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Abstract: - An Upwind Weighted Essentially Non-Oscillatory scheme for the solution of the Shallow Water 

Equations on generalized curvilinear coordinate systems is proposed. The Shallow Water Equations are 

expressed in a contravariant formulation in which Christoffel symbols are avoided. The equations are solved by 

using a high-resolution finite-volume method incorporated with an exact Riemann Solver. A procedure 

developed in order to correct errors related to the difficulties of numerically satisfying the metric identities on 

generalized boundary-conforming grids is presented; this procedure allows the numerical scheme to satisfy the 

freestream preservation property on highly-distorted grids. The capacity of the proposed model is verified 

against test cases present in literature. The results obtained are compared with analytical solutions and 

alternative numerical solutions. 

 

Key-Words: - 2D Shallow Water Equations, Upwind WENO scheme, Contravariant formulation, Christoffel 

Symbols, Freestream preservation.  

 

 

1 Introduction 
Many authors [10,26,39] solve Shallow Water 

Equations by using high-resolution methods for 

hyperbolic systems of conservation laws. In this 

context Weighted Essentially Non-Oscillatory 

(WENO) schemes [24,28] are very efficient tools. 

Two classes of methods can be distinguished: 

Upwind and Central schemes.  

Upwind schemes are physically based and 

require extensive use of eigensystems: the 

calculation of cell averages needs information on 

characteristics at the interfaces of spatial cells. In 

most cases the solution of a Riemann problem is 

involved in tracing the characteristic fans. 

Rossmanith et al. [33] adopted a Roe-type 

approximate Riemann solver for hyperbolic system 

in a general curved manifold: the equations are 

solved in the coordinate basis defined by the 

numerical grid and all one-dimensional Riemann 

problems are solved in a locally valid orthonormal 

basis. Even though approximate Riemann solvers 

can give good results, some researchers [3,32,43] 

opt for the so-called exact solver through some 

numerical iterative schemes.  

In order to simulate flows over computational 

domains characterized by a complex boundary two 

strategies can be followed. The first strategy is 

represented by the possibility of using unstructured 

grids [2,7,8,9,12,13,14,20,21,29,37]. The second 

strategy is based on the numerical integration of the 

motion equations on a generalized curvilinear 

boundary conforming grid [15,16,17,18,19,34]. In 

generalized curvilinear coordinates, contravariant 

components are vector components defined on a 

basis which is locally normal to the curvilinear 

coordinates. This strategy has been widely used in 

numerical simulations of shallow water on the 

surface of a sphere, as well as relativistic 

hydrodynamics [11,30].  

In numerical solutions of motion equations in 

contravariant formulation two contradictions appear. 

The first contradiction is related to the presence of 

Christoffel symbols in motion equations. It is well 

known [47] that numerical methods for the solution 

of the conservation laws in which the convective 
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terms are expressed in non-conservative form do not 

guarantee the convergence to weak solutions. 

Consequently in the integrations of the conservation 

laws in whose solutions shocks are present, 

convective terms must be expressed in conservative 

form. In the contravariant formulation of motion 

equations, covariant derivatives give rise to 

Christoffel symbols. These terms are extra source 

terms. They come in with the variability of base 

vectors and do not permit the definition of 

convective terms in a conservation form. 

Consequently the contravariant Shallow Water 

Equations, numerically integrated on generalized 

boundary conforming curvilinear grids for the 

simulation of flows in which shocks are present, 

must be free of Christoffel symbols. Furthermore, it 

is well known that in numerical methods in which 

numerical approximations of derivatives of uniform 

physical quantities do not vanish, freestream 

conditions are not preserved. In other words, the 

freestream preservation properties of a scheme are 

achieved when a uniform field is not affected by 

mesh irregularities. Numerical discretizations of the 

Christoffel symbols introduce computation errors 

related to mesh non-uniformities: solutions are 

affected by these non-uniformities. As a 

consequence numerical discretization of the above 

mentioned symbols can reduce the numerical 

accuracy and can corrupt the preservation of 

freestream conditions. Wesseling et al. [44], Xu and 

Zhang [46] and Yang et al. [47] avoid the 

Christoffel symbols and ensure the strong 

conservation properties by dotting the strongly 

conservative motion equations in vector form by the 

contravariant base vector after the discretizations. 

The second contradiction is related to the 

difficulty of exactly numerically satisfying the 

metric identities. A well known geometric identity 

[41] is given by the condition that a cell is closed. In 

a curvilinear system of reference the aforementioned 

condition becomes the metric identity. If numerical 

approximations of the metric coefficients do not 

exactly satisfy the above mentioned identity, 

numerical approximations of derivatives of uniform 

physical quantities do not vanish and freestream 

conditions are not preserved. Many authors [4,42] 

solve the problem by constructing meshes in which 

metric identities can be numerically satisfied 

through careful attention to the evaluation of the 

metric coefficients. Nonomura et al. [31] state that 

in schemes, as WENO schemes, in which 

unsymmetrical high-order operators are involved, 

the above mentioned procedures (based on the 

careful evaluation of the metric coefficients) are not 

able to satisfy numerically the metric identities. 

