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Abstract: In this work, a high-order compact upwind scheme is developed for solving one-dimensional Euler 
equation.  A detailed investigation was conducted to assess the performance of the basic third-order compact 
central discretization schemes. From this observation, discretization of the convective flux terms of the Euler 
equation is based on a hybrid flux-vector splitting, known as the advection upstream splitting method (AUSM) 
scheme which combines the accuracy of flux-difference splitting and the robustness of flux-vector splitting. In 
one-dimensional problem for the first order schemes, an explicit method is adopted by using time integration 
method. In addition to that, development and modification of source code for the one-dimensional flow is 
validated with two test cases namely, unsteady shock tube and quasi-one-dimensional supersonic-subsonic 
nozzle flow were using as a comparative study. Further analysis had also been done in comparing the 
characteristic of AUSM scheme against experimental results, obtained from previous works and also 
comparative analysis with computational results generated by van Leer, KFVS and AUSMPW 
schemes.  Furthermore, there is a remarkable improvement with the extension of the AUSM scheme from first-
order to third-order accuracy in terms of shocks, contact discontinuities and rarefaction waves. 
 
 
Key-Words: High-order compact schemes, finite difference methods, flux-difference splitting, flux-vector 
splitting, Euler equations, One-dimensional. 
 
1 Introduction 
The most general approach to the analysis of 
compressible inviscid flows must choose to the 
Euler equations. These compressible inviscid flows 
including rotational, non-isentropic, non-heat-
conducting and non-viscous flows effects require 
simultaneous solutions of continuity, momentum 
and energy equations. The numerical solution of the 
Euler equations is determined while through the 
space or time to obtain a final numerical description 
of the physically and geometrically complex flow of 
engineering relevance. The computed results 
complement experimental and theoretical techniques 

by providing more detailed information of the flow. 
The development of a more powerful digital 
computers enabled advancement to be made in the 
field of computational fluid dynamics. However, 
CFD cannot solve all the flow problems due to the 
limitation of computer resources and available 
theoretical foundation for modeling complex flow 
such as combustion, compressibility effect and etc. 
In general, upwind schemes are categorized as either 
FDS (flux difference splitting) or FVS (flux vector 
splitting). The most popular FDS scheme is the 
Roe’s [1] scheme due to its accuracy and efficiency. 
The FVS schemes, such as Steger and Warming’s 
[2], van Leer’s [3] and KFVS [4] are known to be 
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simple and robust for capturing of intense shocks 
and rarefaction waves. However, while FVS is 
based on scalar calculations and FDS is based on 
matrix calculations. [5] have proposed AUSM 
(Advection Upstream Splitting Method) that has the 
accuracy of FDS schemes and the robustness and 
efficiency of FVS schemes. In this method, the 
inviscid flux at a cell interface is split into a 
convective contribution, upwinded in the direction 
of the flow and a pressure contribution which is 
upwinded based on acoustic considerations. The 
direction of the flow is determined by the sign of a 
Mach number defined by combining information 
from both the left and right states about the cell 
interface.  

In this work the computational code using 
AUSM scheme was used to develop a one-
dimensional Euler solver by using high-order 
compact finite-difference techniques for 
compressible flows. The validation was used up to 
the 3rd-order against experimental and comparison 
of computational results due to van Leer, KFVS and 
AUSMPW schemes. Due to the efficiency of the 
scheme as observed by other researchers namely 
[6,7,8], [9],[10], [11], [12], [13], [14] [15,16,17], 
[18] and [19]. Besides that, the characteristic of the 
numerical method was not compared completely 
with the other schemes. The test problems 
considered contain various types of discontinuities, 
such as shock waves, rarefaction waves and contact 
surfaces. In the absence of available CFD code, a 
comprehensive validation of code is required and 
the AUSM scheme has yet to be validated for a wide 
range of cases. For this reason, a systematic 
approach has to be adopted to examine the AUSM 
scheme before the method can be applied to a more 
complicated and complex compressible flow 
problems. Further analysis had also been done in 
comparing the characteristic of AUSM scheme 
against experimental results, obtained from previous 
works and also comparative analysis with 
computational results generated due to van Leer, 
KFVS and AUSMPW schemes. 
 
 
2 The Basic Discretization Method 
 
2.1 Spatial Discretization and Numerical 
Fluxes  
The model equation for nonlinear scalar 
conservation law in one-dimensional space can be 
written as [1,2]  
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with the subject to the given initial condition [1,2] 
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Equation (2), is specialised to 

                    
)0()0,(
)0()0,(

>≡
<≡

xuxu
xuxu

R

L                  (3) 

Equation (1) can be written in split flux form as [4] 
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where ).()()( ufufuf −+ += This flux vector 
splitting has been introduced by [3]. The split fluxes 

)(uf + and )(uf − are also homogeneous functions 
of degree one in u [20]. Conservative 
semidiscretization of equation (4) can be written as 
[4] 

                 0/)ˆˆ( 2/12/1 =∆−+
∂
∂

−+ xff
t

u
ii

i          (5) 

where 2/1
ˆ
+if  and 2/1

ˆ
−if  is known as the numerical 

flux function.  

