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Abstract: In a previous paper, the application of the dominance principle was proposed to find the non-
cooperative solution of the two-person, two-strategy general sum game with mixed strategies; in the 
literature, two different approaches are found: a prudential and a Nash approach leading to two 
different mixed strategies. Also, if the expected payoffs are equal in the two cases, the two strategies 
are not interchangeable. By the application of the dominance principle to the four combinations of the 
two classical solutions, it was possible to choose the equilibrium point avoiding the ambiguity due to 
their non-interchangeability. Starting from that result, it is here below proposed the extension of the 
method to two-person general sum games with n by m moves. The algebraic two multi-linear forms of 
the expected payoffs of the two players are studied. From these expressions of the expected payoffs, 
the derivatives are obtained, and they are used to find the dominating probability distribution on the 
moves. A conjecture about the uniqueness of the solution is proposed in order to solve the problem of 
the existence and uniqueness of the non-cooperative solution of a two-person n by m game. The unique 
non-cooperative solution could be used as a starting point to find out the cooperative solution of the 
game too. Some games from the sound literature are discussed in order to show the effectiveness of 
the presented procedure. 
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1 Introduction

The main references for the development of the present
paper are my previous paper [1], the master paper by
Nash [2], and the texts of Luce and Raiffa [6], Owen [7],
Straffin [8], and Maschler et al. [12].

The dominance principle is applied as the only tool to
find the non-cooperative solution of a two-person game
on the basis that a rational player should never play a
dominated move [8, 12]. Straffin [8] argues that there
is a conflict between the dominance principle and the
Pareto-optimality, but it has to be noted that the
dominance principle is cogent for individual rationality
whereas the Pareto-optimality is cogent for the group ra-
tionality. The individual rationality is here considered
suitable to find the non-cooperative equilibrium strate-
gies of a two-person game; thus, the dominance principle
is applied to find the solution.

This paper is devoted to the study of the non coop-
erative solution of a two-person, n by m moves game
with no dominated pure strategies; therefore, it is not
considered the trivial case that can be solved by the
elimination of all the dominated moves.

On the other hand, the maximin [16] value of any
particular player is unaffected by the elimination of his
dominated moves, whether those strategies are weakly
or strictly dominated; moreover, the iterated elimination
of weakly dominated moves does not lead to the creation
of new equilibria (Maschler et al. [12]).

As it is well known, the mixed strategies method to
find the solution of a game is suitable only for repeat-
able games. A mixed strategy for a player is defined
as the probability distribution on the set of his pure
strategies [7]; the expected payoff from a mixed strat-
egy is defined as the corresponding probability-weighted
average of the payoffs from its constituent pure strate-
gies [10]. The search of the non-cooperative solution
with the mixed strategies could lead to find more than
one equilibrium point, but these equilibrium points rep-
resent the acceptable non-cooperative solution of the
game only if they are equivalent and interchangeable [2,
6].

In Part 1 of the paper, it is proposed to look for the
non-cooperative solution of a two-person 3 by 3 game by
applying the dominance principle on the mixed strate-
gies, and the relationship is studied between the two
classical mixed strategies, the prudential and Nash strat-
egy [1], and the expected payoff.

In Part 3, seven numerical examples are discussed to
show the application of the dominance principle, and the
solutions found are compared and discussed with respect
to the literature solutions.

Part 4 is an extension of the application of the dom-
inance principle to the two-person game with n by m
moves.

In Part 5, in order to show its powerful meaning, the
proposed method is applied to two examples by showing

that it is possible to find the equilibrium point of a game
also when the algebraic method fails.

The conclusion summarizes the main features of the
proposed method, recognizing it as a powerful tool to
find the non-cooperative solution of a two-person general
sum game larger than two by two moves.

2 Non-cooperative solution of the
normal form of two-person 3 by
3 game

2.1 Theory

As it is well known the normal form of the two-person
3-by-3 game is the following one:

Table 1

Moves of player B
y1 y2 y3

Moves of player A
x1 a11, b11 a12, b12 a13, b13
x2 a21, b21 a22, b22 a23, b23
x3 a31, b31 a32, b32 a33, b33

(x) = (x1, x2, x3) = (x1, x2, 1− x1 − x2) (1)

and
(y) = (y1, y2, y3) = (y1, y2, 1− y1 − y2) (2)

are the vectors of the probability distribution on the
moves respectively for player A and B, with the con-
straints

0 ≤ xi ≤ 1 (3)

and
0 ≤ yj ≤ 1 (4)

Associated to each possible outcome of the game is
a collection of numerical payoffs, one to each player.