The original contribution of this work is the 

definition of a new Upwind Weighted Essentially 

Non-Oscillatory scheme for the solution of the 

Shallow Water Equations expressed directly in 

contravariant formulation. The Upwind WENO 

scheme needs a flux calculation at the cell 

interfaces. These fluxes are calculated by means of 

the solution of a Riemann problem. An Exact 

Riemann Solver is used in this work. In accordance 

with the procedure proposed by Rossmanith et al. 

[33], all necessary Riemann problems are solved in 

a locally valid orthonormal basis. This 

orthonormalization allows one to solve Cartesian 

Riemann problems that are devoid of geometric 

terms. Following the conceptual line proposed in 

[16], in this paper a formal integral expression of the 

Shallow Water Equations in contravariant 

formulation is presented. In order to avoid 

Christoffel symbols, the depth-integrated motion 

equations (in contravariant form) are integrated on 

an arbitrary surface and are resolved in the direction 

identified by a constant parallel vector field. In this 

way we present an integral form of the contravariant 

Shallow Water Equations in which Christoffel 

symbols are avoided. A procedure developed in 

order to correct errors related to the difficulties of 

numerically satisfying the metric identities on 

generalized boundary-conforming grids is 

presented; this procedure allows the numerical 

scheme to satisfy the freestream preservation 

property on highly-distorted grids. The model is 

verified against several benchmark tests, and the 

results are compared with theoretical and alternative 

numerical solutions. 

 

 

2 The integral form of contravariant 

Shallow Water Equations 
We define the water depth as h and the depth-

averaged velocity vector as ���, whose components 

are defined in the Cartesian system of reference. Let 

be v hu=
r r

. The Shallow Water Equations are 

written directly in the contravariant formulation in a 

two-dimensional curvilinear coordinate system. 

In order to introduce the notation to be used, we 

consider a transformation 
1 2

( , )
l l

x x ξ ξ= from the 

Cartesian coordinates x
r

 to the curvilinear 

coordinates ξ
r

 (note that superscripts indicate 

components and not powers in the present notation). 

Let ( ) / l

lg x ξ= ∂ ∂
ur r

 the covariant base vectors and 

( ) /l

lg xξ= ∂ ∂
ur r

 the contravariant base vectors. The 
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metric tensor and its inverse are defined by

( ) ( )lm l mg g g= ⋅
ur ur

 
and 

( ) ( )l m
lm

g g g= ⋅
ur ur

( , 1,2)l m = . 

The Jacobian of the transformation is given by

det( )lmg g= . The transformation relationship 

between vector ��� in the Cartesian coordinate system 

and its contravariant and covariant components, �� 
and ��, in the curvilinear coordinate system are 

given by [40] 

 �� = ��(�) · ���	;			�� = ��(�) · ���	; ��� = ����(�)	; 	��� = ����(�)                                     (1) 

 

The same relationship also applies to other vectors. 

In the following equations, a comma with an index 

in a subscript denotes covariant differentiation. The 

covariant derivative is defined as �� ,�=� �� �⁄ �� + ���� �� where ����  is the Christoffel 

symbol that is given by ���� = ��(�) · � ��(�) �⁄ �� 

[1]. 

The integral form of the contravariant continuity 

equations is given by: 

 � ���� ���� + � ���� �! = 0                        (2) 

 

where A∆ is an arbitrary surface elements, L the 

contour line. The second integral of Eq. (2) has been 

transformed by Green's theorem. 

From a general point of view, in order to express 

the momentum conservation law in integral form, 

the rate of change of momentum of a material 

volume and the total net force must be projected 

onto a physical direction. The direction in space of a 

given coordinate line is changing, in contrast with 

the Cartesian case. Thus, the volume integral of the 

projection of motion equations onto a curvilinear 

coordinate line has no physical meaning since it 

does not represent the volume integral of the 

projection of the aforementioned equations onto a 

physical direction [1]. We take a constant parallel 

vector field and equate the rate of change of 

momentum of a material volume to the total net 

force in this direction. We choose, as parallel vector 

field, the one which is normal to the coordinate line 

on which the �� coordinate is constant at point #$ ∈ ∆�. The coordinate values of #$ are �$' and �$(. 

The contravariant base vector at point #$, ��(�)(�$', �$(), which is normal to the coordinate line 

on which �� is constant, is used in this work in order 

to identify the parallel vector field. 

Let )�(�'�() be the covariant component of ��(�)(�$', �$(), given by 

 )�(�'�() = ��(�)(�$', �$() ∙ ��(�)(�', �')            (3) 

 

For the sake of brevity, we indicate �+�(�) =��(�)(�$', �$() and ��(�) = ��(�)(�', �(). We integrate 

over an arbitrary surface element of area ∆� and 

resolve in the direction )�the rate of change of the 

depth-integrated momentum (per unit mass) and the 

depth-integrated force (per unit mass). Consequently 

we get: 

 

, ����- )����� + 

� ./0/12 + 3��� 24( 5,� )����� =
−7 83ℎ���:,� + ;�<)�����                        (4) 

 

Since the vector field is constant and parallel, )�,� = 0. The second integral on the left hand side 

of Eq. (4) can be transformed by Green's theorem; 

Eq. (4) becomes 

 

, �r>�- )����� + 

� ./0/12 + 3��� 24( 5 ��)��!∆? =−7 83ℎ���H,� + R><)�����                         (5) 

 

By using Eq. (3) and by recalling ��(�) ∙ ��(�) = B�� 

we get 

 

, �C�(�) ∙ ��(�) ����- ���� + 

� .�C�(�) ∙ ��(�) /0/12 + �C�(�) ∙ ��(�)3 24( 5���!∆? =−7 �C�(�) ∙ ��(�)83ℎ���:,� + ;�<����             (6) 

 
Eq. (2) and (6) represent the integral expressions of 

the Shallow Water Equations in contravariant 

formulation in which Christoffel symbols are 

absent. 

