation. Hence, ( )f 

function derivatives would be defined by: 

( ) ( )

( ) ( ) ( )

f F

f F G

 

  

 

  
.    (9) 

Substituting Eq. (9) into Eqs. (7-8) leads to 

vectors notation such that  Tf F GU  and

VU  : 

22 (1 )

f F

F G

G F fG 

   
    
   

       

, (10) 

While  

 (0) 0, (0) 1, 0f F F    . (11) 

In this problem the following parameters 

will be used: 

 
1 1 2 4

, , , ,1,4,10
3 5 5 5

  . While 

elementary numerical method 

analysis will be concentrated on

1 2 4
, ,

5 5 5
  . Moreover, further 

examination and comparisons for 

analytical and approximate 

solutions will be included values of 

1
,1,4,10

3
  (see Sec. 6). 

 The range of independent 

parameter values is 0 30 

such as 30  is considered "far 

enough" (as will be discussed 

continually) to represent infinity

  . 

 

Two main numerical methods for solving 

this problem are: 

 The shooting method. 

 Finite Difference Method 

(FDM). 

 

Shooting Method 

The shooting method requires a 

definition of an initial condition. Guessing

(0)f involved with numerical integration 

from 0  to 1  . Next step is to guess the 

function value at 30  and then making an 

equality check by comparing it to (0)f . 

Thus the error will defined by: 
( ) ( )( ) ( 30, ) ( 30)n nE f f f f     , (12) 

where ( )nf is a series of ( 30)f    guesses 

and ( )( 30, )nf f  is the appropriate guess 

value. The shooting method can be solved 

iteratively (implicit methods) or 

alternatively, by using explicit methods as 

shown below in Fig. 2 diagram. 
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Fig. 2. Schematic diagram of the shooting method of solution. 

 

ADAMS Method 

Conceptually, a numerical method starts 

from an initial point and then takes a short 

step forward in time to find the next 

solution point. The process continues with 

subsequent steps to map out the solution. 

Single-step methods (such as Euler's 

method) refer to only one previous point 

and its derivative to determine the current 

value. Methods such as Runge-Kutta take 

some intermediate steps to obtain a higher 

order method, but then discard all previous 

information before taking a second step. 

This method has been discussed by 

Butcher [14] and Süli & Mayers [15]. 

Mathematically formulation of this method 

is obtained by:  

   

   

   

31
1 1 1 1

32
1 2 1 2

33
1 3 1 3

2

2

2

 
2

2 (1 )

n n n n n

n n n n n

n n n n n

n

h
f f h F F F O h

h
F F h G G G O h

h
G G h Q Q Q O h

Q F fG 

 

 

 

    

    

    

  

              (13) 

In order to find the value at the initial 

point, one should use one of the following 

methods: 

 

 

 Euler Method. 

 Runge-Kutta Method. 

While Euler method is based on error of 

the second order  2O h  and is written by: 

2

2 1 1 1 1

2

2 1 2 1 2

2

2 1 3 1 3

( )

( )

( )

f f h f O h

F F h F O h

G G h G O h

  

  

  

, (14) 

where 1 1 1, ,f F G are obtained by initial 

guesses.  

Alternatively, Runge-Kutta method 

which is one-step method with an error of 

the third order  3O h  can also be applied 

for initiation. This method can be 

implemented by: 
3

2 1 1 1 1 2 1 1 1 1

3

2 1 1 2 1 2 2 1 2 2

3

2 1 1 3 1 2 2 1 3 3

( ) ( )

( ) ( )

( ) ( )

f f h f h f h O h

F F h F h F h O h

G G h G h G h O h

   

   

   

    

    

    

, 

                 (15) 

while 1 2 1 2

1
, 1

2
       . 

Until now, explicit solutions to 

algebraic equations have been 

demonstrated. From this point, iterative 

solution methods will be discussed. Two 

Shooting Method 

Euler Method Runge-Kutta Method Secant Method Steffenson Method 

Explicit  

Method 

 

Method 

Of 

Solution 

ADAMS 

Method 

 

Iterative 

Methods 

 

Implicit  

Method 
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main methods that may be suitable for 

solving Eq. (12) are: 

 Secant Method. 

 Steffenson Method. 
 

Secant Method 

In numerical analysis, the Secant 

method is a root-finding algorithm that 

uses a roots succession of secant lines to 

better approximate a root of specific 

function. The secant method can be 

thought of as a finite difference 

approximation of Newton's method. 