First-order upwind approximation to the numerical 
flux is given by [4]  
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Following [4], a high-order numerical flux can be 

obtained as follows. The numerical flux 2/1
ˆ
+if  is 

decomposed into positive and negative parts, 
+
+ 2/1îf  and −

+ 2/1îf  such that 
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The decomposed numerical fluxes are defined such 
that 
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where xFi ∆/  is a high-order approximation to the 

derivative 
x
uf i

∂
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, to be determined by a high-

order compact scheme. 

[21] has presented a third-order approximation to a 
first derivative by an upwind based compact relation 
as 
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Equation (9) can be written for the interior points 

2=i  to 1−= Ni . For the boundary points 1=i  
and Ni = , the following second order explicit 
relations are used  
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Plugging equation (8) in equation (9) yields the 
following relations for the interior points 

2=i to 1−= Ni . 

 
++

+
+
+

+
+

+
− +=++ iiiii fffff 5.525.37ˆ25.11ˆ60ˆ75.18 12/32/12/1

 (12) 
−−

+
−
+

−
+

−
− +=++ iiiii fffff 5.375.52ˆ75.18ˆ60ˆ25.11 12/32/12/1

 (13) 

With 

1F  and 

NF  evaluated explicitly, two sets of 
(N - 1) equations are to be inverted for the split 
numerical fluxes 

2/1
ˆ
+if . Before using these fluxes it 

is necessary to limit their values and this is achieved 
by defining the differences 
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and limiting by the limiter  
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The third-order TVD flux differences of [22] may 
be used here 
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where 41 ≤≤ λ .  

The limited numerical fluxes are then calculated 
from 
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The min mod function can be defined as 
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3 Euler Equations and Flux Splitting 
Scheme 
The one-dimensional Euler equation may be written 
as 
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and ρ, u, p, e and H are the density, velocity, 
pressure, total energy, and total enthalpy 
respectively. The total enthalpy H, is related to the 
other quantities by the relation 

                   
ρ
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and for a perfect gas  
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where γ  is the ratio of specific heat and takes the 
value of 1.4 for air.  

The extension of the scalar high order numerical 
fluxes developed above to Euler equations is 
straightforward. The AUSM flux splitting technique 
used here is detailed in references [5, 21]. Once the 
split fluxes ±

iE are obtained then the method 
described above is used to obtain the higher order 
numerical fluxes. Equation (18) is, thus, written in a 
semidiscretized form as  

                                   )(QL
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Using the method-of-lines [4], the systems of 
equations (21) are integrated by a multistage TVD 
Runge-Kutta scheme [22].  
 
 
4 Boundary Conditions 
For the shock tube problem considered in this paper, 
a short time span for unsteady flow is considered 
such that the waves will not reach the end walls and 
so conditions at these boundaries are held fixed.  
Meanwhile, for the supersonic-subsonic nozzle 
problem, one type of boundary conditions i.e. 
inflow/outflow is encountered. At the supersonic 
inflow, values of velocity, density and pressure are 
specified while at the subsonic outflow the velocity 
is specified and the density and pressure are 
extrapolated from the interior.  
 
 
5 Results and Discussion 
In this study, two problems are considered as the 
shock tube problems such as unsteady shock tube 
and quasi one-dimensional flow in a divergent 
nozzle were using as a comparative study. In 
addition, the computed results were compared with 
available exact solutions, and numerical results from 
other schemes, such as AUSM scheme, AUSMPW 
scheme, van Leer’s scheme and KFVS scheme. 
Results are also shown with first-order accurate 
upwind space discretization compared with up to 
third-order compact scheme. 

The first problem considered is the unsteady 
shock tube problem. This problem is an interesting 

test case to assess the ability of a compressible code 
to capture shocks and contact discontinuities and to 
produce exact profiles in the rarefaction wave. The 
problem spatial domain is 0 ≤ x ≤ 1. The initial 
solution of the problem consists of two uniform 
states, termed as left and right states, separated by a 
discontinuity at x = 0.5. As in the first problem, 
results are obtained using first-order and third-order 
upwind schemes with the AUSM scheme, van 
Leer’s scheme and KFVS scheme. The number of 
mesh points used is 101 and CFL = 0.2. The initial 
conditions of the left and right states are  

 
(ρL, uL, pL) = (1, 0, 1) 

          (ρR, uR, pR) = (0.125, 0, 0.1) 
 

The wave pattern of this problem consists of a 
rightward moving shock wave, a leftward moving 
rarefaction wave and a contact discontinuity 
separating the shock and rarefaction waves and 
moving rightward. Fig. 1 shows results obtained by 
the first order and third-order accurate schemes for 
the distribution of pressure, density and velocity 
along the tube at time, t = 0.2 units, in comparison 
with the exact solution. From the numerical results 
of the 1st-order schemes for this particular problem, 
two observations can be made: first, the solutions 
produced are non-oscillatory and second, shock 
smearing is present in both 1st-order schemes with 
the degree of shock smearing more apparent in the 
KFVS scheme in comparison with the AUSM 
scheme. In addition, it is shows that in the density 
profile the contact discontinuity is narrowly visible 
and in the velocity profile there is a minor overshoot 
at the right corner of the expansion wave. 
Meanwhile, the transition of the shock wave in the 
velocity profile occupies eleven to twelve zones.   