Let us introduce a restrictive condition on the 

surface element of area ∆�: in the following the 

surface element of area ∆� must be considered as a 

surface element which is bounded by four curves 

lying on the coordinate lines. Since �� =
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D���'��( and by indicating with ℎEF the averaged 

value of h over the surface element of area ∆�, 

given by ℎEF = '��7 ℎD���'��(��  eq. (2) is 

transformed in 

 �2GH�� =− '��I JK �LD���M −�NOP K �LD���M�NOQ R(
LS'   

                                                                              (7) 

 

where T�LU and T�LV indicate the segments of the 

contour line on which �W is constant and which are 

located at the larger and smaller value of �W, 

respectively. Here the indexes X and Y are cyclic. 

Let us define �̅[ � as 

 �̅[ � = '��7 �C�(�) ∙ ��(�)��D���'��(��                (8) 

 

By dividing Eq. (6) by ∆�, by using Eq. (8) and by 

decomposing in three parts the source term related 

to the bottom slope, Eq. (6) becomes: 

 

�/̅[\�� = '�� ]−^ _` .�C�(�) ∙ ��(�) /0/O2 +�NOP
(
LS'

�C�(�) ∙ ��(L)3 24( 5D���M −` .�C�(�) ∙�NOQ
��(�) /0/O2 + �C�(�) ∙ ��(L)3 24( 5D���Ma −
7 �C�(�) ∙ ��(�)83(b − b̅F)���:,� +��

;�<D���'��( − 3b̅FI JK �C�(�) ∙�NOP
(
LS'

��(L):D���M −K �C�(�) ∙ ��(L):D���M�NOQ c +
d(I JK �C�(�) ∙�NOP

(
LS'

��(L):(D���M −K �C�(�) ∙ ��(L):(D���M�NOQ ce(9) 

in which b is the free surface elevation and b̅F 
represents the averaged value of b on the surface 

element ∆�. The left hand side of Eq. (9) represents 

the surface-average of the time derivative of the l 

contravariant component of the f� vector (expressed 

as a function of the contravariant base vector �+�(�) 
defined in (�$', �$(). The last three terms on the right-

hand side of Eq. (9) are obtained by decomposing 

the source term related to the bottom slope on the 

right-hand side of Eq. (6), according to the 

conceptual line proposed by Xing and Shu [45], in 

order to realize a numerical scheme that satisfies the 

C-property for quiescent flow over non-flat bottom. 

It must be noted that in Eq. (6) and in Eq. (9) 

Christoffel symbols are absent. 

 

 

3 Metric identities and freestream 

preservation 
Cai and Ladeinde [4] state that one of the main 

problems related to the solution of motion equations 

in generalized curvilinear coordinates is the 

difficulty of exactly numerically satisfying the 

metric identities; the failure to numerically satisfy 

the metric identities causes numerical instabilities in 

the solution. In the case in which metric identities 

are not exactly satisfied, freestream conditions are 

not preserved and, consequently, the fidelity of 

high-order approaches can be catastrophically 

destroyed [42]. In this section we present a 

procedure developed in order to correct errors 

related to the difficulties of numerically satisfying 

the metric identities on generalized boundary 

conforming grids.  

A well known geometric identity [41] is given by 

the condition that a cell is closed. This condition is 

expressed by: 

 ∮ ���? �! = 0                                                   (10) 

 

where ��� represents the vector which is normal to the 

contour L of the calculation cell. In a curvilinear 

system of reference the condition (10) becomes the 

following metric identity in integral form  

 

I(LS' ` ��(L)D���M�NOP − 

` ��(L)D���M�NOQ = 0 

                                                                   (11) 

 

Here the indexes (α,β) are cyclic. By dividing Eq. 

(11) for the area of the calculation cell T� =∬D���'��(, and by applying the limit as T� 
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tends to zero, the following metric identity in 

differential form is obtained  

 �i��(O)√i�NO = 0                                                    (12) 

 

The most important effect produced on numerical 

solutions by the high levels of irregularity of the 

mesh is related to the metric identities. In order to 

emphasize the role of the metric identities in the 

failure of freestream preservation properties of a 

scheme, it is necessary to underline that in the 

summations of the integrals on the right-hand side 

of Eqs. (9) and (7), the terms on the left-hand side of 

the metric identities (11) and (12) are implicitly 

involved. In order to clarify the aforementioned 

involvement, we limit our analysis to the first term 

on the left-hand side of Eq. (9). The 

abovementioned term can be expressed as: 

 