However, the method was developed 

independently of Newton's method as 

reported by Papakonstantinou [16]. This 

method is being considered as a multi-step 

method and data of two points is required. 

The secant method can be applied here by: 

 ( ) ( ) ( 1)

( 1) ( )

( ) ( 1)

n n n

n n

n n

f u u u
u u

f u f u







    
      

. (16) 

 

Another iterative method that should be 

considered is called Steffenson method and 

will be elaborated here. 

Steffenson Method 

This method is actually a modification 

of Newton-Raphson method which is also 

being called "variable derivative" method. 

This method is categorized to be one step 

method which means that knowledge of 

only one point initiation data is required. 

However, the mathematical formulation is: 

 
2

( )

( 1) ( )

( ) ( ) ( )

n

n n

n n n

f u
u u

f u f u f u


  

 
         

.

             (17) 
 

Other numerical solution which will be 

implemented and dealt here is the finite 

difference method (FDM).  

 

FDM Method 

FDM method has been studied by 

Morton and Mayers [12]. Accordingly, it 

can be solved both iteratively (implicit 

methods) or alternatively, by using explicit 

methods as shown below in Fig. 3 

diagram. 

 
Fig. 3. Schematic diagram of the FDM method of solution. 

 

Finite-difference methods (FDM) are 

numerical methods which are based on 

approximate derivatives. For better   

 

explanation, general problem will be 

defined in the shape of:  

FDM 

Gauss-Seidel Method Jacobi Method 

Method 

Of 

Solution 

Thomas 

Method 

 

Iterative 

Methods 

 

Implicit 

Method 
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     2 ,   0 1

(0) , (1)

y p x y g x y q x x

y y 

      


 

             (18) 

While dividing x range into N segments. 

Taylor central operator relations will be 

used for numerical purpose, by: 

 

)(
2

)(
2

2

2

11

211

hO
h

yyy
y

hO
h

yy
y

nnn
n

nn
n















, (19) 

Substituting relations (19) into Eq. (18) 

yields: 

21 1 1 1

2

2
( ) ( )

2

( )

n n n n n
n

y y y y y
p x g x y

h h

q x

     
 



             (20) 

After applying discretization on Eq. (20) 

we have: 

2

1 1

2

1 2 1
2 2

,  1 2

i i
i i i i

i

hp hp
y y h g y

h q i , ,..,N

 

   
         

   

 

.

             (21) 

While this problem should be solved 

according to schematic diagram as shown 

in Fig. 3. Parenthetically, G-S (Gauss- 

Seidel) method implementation for solving 

Eq. (21) is given by: 

1 2

1 1
1

2

1 1
2 2

,
2

0,1,2..

n ni i
i i i

n

i n

i i

hp hp
y y h g

y
h g y

n



 


   
      

   




             (22) 

Under the following relaxation 

convergence criterion: 

  10 ,11   nnnn

SUR yyyy .  

             (23) 

These method prominent advantages are 

easy programming and faster convergence 

than Jacobi and SOR (successive over-

relaxation) methods. The next paragraph 

will discuss Thomas algorithm for solving 

Eq. (21). 

Thomas algorithm 

 In this paragraph general formulation 

for solving numerical algebraic Eq. (21) 

using Thomas algorithm will be 

introduced. Thomas tri-diagonal matrix is 

written by [11 ,17]: 

1 1 1

2 2 2,2

3 3 3 3,3

4 4 4

,

..

..

..

N N N

i

i

i N

Cb c d

Ca b c d

a b c

a b dC  

    
    
    
    
     
    
    
    
        

(24) 

Similar to system (24), the tri-diagonal 

matrix in our problem is: 

 

   

 

 

 

2 1
11

122 2
2

2

22

2 2 1 1 0 0 1 12 2

01 1 2 2 1 1
2 2

0
0

1 1
0 1 1 2 2 2

2

N

N

N

hf hfh F

Fhf hf
h F

F

F
hf

hf
h F

   

  

 
 

              
                                

                  

             (25) 

As appear in equations system (25), matrix 

coefficient vector is non-linear and fulfills: 

             nnnnnn yfByyyfA 
1

; .  (26) 

While
  n

yA and B are the coefficients and 

solutions vectors, respectively. System of 

Eqs. (26) will be solved by initial guess of

F function. Convergence condition is 

fulfilled by:           

      
   1n n

F F 

  ,   (27) 

while 0constant  .  