The expected payoff for each player is then given by:

zA = (a11 + a33 − a13 − a31)x1y1 + (a12 + a33 − a13+

− a32)x1y2 + (a21 + a33 − a23 − a31)x2y1+

+(a22+a33−a23−a32)x2y2+(a13−a33)x1+(a23−a33)x2+

+ (a31 − a33)y1 + (a32 − a33)y2 + a33 =

= A1x1y1+A2x1y2+A3x2y1+A4x2y2+A5x1+A6x2+

+A7y1 +A8y2 +A0 (5)

zB = (b11 + b33 − b13 − b31)x1y1 + (b12 + b33 − b13+

− b32)x1y2 + (b21 + b33 − b23 − b31)x2y1+

+(b22+b33−b23−b32)x2y2+(b13−b33)x1+(b23−b33)x2+

+ (b31 − b33)y1 + (b32 − b33)y2 + b33 =

= B1x1y1+B2x1y2+B3x2y1+B4x2y2+B5x1+B6x2+

+B7y1 +B8y2 +B0 (6)
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These formulas will be used throughout the paper
from here on.

In the case of three by three moves in order to find
maximum and minimum points [14] it is not sufficient
to calculate the first derivatives of the expected payoffs
and to study the Hessian whose ranking is greater than
three, but some more complicated methods should be
used.

As mentioned in my previous paper [1], in literature
there are two ways to calculate the probability distri-
bution for each player: a prudential strategy [8] and a
Nash strategy [2]. These two different strategies can be
determined by calculating the first derivatives of the ex-
pected payoffs and equating them to zero. First of all
the Nash strategies are determined.

∂zA/∂x1 = A1y1 +A2y2 +A5 = 0 (7)

∂zA/∂x2 = A3y1 +A4y2 +A6 = 0 (8)

implies

y1 = (A2A6–A4A5)/(A1A4–A2A3) = yN1 (9)

y2 = (A5A3–A6A1)/(A1A4–A2A3) = yN2 (10)

and
∂zB/∂y1 = B1x1 +B3x2 +B7 = 0 (11)

∂zB/∂y2 = B2x1 +B4x2 +B8 = 0 (12)

implies

x1 = (B8B3–B7B4)/(B1B4–B2B3) = xN1 (13)

x2 = (B2B7–B1B8)/(B1B4–B2B3) = xN2 (14)

that is the probability distribution for player A and B
after Nash.

The meaning of the Nash strategy is that if player B
chooses (yN ) then there is no variation of zA irrespective
of the choice of player A; if player A chooses (xN ) there
is no variation of zB irrespective of the choice of player
B. Therefore, it holds:

zA((xN ), (yN )) = zA((xp), (yN ))

zB((xN ), (yN )) = zB((xN ), (yp))

The prudential strategies are following.

∂zA/∂y1 = A1x1 +A3x2 +A7 = 0 (15)

∂zA/∂y2 = A2x1 +A4x2 +A8 = 0 (16)

implies

x1 = (A3A8–A4A7)/(A1A4–A2A3) = xp1 (17)

x2 = (A2A7–A1A8)/(A1A4–A2A3) = xp2 (18)

and
∂zB/∂x1 = B1y1 +B2y2 +B5 = 0 (19)

∂zB/∂x2 = B2y1 +B4y2 +B8 = 0 (20)

implies

y1 = (B2B6–B4B5)/(B1B4–B2B3) = yp1 (21)

y2 = (B3B5–B1B6)/(B1B4–B2B3) = yp2 (22)

that is the prudential probability distribution for player
A and B.

The meaning of the prudential strategy is that if
player B chooses (yp) then there is no variation of zB
irrespective of the choice of player A; if player A chooses
(xp) there is no variation of zA irrespective of the choice
of player B.

Therefore it holds:

zA((xp), (yN )) = zA((xp), (yp))

zB((xp), (yp)) = zB((xN ), (yp))

The conclusion is that the use by a player of the pru-
dential strategy makes its payoff independent from the
choice of the other player.

Moreover it holds:

zA((xN ), (yN )) = zA((xp), (yp))

zB((xp), (yp)) = zB((xN ), (yN ))

that is the Nash strategy and the prudential strategy
are equivalent.