'��k lm n�+�(�) ∙ ��(�) /0/O2 + �+�(�) ∙�NOP
(

LS'
��(L)3 24( oD���M −m n�+�(�) ∙�NOQ

��(�) /0/O2 + �+�(�) ∙ ��(L)3 24( oD���Mp =
'��∬ ��NO q.�+�(�) ∙ ��(�) /0/O2 + �+�(�) ∙����(L)3 24( 5D�c��'��(                             (13) 

 

Recalling that �L = f� ∙ g��(L), 
 '��∬ ��NO q.�+�(�) ∙ ��(�) /0/O2 + �+�(�) ∙����(L)3 24( 5D�c��'��( = '��∬ ��(L)D� ∙����NO q.�+�(�) ∙ ��(�) s��/02 + �+�(�)3 24( 5c ��'��( +'��∬ q.�+�(�) ∙ ��(�) s��/02 + �+�(�)3 24( 5c ∙���i��(O)√i�NO ��'��(                                          (14) 

 

The second term on the right-hand side of Eq. (14) 

is null, owing to the metric identity (12). Eqs. (13) 

and (14) show that the left-hand side of Eq. (13) 

implicitly contains the left-hand side of the metric 

identity (12); therefore, the numerical 

approximation of the left-hand side of Eq. (13) 

implicitly involves the numerical approximation of 

the left-hand side of Eq. (12). Consequently the 

errors due to the numerical approximation of the 

metric terms in the discretization of the left-hand 

side of Eq. (13) prevent the satisfaction of the metric 

identity (12). The numerical approximation of the 

second term on the right-hand side of Eq. (14) 

represents a measure of the error produced by the 

failure of the satisfaction of the metric identity and 

has the effect of extra source terms. Following an 

analogous procedure, it can be shown that the 

following term  

 '��∬ f� ∙ �i��(O)√i�NO ��'��(��                               (15) 

 

is implicitly contained in the first term on the right-

hand side of Eq. (7). 

In the case of a uniform field, the error due to the 

failure in the satisfaction of the metric identity is 

evident: the second term on the right-hand side of 

Eq. (14) and the term (15) do not vanish and 

consequently a uniform field does not remain 

uniform and freestream conditions are not 

preserved. Nonomura et al. [31] state that in 

schemes, such as WENO schemes, in which 

unsymmetric high-order operators are involved, 

procedures based on the careful evaluation of the 

metric coefficients are not able to numerically 

satisfy the metric identities. In this work, in order to 

correct the effects produced by the spurious source 

terms related to the difficulties of numerically 

satisfying the metric identities, the numerical 

approximation of 

 sEF���� ∙I JK ��(L)D���M�NOP − K ��(L)D���M�NOQ R(
LS'   

 

                                                                          (16) 

 nt\uGH���vH Ui+��(\)wvGH44 x�� ∙I JK ��(L)D���M�NOP −(
LS'K ��(L)D���M�NOQ c                                        (17) 

 

are introduced on the right-hand side of Eqs. (7) and 

(9), respectively, where f̅F� represents the averaged 

value of f� over the surface element of area T�. The 

numerical approximations of the aforementioned 

terms are performed by the same weights used in the 

WENO approximations, respectively, of the first 

terms on the left hand side of Eqs. (7) and (9). In 

this way we eliminate the errors produced by the 
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difficulties of exactly satisfying the metric identities 

and then we achieve the freestream preservation. 

 

 

4 The Upwind WENO scheme 
In this section we present the procedure for the 

numerical integration of Eqs. (7) and (9).  

The numerical integration of Eqs. (7) and (9) is 

performed by an Upwind WENO scheme. The 

discretization of the computational domain is based 

on a grid defined by the coordinate lines �' and �( 

and by the points of coordinates �' = y∆�' and �( = z∆�(, which represent the centers of the 

calculation cells {|,} = ~�|V'/(' , �|U'/(' � ×~�}V'/(( , �}U'/(( �	. -� is the time level of the known 

variables, while -�U' is the time level of the 

unknown variables. Let us indicate with �(�', �(, -) 
the right-hand side of Eq. (7) and with �(ℎ, �', �(, -) the right-hand side of Eq. (9).  

By integrating Eqs. (7) and (9) over (-�, -�U') 
we get:  

 ℎEF|;}(�U') = ℎEF|;}(�) − '��� �(�', �(, -)�-��P���           (18) 

 �̅[|;}�(�U') = �̅[|;}�(�) − '��� �(ℎ, �', �(, t)�-��P���     (19) 

 

Eqs. (18) and (19) represent the advancing from 

time level -� to time level -�U' of the variables ℎF|;} 
and �̅[|;}. The state of the system is known at the 

center of the calculation cell and it is defined by the 

cell-averaged values ℎF|;} and �̅[|;}. 
In this work the five stage fourth order accurate 

Strong Stability Preserving Runge-Kutta (SSPRK) 

method [35] is used in order to achieve the time 

integration of Eqs. (18) and (19). In compact form 

the SSPRK method is described by the following 

equations: 

 ℎEF|;}($) = ℎEF|;}(�)		; 				 �̅[|;}�($) = �̅[|;}�(�)                          (20) 

 ℎEF|;}(�) =I ����ℎ|,}(�) + T-���8�~�'(�), �((�), -� +�V'
�S$��∆-�<�                                                           (21) 

 �̅[|;}(�) =I �����|,}�(�) +�V'
�S$T-���8�~ℎ(�), �'(�), �((�), -� + ��∆-�<�    (22)                                                            

 ℎEF|;}(�U') = ℎEF|;}(�)		; 				 �̅[|;}�(�U') = �̅[|;}�(�)                (23) 

 

with p=1,...,5.  See Spiteri and Ruuth [35] for the 

values of the coefficients ���, ��� and ��. 