 

Additionally, if parameter is calculated by 

using Euler backwards differences: 

    
)(1 2hiii OhFff   .  (28) 

4  Numerical Model Calibration 

 Calibration of numerical methods 

results will be examined here by 

comparing results of ,f f  functions. 

Initialization process difference between 

Euler and Runga-Kutta methods is 

presented in Fig. 4.  The difference value 

between these methods is very small and 

almost not exists for each value as shown 

in Fig. 4 .a – b for ,f f  , respectively. The 
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maximum difference value is in order of 

magnitude of 310 for each value of

5/2,5/1 as presented in Fig. 4. It can 

be concluded that one can use Euler 

method for integration process instead of 

using Adams method and yet, achieve 

relatively accurate results. 

 

 Convergence processes for solution are 

obtained using Secant and Steffenson 

methods which are of the same order

 2O h . The difference between these 

methods is illustrated in Fig. 5. It can be 

observed that there is a slight difference 

between solution profile functions ,f f  , 

especially for 2 / 5  . The reason for this 

slight difference is derived from the fact 

that Secant method is multi-step method 

which required two initial guesses. On the 

other hand, Steffenson method is one-step 

method which required only one initial 

guess. The maximum error between Secant 

and Steffenson profiles is about 14% for

1/ 5  . Thus Steffenson method will be 

used. Moreover, shooting method is too 

sensitive for initial guess choice and 

therefore unstable enough. 

 

 

Examination of integration step (grid 

step) as illustrated in Fig. 6, reveals that 

there is no clear line ('thumb rule') between

,f f  function values and integration step 

values. This incompatibility is derived due 

to instability of the shooting method, as 

was mentioned before. From here, 0.01h 
will be used for achieving minimum run-

time. parameter value has no influence on 

convergence since edge conditions are not 

possibly to achieve. 

 

Fig. 4. Comparison between initialization methods for 1/ 5,  2/5  : a. f . b. f  . 

 

 

Fig. 5. Comparison between convergence methods for 1/ 5,  2/5  : a. f   b. f   

(a) (b) 

(a) (b) 
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Fig. 6. Comparison between various grid steps for 1/ 5  : a. f  b. f   

 

Now, examination of FDM analysis 

parameters will be done. FDM order of 

magnitude error is identical to Euler 

method  2O h . After assuming 0.01  , 

integration grid step comparison is 

demonstrated in Fig. 7. It can be easily 

inferred from Fig. 7 that solution accuracy 

convergence is achieved for smaller 

integration step values. Moreover, 

integration step has no influence on 

number of iterations required for  

 

 

convergence. Hence, we will use

0.01h  as an integration step. 

Convergence condition comparison for 

various parameters is presented in Fig. 8. 

It can be easily concluded that for 

decreasing parameter, solution 

convergence improves accuracy. However,

0.01  will be taken for further 

calculations since solution accuracy is 

appropriate enough for supplying 

convergence condition and solution run – 

time is relatively short.  

 
Fig. 7. FDM comparison between various grid steps for 1/ 5  : a. f . b. f  . 

 

(a) (b) 

ZOOM

 

ZOOM 

 

(b) (a) 
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Fig. 8. FDM comparison between various convergence criteria for 1/ 5  : a. f .  b. f  . 

5 Numerical results  

 This section presents final numerical 

results for the following specific 

parameters:  

 0.01h  . 

 0.01  . 

 1/ 5,2 / 5,4 / 5  . 

Since the shooting method is unstable 

and obtained results have no physical 

meaning since normalized function 

values are negative in large part of the 

range ( , 0f f   ) as shown in Fig. 1-3, 

only final results for f and f  functions 

using FDM will be presented here. 

Examination of FDM final solution as 

shown in Fig. 9 indicates  

 

 

that solution functions ( ,f f  ) achieve 

their maximum value for minimum
parameter value. The sharp kink behavior 

at 30  is caused by fulfilling B.C.

  0f    which proves that FDM 

numerical solution is still insufficient for 

providing accurate solution. Moreover, f 

is proportional to u velocity and represents 

velocity component qualitative behavior in 

the x direction ( f u  ). In the next section,

30   will be proved to be considered as 

"far enough" to represent infinity (" "). 

 

 
Fig. 9. Final results of the FDM for 1/ 5,2 / 5,4 / 5  : a. f .  b. f  . 

(a) (b) 

(a) (b) 
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6 Comparisons & Discussion 

 The solution has been obtained using 

relevant mathematical knowledge from the 

author's study on laminar boundary layer 

[9]. The solutions are aimed to fulfill B.C. 