As a matter of fact by substituting in the formulas
of the expected payoffs of each player respectively the
prudential strategies and the Nash’s strategies it can
easily be seen that the expected payoffs are equal in the
two cases, thus the two couples of strategies (xp, yp) and
(xN , yN ) are equivalent.

Moreover combining the prudential strategies with
the Nash’s strategies it is found that:

zA(xp, yN ) = zA(xp, yp) = zA(xN , yN ) =

= (A2A6A7–A1A6A8 +A3A5A8–A4A5A7)/(A1A4+

−A2A3) +A0 = z∗A (23)

but

zB(xp, yN ) ̸= zB(xp, yp) = zB(xN , yN ) = z∗B (24)

and

zB(xN , yp) = zB(xp, yp) = zB(xN , yN ) =

= (B2B6B7–B1B6B8 +B3B5B8–B4B5B7)/(B1B4+

−B2B3) +B0 = z∗B (25)
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but

zA(xN , yp) ̸= zA(xp, yp) = zA(xN , yN ) = z∗A (26)

this means that the two couples of strategies are gen-
erally not interchangeable.

It can be concluded that the couple of strategies does
not represent a solution of the game because they are
equivalent, but not interchangeable (Nash [2]). The non-
cooperative solution does not take into account the pos-
sibility of an agreement between the two players; thus,
it is possible that the players choose non homogeneous
strategies because they are equivalent, but this is not
optimal because they are not interchangeable.

The outcome of the possible choices of the two players
is depicted in the following Table 2.

Table 2

Strategies Expected payoffs
x y zA zB

Nash xN1, xN2 yN1, yN2 z∗A z∗B
Prudential xp1, xp2 yp1, yp2 z∗A z∗B
Nash/Prud. xN1, xN2 yp1, yp2 α z∗B
Prud./Nash xp1, xp2 yN1, yN2 z∗A β

where
α = zA(xN , yp)
β = zB(xp, yN )

It comes out that in order to choose the optimal strat-
egy the player A should look whether the value of
zA(xN , yp) is greater or lower than z∗A: if it is greater,
the strategy (xN ) is dominant irrespective of the choice
of player B, if it is lower, the strategy (xp) becomes
dominant irrespective of the choice of player B.

The player B should look whether the value of
zB(xp, yN ) is greater or lower than z∗B : if it is greater,
the strategy (yN ) is dominant irrespective of the choice
of player A, if it is lower, the strategy (yp) becomes
dominant irrespective of the choice of player A.

The discussion of the first derivatives of the expected
payoffs gives a rationale of the two different ways to
calculate the probability distribution on the strategies:

• the prudential strategy

∂zA/∂y = 0 implies (x) = (xp) (27)

∂zB/∂x = 0 implies (y) = (yp) (28)

guarantees that each player receives a payoff irre-
spective of the choice of the other player: i.e. (xp)
is the best reply of player A whatever it is the
strategy of B and (yp) is the best reply of player
B whatever it is the strategy of A; this explains
why:

zA(xp, yN ) = zA(xp, yp) = zA(xp, y) = z∗A (29)

zB(xN , yp) = zB(xp, yp) = zB(x, yp) = z∗B (30)

• the Nash’s strategy

∂zB/∂y = 0 implies (x) = (xN ) (31)

∂zA/∂x = 0 implies (y) = (yN ) (32)

guarantees that each player receives a payoff irre-
spective of his own choice: i.e. (xN ) makes indif-
ferent the reply of player B and (yN ) makes indif-
ferent the reply of player A; this explains why:

zA(xp, yN ) = zA(xN , yN ) (33)

zB(xN , yp) = zB(xN , yN ) (34)

2.2 Remarks about the solution of two
persons 3 by 3 games

It is worth to note that the proposed procedure to de-
termine the equilibrium strategies of a game does not
depend upon the value of the payoffs of the bi-matrix,
nevertheless the resulting equilibrium strategies depend
totally upon those values.

Moreover, as already said in my previous paper [1],
there is a possible flaw in the proposed procedure. The
prudential strategy is calculated for each player on the
basis of its own matrix of the payoffs, but the expected
payoff for each player is based also on the knowledge of
the prudential strategy of the other player. Something
similar happens for the Nash’s way because the strategy
of each player is based on the matrix of the payoffs of
the other player, so the expected payoff of a player is de-
pending upon the matrix of the payoffs of the other. In
both cases there is a possible flaw of the method because
also if a player should be able to state precisely his pay-
offs matrix corresponding to each of his own pure strate-
gies, he could not be able to state precisely the payoffs
matrix of the competitor. This flaw is overcome by the
theorem that every finite n-person game with perfect
information has an equilibrium n-tuple of strategies [7].
Nevertheless the theorem gives a demonstration of the
existence of a solution, but it does not give the way to
find it.