For the calculation of terms �(�', �(, -) and �(ℎ, �', �(, -), the numerical approximation of 

integrals on the right-hand side of Eqs. (7) and (9) is 

required. The aforementioned calculation is based 

on the following sequence: 

 

- WENO reconstructions, from cell averaged 

values, of the point values of the unknown 

variables at the center of the contour 

segments which define the calculation cells. 

At the center of the contour segment which 

is in common with two adjacent cells, 

twopoint values of the unknown variables 

are reconstructed by means of two WENO 

reconstructions defined on the two adjacent 

cells. 

 

- Advancing in time of the point values of the 

unknown variables at the center of the 

contour segments by means of the so-called 

exact solution of a local Riemann problem, 

with initial data given by the pair of point-

values computed by two WENO 

reconstructions defined on the two adjacent 

cells.  

 

- Calculation of the spatial integrals which 

define �(�', �(, -) and �(ℎ, �', �(, -).  
 

 

4.1 Advancing time of point values at cell 

interface 
At the center of the segments which define the 

calculation cells, two point values of the unknown 

variables are reconstructed, by means of two WENO 

reconstructions defined on the two adjacent cells. 

For example, at the center of the segment which is 

the interface between cell {|,} and cell {|V',}, WENO 

reconstructions defined on the aforementioned cells 

lead to the evaluation of the variables ℎ|V'/(,}(�)V , ℎ|V'/(,}(�)U , �|V'/(,}�(�)V , �|V'/(,}�(�)U
. The advancing in 

time of the aforementioned variables is carried out 

by means of the so-called exact solution of an 

apposite Riemann problem, with initial data given 

by the pair of point-values computed by two WENO 

reconstructions. Generally speaking, the Riemann 

problem in a curvilinear coordinate system is more 

difficult to solve than the Riemann problem for the 
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same set of hyperbolic equations in an orthonormal 

frame. Following the approach suggested by 

Rossmanith et al. [33] we solve all Riemann 

problems in a locally valid orthonormal basis. 

We define the normal and tangential to the 

coordinate line �M depth-integrated velocity 

components as �L(�) and �L(�), respectively. Here 

the indexes X and Y are cyclic. As ��(L)/D�LL and ��(M)/D�MM (no sum on the repeated indexes X and Y) are the unit vectors which are normal and 

tangential, respectively,  to the coordinate line �M 

and recalling relation (1), the following 

transformation relations are obtained 

 �L(�) = /O(�)DiOO                                                   (24) 

 �L(�) = �L(�) iO�Di�� + �M(�)D�MM                   (25) 

 

(no sum on the repeated indexes X and Y). For 

example, in the point of coordinates ~�|V'/(' ; �|(� 
belonging to the segment that lies on coordinate �(, 

which is the interface of cells {|,} and {|V',}, the two 

WENO reconstructions and relations (24) and (25) 

lead to the definition of the pairs of values of 

dependent variables ℎ|V'/(,}(�)V , 	ℎ|V'/(,}(�)U , �|V'/(,}�(�)V ,�|V'/(,}�(�)U , �|V'/(,}�(�)V
 and �|V'/(,}�(�)U

. Let ℎ|V'/(,}∗ , �|V'/(,}∗  e �|V'/(,}∗  be the solution of the Riemann problem 

defined by the hyperbolic homogenous system of 

the Shallow Water Equations, written in the locally 

valid orthonormal basis, with initial data given by 

the pairs of point values of the unknown variables. 

The so-called exact solution of this Riemann 

problem is carried out by means of an iterative 

procedure [38]. Subsequently, by operating an 

inverse transformation of the reference system, the 

solution of the Riemann problem in contravariant 

components is evaluated. An analogous procedure is 

carried out for each one of the contour segments of 

the generic cell {|,}. From the solution of local 

Riemann problems expressed in contravariant 

components, the point values of the variables 

involved in the calculation of the spatial integrals 

defining �(�', �(, -) and �(ℎ, �', �(, -) in the 

relations (21) and (22), are evaluated. 

In order to ensure numerical stability, the CFL-

like criterion used by Titarev and Toro [36] in the 

framework of Cartesian coordinates is extended to 

the framework of generalized curvilinear 

coordinates. The cell Courant number, expressed in 

terms of variables defined in the generalized 

curvilinear system of reference, is given by 

 �|;} = ��� ����;���N�:�� ;���;�4�N�:�4 o                            (26) 

 

in which �N�;��  and �N�;�4  are maximums of the 

characteristic speeds (related to the cell {|;} defined 

in the generalized curvilinear system of reference. 

The CFL-like stability criterion is obtained by 

assuming that the maximum value of �|;} amongst 

all the computational cells must be inferior than a 

threshold stability value � , that is 

 ���|,}(�|;}) ≤ �                                          (27) 

 

As stated by Titarev and Toro [36], for two- 

dimensional WENO schemes in Cartesian 

coordinates, the threshold stability value �  is equal 

to 0.5. All the numerical simulations presented in 

this section are performed by fixing the constant �  = 0.4. 