(8) only while the basic functions shapes 

(for instance: sin, ln, exponent or 

polynomial, etc.) have been chosen 

intuitively. These approximate functions 

do not fulfill numerical B.C. for but 

only the original B.C. for . It should 

be emphasized that these solutions are 

aimed to model the original analytic 

solution of Eq. (7) and not the numerical 

problem solution.  

 On the one hand, qualitative 

compatibility was found between FDM 

and approximate solutions (29-32) as 

shown in Fig. 10. a-b. Also, quantitatively 

observation reveals compatibility in order 

of magnitude between both solutions. On 

the other hand, accuracy quantitative 

differences between solutions do exist due 

to the following reasons: 

 Numerical solution convergence    

condition (11). 

 Numerical solution dependency on 

different  parameter values while 

approximate solution has no 

dependency on this parameter (only  

B.C.). 

 Function shapes (29-32).  

 Numerical solution discretization.  

 

The significant advantages of approximate 

solutions are: 

 Quick evaluation of solution. 

 Good qualitative compatibility. 

 Good quantitative compatibility 

(order of magnitude).     

In continue to the former discussion, 

literature approximation and analytical 

solutions will be presented. Analogous 

behavior between Kuiken [2], Crane [20], 

Liao & Pop [21] and others [18-19,23-24] 

was found. Kuiken [2] has suggested 

analytic solution ( f ) for 1/ 3  in the  

 

 

 

form:    

 

   

 

1/6
2

5

1/3

2

Ai ( )
3 / 9 ,    

Ai( )

1 9
0.56,   1

3

z
f c

z

c z c
c






 

 
    

 

 (33) 

Where Ai( )z is Airy function and z is the 

accommodate argument. Moreover, in 

1970 Crane [20] and three decades later 

Liao & Pop [21] have solved similar 

problem on boundary layer development 

due to flow past a stretching plate in the 

form:   

       2 0f f f f           (34) 

with identical B.C. (8). However, Eq. (34) 

is equivalent to Eq. (7) for 4  and 2  . 

Two analytical solutions have been 

proposed by Crane [20] for Eq. (34) with 

specific  values: 

   6 1f e    , 1  , (0) 1f   . (35) 

   7 2 tanh / 2 ,

1, (0) 0

f

f

 





  
 (36) 

while )0(f  is the appropriate convergence 

condition. Even though solutions (35-36) 

are appointed to solve specific differential 

equation (34) with distinct coefficients 

compared to Eq. (7), nevertheless, these 

solutions are still valuable in there 

qualitative and quantitative aspects despite 

of its value inaccuracy. After intensive 

sorting and classification of approximate, 

FDM and literature solutions it was found 

that all kinds of solutions have similar 

qualitative behavior (see Fig. 10 - 11) but 

are different, quantitatively. However, 

numerical values have the same order of 

magnitude for all solutions. FDM solution 

and Kuiken solution are coincided at 

1/ 3  as shown in Fig. 11. Moreover, 

Crane [20] first (35) and second (36) 

analytical solutions have been coincided 

with first (31) and second (32) 

approximate solutions, respectively.  

 

30 

 
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Reasons for differences between literature, 

approximate and numerical solutions are: 

 Different differential equation 

coefficients lead to different 

equations which influences the 

function solution shape. 

 Using (0)f  convergence condition 

(35 - 36) instead of numerical 

convergence condition (12). 

 Approximate solution is based on 

B.C. only.  

 Numerical discretization accuracy.  

Despite those differences, approximate and 

literature solutions are still have similar 

order of magnitude as compared to 

numerical solutions and also fits 

qualitatively.  

 

 Kechil et al. [22] have solved Kuiken 

boundary layer equation by suggesting 

simple and efficient approximate analytical 

technique which called ADM (Adomian 

Decomposition Method). This method is 

an iterative semi-analytical method for 

solving ordinary and partial nonlinear 

differential equations. The analytic 

solution has convergent infinite series 

form. In this part, comparison between 

ADM solution as brought by  Kechil et al. 

[22] and current FDM solution will be 

presented and discussed. The comparison 

shown in Fig. 12 are for ,f f  functions 

where 1/ 3,1,4,10  . Note that symbols 

appear in this illustration are equivalent

,m     . In case where 1,4,10  both 

ADM and FDM solutions yield identical 

results quantitatively and qualitatively. 