From the numerical result of up to 3rd-order 
schemes, it is shows that the AUSM scheme is able 
to produce non-oscillatory and crisp shock 
transition, which can hardly be obtained from the 
KFVS and van Leer schemes. This is true as the 
results produced by the KFVS scheme are more 
diffusive in comparison with the AUSM scheme, 
while the van Leer scheme generated a small jump 
around the contact discontinuity in the velocity 
distribution. In addition, it is shows that in the 
density profile the contact discontinuity is narrowly 
visible especially at AUSM scheme compare to the 
other schemes. Meanwhile, the transition of the 
shock wave in the velocity profile occupies four to 
six zones.  Beside these findings, it is also observed 
that the 3rd-order AUSM scheme is able to produce 
numerical solutions that are on par with the 3rd-order 
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KFVS and 5th-order compact upwind van Leer 
schemes. 

The second problem considered is a quasi one-
dimensional supersonic-subsonic flow in a divergent 
nozzle. The nozzle cross-section S(x) varies 
according to  

S(x) = 1.398 + 0.347 tanh ( ))4(8.0 −x ;  0 ≤ x ≤ 10 

The inflow and outflow conditions are 

(ρ1, u1, p1) = (0.459, 432.5, 0.2724 x 105) 

(ρN, uN, pN) = (0.811, 146.94, 0.673 x 105) 
 
These conditions correspond to a normal shock at 

x = 5 with supersonic flow at the inlet Mach number 
M1 = 1.5 and subsonic flow at the outlet Mach 
number MN = 0.431. Calculation are performed with 
a time step, ∆t corresponding to Courant-Friedrichs-
Lewy, CFL number = 1. The number of points used 
to solve this problem is N = 51. The integration in 
time is continued until steady state is reached. The 
solution is assumed to converge when the absolute 
value of the residual in pressure pn+1 – pn  ≤ 0.1.  

Fig. 2 shows first-order and third-order upwind 
results for the distribution of pressure, density and 
Mach number along the flow in comparison with the 
exact solution. The numerical solution shows that 
the 1st-order AUSMPW scheme is able to produce 
solutions that outweigh other numerical solutions 
schemes. These are justified by the over-diffusivity 
of the KFVS and AUSM schemes around the region 
of the shock after the shock as clearly. While the 
numerical solutions of the AUSMPW and van Leer 
schemes are observed to have almost similar 
performance, where the van Leer scheme is able to 
produce a slightly better shock resolution for the 
pressure distribution, the AUSMPW scheme leads 
the shock resolution for the density and Mach 
number distributions. In Fig. 2, it also shows that the 
numerical solutions computed by a 5th-order 
compact upwind van Leer scheme [15] are also used 
to compare with the 3rd-order AUSM scheme and it 
revealed that the degrees of post-shock oscillations 
are more severe within the van Leer scheme in 
comparison to the AUSM scheme.  
 
 
6 Conclusion 
A third-order compact upwind method based on the 
flux-vector splitting approach was developed for 
high speed inviscid flows. A new flux limiting 
procedure, different from those used in similar 

approaches, was introduced for resolving shock 
waves and other types of discontinuities without 
spurious oscillations. The scheme is tested by 
performing calculations for a compressible flows 
shock tube cases namely unsteady shock tube and 
quasi one-dimensional flow in a divergent nozzle. 
Results are also presented to validate up to the 3rd-
order AUSM scheme against experimental and 
comparison of computational results due to van 
Leer, KFVS and AUSMPW schemes. From this 
result, it was found that by using the AUSM scheme 
from 1st-order to 3rd-order accuracy especially in 
unsteady shock tube and steady-state numerical 
solutions of the divergent nozzle, the improvement 
of shock capturing properties such as the accuracy 
of shocks, contact discontinuities and rarefaction 
waves were achieved. 
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a) First-order AUSM scheme                b)  Up to Third-order AUSM scheme 

 

Fig. 1 First-order and up to third-order results for the shock tube problem, 101 mesh points at CFL = 0.2. 
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a) First-order AUSM scheme               b)  Up to Third-order AUSM scheme 

 

Fig. 2 Results for steady supersonic-subsonic flow in a diverging nozzle, 51 mesh points at CFL = 1.0. 
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