 

 

5 Results and Discussion 
In this section, the high-resolution Shallow Water 

Equations solver described above is verified against 

several benchmark test cases. The computed results 

are compared with the analytical solutions and 

previously published predictions. 

 

 

5.1 Accuracy test 
In this subsection the order of accuracy of the 

scheme on curvilinear grids is tested. A case test 

proposed by the working group on dam break 

modeling [22] and widely utilized to test numerical 

schemes for Shallow Water Equations (eg.[5,6,45]) 

is used. This test case consists in the simulation of a 

subcritical stationary flow over a Gaussian bump. 

The domain is a square (-15 m, 15 m)×(-15 m, 15 

m). The bottom topography is defined by the 

Gaussian function, 

 :(�, £) = ¤¥¦√(§ ¨�© J− '( .ªVª1¦ 5(R                 (28) 

 

with «$ = 1	�(, ­ = 2	� and �� = 15�. A 2 m  

constant water level and a 0 discharge are the initial 

conditions. The boundary conditions are ℎ�ª =4.42	�(/° and ℎ�± = 0	�(/° (upstream) and h=2 

m (downstream), where �ª and �± are the Cartesian 

components of the depth averaged velocity vector ���. 
For this accuracy test case, the simulations are 

carried out on four curvilinear meshes (14×14, 
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28×28, 56×56, 112× 112). The finest mesh 

(112× 112) is generated by following the procedure 

proposed by Visbal and Gaitonde [42]. The 56×56 

mesh is obtained by simply retaining one out of 

every two coordinate lines of the finest mesh. Such 

procedure is repeated in order to generate the 

28× 28 and 14×14 meshes. Fig. 1 shows the 

56× 56 grid used for the test case simulations. We 

compute the error in the discrete !´×µ'  norm for the 

water depth, defined as 

 !´×¶' = ∑ ∑ ¸ℎ|,} − ℎ¹|,}¸¶} D�|,}∆�'∆�(|́       (29) 

 

 

 
Figure 1: Steady flow over a Gaussian bump. 

56× 56 calculation grid. 

 

in which N and M are the number of cells in the �' 

and �( directions, respectively, D�|,}∆�'∆�( 

represents the area of the computational cell {|,}and ℎ|,} and ℎ¹|,} are the numerical and the analytical 

point-values of the water depth, respectively. The 

spatial order of accuracy is evaluated by extending 

to the framework of generalized curvilinear 

coordinates, the procedure that many authors (e.g. 

Levy et al. [25], Titarev and Toro [36]) used in the 

framework of Cartesian coordinates; according to 

such procedure, the spatial order of accuracy of the 

numerical scheme is evaluated by using the equation 

which relates the !´×µ'  norm to the average spatial 

step size of the grid. Let �´×µ be the average 

spatial step size (measured in the Cartesian system 

of reference) of the N×M curvilinear grid, defined 

by the following expression 

 

�´×¶ = ∑ ∑ 8(√i��)�,�∆N�U(√i44)�,�∆N4<º�»� ´∙¶            (30) 

 

in which ~D�''�|,}∆�' and ~D�((�|,}∆�( represent 

the side lengths of the cell {|,}. The equation which 

relates the !´×µ'  norm to the average spatial step 

size �´×µ is given by 

 !´×¶' = � ∙ (�´×¶)¼                                      (31) 

 
in which b is an arbitrary constant independent of N 

and of M, and z represents the spatial order of 

accuracy of the numerical scheme. Let us take a grid 

composed by ½' ×¾' cells and agrid composed by ½( ×¾( cells, with ½(=2½' and with ¾(=2¾', in 

which 

 �´�×¶� = 2 ∙ �´4×¶4                                      (32) 

 

The ratio between the !´×µ'  norm and the !´4×µ4(  

norm gives, by Eqs. (31) and (33), the following 

expression for the evaluation of z 

 ¿ = ÀÁ�( �?»�×º��?4×º4� o                                          (33) 

 

With analogous procedures we compute the errors 

in the discrete !' norm and the order of accuracy for 

the depth-integrated Cartesian velocity components ℎ�ª and ℎ�±. In Table 1 the accuracy analysis 

results obtained using the !' norm are reported. 

Table 1 shows that the fourth order spatial accuracy 

of the proposed scheme is achieved. 

 

Table 1: Steady flow over a Gaussian bump. 

Accuracy analysis 

Cells h  hÂÃ  hÂÃ  
 !'norm Ord. !'norm Ord. !'norm Ord. 

14×14 2.12E+00  1.17E+01  1.16E+01  

28×28 1.14E-01 3.94 8.1E-01 3.85 8.37E-01 3.79 

56×ÄÅ 

8.24E-03 4.06 4.5E-02 4.16 4.77E-02 4.13 

112×ÆÆÇ 

4.1E-04 4.33 2.1E-03 4.42 2.34E-03 4.35 

 

 

 

5.2 Symmetric channel constriction 
The purpose of this test case is to verify the good 

resolution property of the proposed scheme for 

discontinuous solutions on highly distorted grids. 

The results obtained are compared with analytical 

solutions and alternative numerical solutions.  