Moreover, FDM solution for 4   seems 

to fulfill condition  5 0f    with 

relatively better accuracy than ADM 

solution as appear in Fig. 12 (c-d). In case 

where 1/ 3  ADM solution is fully 

coincided with Kuiken [2] solution branch 

as shown in Fig. 12 (a-b). However, 

current solution is partly coincided with 

Kuiken [2]. At 2.5  current solution 

branch splits from Kuiken branch. There 

are two main reasons for this phenomenon: 

1. FDM solution obligates to fulfill B.C.

 5 0f    , while Kuiken solution 

doesn't supply this condition. 2. FDM 

solution becomes accurate for large

values (like 30  ) than small values 

(like 5  ), since otherwise sharp kink 

shape is likely to be created (compare with 

Fig. 11 (a-b)). 

 

 
Fig. 10. Final results comparison between FDM and approximate solutions for: a. f .  b. f  . 

  

(a) (b) 
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Fig. 11. Final results comparison between FDM, approximate and literature solutions for a. f . b. f  . 

 
Fig. 12. a– c. Numerical and approximate results for ,f f  in case of 1/ 3,1,4,10  by Kechil et al. 

[19].  b - d. ,f f  current study results for 1/ 3,1,4,10  . 

7 Conclusion 

This study presents several kinds of 

numerical and analytical approximate 

solutions for boundary layer development 

equations due to moving extensible surface 

as originally brought by Kuiken [2] in 

1981. Two main numerical methods for 

solving this problem are the shooting 

method and Finite Difference Method 

(FDM). Main parameters for solving the 

numerical problem are: 

1 1 2 4
, , , ,1,4,10

3 5 5 5
   and independent 

parameter fulfills 0 30  .  

 

 

Examination of the shooting method 

shows: 

 Initialization value difference due to 

initialization process between Euler and 

Runga-Kutta methods is very small and 

almost not exists for specific values 

parameters.  

 Convergence processes for solution 

were obtained using Secant and 

Steffenson methods which are of the 

same order  2O h . Slight difference 

between solution profiles was found, 

especially for 2 / 5  . 

(a) 
(b) 

 

(a) 

) 

(b) 

(c) 

) 
(d) 

) 
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   The shooting method is too 

sensitive for initial guess choice and 

therefore is unstable. Typical symptom 

of its instability is incompatibility 

between profile values and integration 

step values. 

  parameter value has no influence 

on convergence since edge conditions 

are not possibly to achieve. 

 

In conclusion, the shooting method is 

unstable enough to use including the fact 

that obtained results have no physical 

meaning ( , 0f f   ).  

Examination of the FDM shows: 

 Solution accuracy convergence 

is achieved for smaller 

integration step values. 

 Solution convergence improves 

accuracy for decreasing
parameter. 

Moreover, simple approximate 

solutions have been suggested by the 

author together with some literature 

solutions. After comparison between 

analytical and numerical solutions it was 

found that:  

 Quick evaluation of solution. 

 Good qualitative compatibility. 

 Good quantitative compatibility 

(order of magnitude).  

 Inaccuracy of quantitative 

results. 

Comparison between ADM (Adomian 

Decomposition Method) and FDM 

solutions has raised that: 

 In case where 1,4,10  both ADM 

and FDM solutions yield identical 

results quantitatively and 

qualitatively.  

 Moreover, FDM solution for 4   

seems to fulfill condition 

 5 0f    with relatively better 

accuracy than ADM solution.  

 In case where 1/ 3  ADM 

solution is fully coincided with 

Kuiken [2] solution branch.  

 Current solution is partly coincided 

with Kuiken [2]. At 2.5  current 

solution branch splits from Kuiken 

branch. There are two main reasons 

for this phenomenon: 1. FDM 

solution obligates to fulfill B.C.

 5 0f    , while Kuiken 

solution doesn't supply this 

condition. 2. FDM solution 

becomes accurate for large values 

(like 30  ) than small values 

(like 5  ), since otherwise sharp 

kink shape is likely to be created. 

 

Future studies on subject should be: 

 Full mathematical examination 

of general equation for boundary 

layer development due to 

moving extensible surface, 

including influences, like: 

magnetic, heat transfer etc. 

 Examination of B.C. influence 

on flow behavior under previous 

or similar conditions. 

 Finding mathematical link 

between approximate solution 

that based only on B. C. and 

accurate numerical solution. 

 Comparison with more advanced 

numerical approach, like 

Homotopy method. 
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