This test case, used by many authors [27,48], 

consists in the simulation of a super-critical flow in 
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a channel with wall constrictions. The channel is 40 

m wide and 90 m long. Starting from  x=10 m, the 

channel wall is symmetrically constricted from both 

sides with angle β=5° to the x direction. The initial 

and inflow conditions are the water depth h=1m and 

Froude number Fr=2.5 . Two grids are used for this 

test case: a 121x53 regular curvilinear grid, with 

nearly square-shaped calculation cells (see Fig. 2); a 

highly-distorted grid obtained by deforming the 

above-mentioned 121x53 regular grid (see Fig. 3). 

In Figs. 2 and 3 the results of the numerical 

simulation carried out by the model proposed in this 

paper, SWF scheme, on the regular grid and on the 

highly-distorted grid, respectively, are shown. In 

these figures the contour plots of the water depth 

with 16 uniformly spaced contour lines (from 1.05 

to 1.8 m) are shown. From Figs. 2 and 3 it is evident 

that in both simulations shocks are nicely resolved, 

with results that are in very good agreement with 

those shown in [48], where a grid with a greater 

number of nodes is used. By comparing Figs. 2 and 

3, it can be seen that there are no significative 

differences between results obtained on the regular 

grid and on the highly-distorted one. 

In Fig. 4 the results of the numerical simulation 

carried out by the model proposed in Gallerano et 

al. [16], CWENO-SW scheme,  is shown. The 

comparison between the Fig. 3 and 4 shows that the 

shock obtained by CWENO-SW scheme results less 

steep than the shock obtained by SWF scheme. 

Numerical results obtained by simulations 

carried out by the SWF scheme and CWENO-SW 

scheme are compared with the analytical solution of 

this case, computed by adopting the procedure 

proposed by Ippen [23]. By comparing the 

aforementioned analytical solution and numerical 

results obtained by the SWF and CWENO-SW 

scheme, !'norms of the error in h and in the 

modulus of the depth-averaged velocity vector È = |���| are computed; !' norms are shown in Table 

2. From this table it is evident that, even in the 

presence of discontinuities in the solution, the !' 

norm of the error computed with SWF scheme on 

the highly-distorted grid is less than 6% greater to 

the !' norm of the error computed with SWF 

scheme on the regular grid. Table 2 also shows that 

the norm of the error !' computed with the scheme 

proposed in Gallerano et al [16] (CWENO-SW 

scheme) is greater than the norm of the error !'computed with SWF. 

By the comparison between the results obtained, 

it is evident that the presence of highly-distorted 

cells does not compromise the proposed scheme's 

capability to integrate the Shallow Water Equations 

whose solutions are characterized by discontinuities 

and shocks. 

 

Table 2: Symmetric channel constriction. 

Comparison between results obtained on a regular 

grid and a highly-distorted grid. 

 �Æ norm (h) �Æ norm (V) 
Regular grid 

(SWF scheme) 

4.23E+01 5.57E+01 

Highly-distorted 

grid 

(SWF scheme) 

4.48E+01 5.91E+01 

 

 

Highly-distorted 

grid 

(CWENO-SW 

scheme) 

5.15+E01 6.27E+01 

 

 
Figure 2: Symmetric channel constriction. Contour 

plot of the water depth. 15 uniformly spaced contour 

lines from 1.05 m to 1.8 m. Simulation carried out 

by means of the SWF scheme on regular grid.  

 

 

 
Figure 3: Symmetric channel constriction. Contour 

plot of the water depth. 15 uniformly spaced contour 

lines from 1.05 m to 1.8 m. Simulation carried out 

by means of the SWF scheme on highly-distorted 

grid.  
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Figure 4: Symmetric channel constriction. Contour 

plot of the water depth. 15 uniformly spaced contour 

lines from 1.05 m to 1.8 m. Simulation carried out 

by means of the CWENO-SW scheme on highly-

distorted grid.  

 

 

5.3 Freestream preservation property test 
In numerical methods in which the numerical 

approximation of derivatives of uniform physical 

quantities do not vanish, freestream conditions are 

not preserved. In other words, the freestream 

preservation properties of a scheme are achieved 

when a uniform field remains uniform and it is not 

affected by mesh irregularities. In this subsection 

the capability of the proposed numerical scheme to 

preserve the freestream condition over highly-

distorted grids is tested. A test case consisting in the 

simulation of a frictionless uniform flow in a square 

domain with flat bottom is used. The domain on 

which the test is carried out (a 30 × 30 m
2
 square) 

and the boundary conditions (huX=4.42 m
2
/s and 

huY=0m
2
/s upstream; h=2 m downstream) are equal 

to those used for the accuracy test. Initial conditions 

consist in a constant value of the water depth h=2 m 

and depth-integrated Cartesian velocity component 

values equal to huX=4.42 m
2
/s and huY=0 m

2
/s. The 

analytical solution of this test case consists in the 

maintaining of the initial conditions. The highly-

distorted mesh used for this test case is the same 56 × 56 mesh used for the accuracy test, shown in Fig. 

1. Let us indicate with SWNF the numerical scheme 

obtained by applying the numerical integration 

procedure presented in Section 4 to motion Eqs. (7) 

and (9). Let us indicate with SWF the scheme set up 

by applying the same numerical integration 

procedure to equations obtained by adding to the 

right-hand side of (7) and (9) the terms (16) 

 

 

Figure 5: Freestream preservation property test. 

Contour plots of the huy component obtained by 

means of the SWNF scheme. 

 

 

Table 3: Freestream preservation property test. 

Comparison between results obtained by the SWF 

amd SWNF schemes. L
1
 norm of the error in the 

water depth h and the depth-integrated cartesian 

velocity component, hux and huy, at istant t=50s. 

 L1norm 

(h) 
 L1norm 

(hux) 
 L1norm 

(huy) 
 

SWF 3.3E-16  6.4E-14 . 6.2E-14  

SWNF 2.6E-02  2.9E-01  5.7E-02  

 

and (17), respectively, which are introduced in order 

to correct the errors due to the failure to satisfy the 

metric identities. Fig. 5 shows the results of this 

case simulation carried out by means of the SWNF 

scheme; in this figure contour plots of the modulus 

of huY at time t = 50 s are shown. Since in this test 

case huY should be null, the numerical values of huY 

shown in Fig. 5 represent a measure of the error 

produced by the numerical simulation carried out by 

the SWNF scheme. From Fig. 5 it is possible to 

highlight and quantify the errors arising from the 

numerical approximation of metric terms. As Fig. 5 

shows, the modulus of huY (which should be null) is 

as great as the distortion of the grid. The failure to 

satisfy of the metric identities produces significative 

numerical errors also in the huX component and in 

the water depth h. In Table 3 the L
1
 norm of the 

error in h, huX and huY at instant t = 50 s, obtained 

by carrying out this test case by the SWNF and 

SWF schemes, are compared.  

 

 

 
Figure 6: Freestream preservation property test. 

Contour plots of the huy component obtained by 

means of the SWCH scheme. 
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Table 4: Freestream preservation property test. 

Comparison between results obtained by the SWF 

amd SWCH schemes. L
1
 norm of the error in the 

water depth h and the depth-integrated cartesian 

velocity component, hux and huy, at istant t=50s. 

 L1norm 

(h) 
 L1norm 

(hux) 
 L1norm 

(huy) 
 

SWF 3.3E-16  6.4E-14 . 6.2E-14  

SWCH 3.2E-00  4.3E+01  7.2E+01  

 

From the results shown in Table 3 it can be seen 

that, in the case of a uniform flow on a highly-

distorted grid, the numerical scheme in which the 

terms that correct the errors associated with the 

metric identities are present is capable of reducing 

numerical errors in h, huX and huY to machine 

precision. In order to demonstrate that numerical 

discretization of the Christoffel symbols can reduce 

the numerical accuracy and can corrupt the 

preservation of freestream conditions, the numerical 

procedure presented in Section 4 is applied to the 

integral form of the contravariant Shallow Water 

Equations in which Christoffel symbols are present; 

the scheme thus obtained is called SWCH. Fig. 6 

shows the results of the simulation of the freestream 

preservation property test case carried out by means 

of the SWCH scheme; in this figure contour plots of 

the modulus of huY at time t = 50 s are shown. As 

stated before, in this test case huY should be null, 

hence the numerical values of huY shown in Fig. 6 

represent a measure of the error produced in the 

numerical simulation by the presence of the 

Christoffel symbols. Fig. 6 shows that the modulus 

of huy is greater in zones in which the coordinate 

lines are more curved. In such zones, the rate of 

change of the local base vectors are higher, hence 

the values of Christoffel symbols and errors related 

to the discretization of the aforementioned symbols 

are higher. In Table 4 the L
1
 norm of the error in h, 

huX and huY at instant t = 50 s, obtained by carrying 

out this test case by the SWF and SWCH schemes, 

are compared. The norms of the errors related to the 

simulation carried out by the SWF scheme are of the 

same order of magnitude of machine precision, 

while the norms of the errors produced by the 

SWCH scheme are significative.  

The comparison between results obtained by 

means of the SWF and SWCH schemes highlights 

that on highly-distorted grids numerical errors due 

to discretization of Christoffel symbols produce 

spurious oscillations that impede the simulation of a 

steady- state uniform flow with flat bottom, whereas 

the simulation carried out with the SWF scheme 

does not alter the initial steady-state. 

 

6 Conclusion 
An Upwind WENO scheme in which an exact 

Riemann solver is involved has been developed for 

the numerical integration of the contravariant 

Shallow Water Equations. An integral expression of 

the Shallow Water Equations in a contravariant 

formulation in which Christoffel symbols are absent 

has been presented. A procedure has been proposed 

in order to correct the effects produced by the 

spurious source terms related to the difficulties of 

numerically satisfying the metric identities; such 

procedure allows the proposed numerical scheme to 

preserve the freestream conditions on highly-

distorted grids. It has been demonstrated that the 

numerical scheme obtained by discretizing the 

contravariant Shallow Water Equations in which 

Christoffel symbols are present produces spurious 

oscillations that do not permit the simulation of 

steady flows on highly-distorted grids. The 

proposed numerical scheme related to the 

contravariant Shallow Water Equations in which 

Christoffel symbols are absent is 4�2 order accurate 

and possesses good non-oscillatory properties and 

good shock-capturing properties on highly-distorted 

grids. 
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