The proposed procedure could not work both in the
case three by three moves and in the case of different
number of moves between the two players: it depends
whether the algebraic requirements for the existence of
a solution of the system of equations are satisfied or not.
If the requirements are not satisfied another procedure
should be adopted: this situation will be presented in
the following numerical examples.

4
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3 Numerical solutions of a 3 x 3
game in normal form

3.1 Example 1

As a first example a general sum game published and
solved by Owen [7] is shown in Table 3.

Table 3

Moves of player B
y1 y2 y3

Moves of player A
x1 2, 2 1, 1 0, 0
x2 1, 1 0, 0 2, 2
x3 0, 0 2, 2 1, 1

Formulas 17, 18, 21, 22 and 9, 10, 13, 14 give the
vectors of the probability distribution on the moves re-
spectively for player A and B and the expected payoffs
are

zA = 3x1y1+0x1y2+0x2y1− 3x2y2−x1+x2− y1+
+ y2 + 1

zB = 3x1y1+0x1y2+0x2y1−3x2y2−x1+x2− y1+
+ y2 + 1

The strategies are following:

• first way (prudential strategy)

(xp) = (1/3, 1/3, 1/3) for player A

(yp) = (1/3, 1/3, 1/3) for player B

with zA(xp, yp) = 1 and zB(xp, yp) = 1

• second way (Nash’s strategy)

(xN ) = (1/3, 1/3, 1/3) for player A

(yN ) = (1/3, 1/3, 1/3) for player B

with zA(xN , yN ) = 1 and zB(xN , yN ) = 1

For A it comes out that
zA(xN , yp) = zA(xp, yN ) =
= zA(xp, yp) = zA(xN , yN ) = 1
thus (xN ) and (xp) are totally equivalent strategies for
A.

For B it comes out that
zB(xp, yN ) = zB(xN , yp) =
= zB(xp, yp) = zB(xN , yN ) = 1
thus (yN ) and (yp) are totally equivalent strategies for
B.

Moreover for A it comes out that
zA(x, yN ) = 1 = zA(x, yp)
whatever (x) strategy is adopted by player A.

Analogously for B it comes out that
zB(xN , y) = 1 = zB(xp, y)
whatever (y) strategy is adopted by player B.

Nevertheless the non-cooperative solution should be
based on an independent choice of the strategies by each
player thus the combination (whatever (x), whatever
(y)) is not suitable because the expected payoff becomes
undefined and it cannot be calculated by each of the
players, therefore, the solution is one of the above de-
termined solution.

Thus, the two solutions of the game are equivalent
and interchangeable and, moreover, due to the symme-
try of the game, the two players have the same proba-
bility distribution on the moves and the same expected
payoff.

This solution is different from that proposed by
Owen [7].

3.2 Example 2

As a second example a zero sum game published and
solved by Owen [7] is shown in Table 4.

Table 4

Moves of player B
y1 y2 y3

Moves of player A
x1 0, 0 1,−1 −2, 2
x2 −1, 1 0, 0 3,−3
x3 2,−2 −3, 3 0, 0

Formulas 17, 18, 21, 22 and 9, 10, 13, 14 give the
vectors of the probability distribution on the moves re-
spectively for player A and B and the expected payoffs
are

zA = 0x1y1+6x1y2−6x2y1+0x2y2−2x1+3x2+2y1+
− 3y2 + 0

zB = 0x1y1−6x1y2+6x2y1+0x2y2+2x1−3x2−2y1+
+ 3y2 + 0

The strategies are following:

• first way (prudential strategy)

(xp) = (1/2, 1/3, 1/6) for player A

(yp) = (1/2, 1/3, 1/6) for player B

with zA(xp, yp) = 0 and zB(xp, yp) = 0

• second way (Nash’s strategy)

(xN ) = (1/2, 1/3, 1/6) for player A

(yN ) = (1/2, 1/3, 1/6) for player B

with zA(xN , yN ) = 0 and zB(xN , yN ) = 0

5
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For A it comes out that zA(xN , yp) = zA(xp, yN ) =
= zA(xp, yp) = zA(xN , yN ) = 0
thus (xN ) and (xp) are totally equivalent strategies for
A.

For B it comes out that zB(xp, yN ) = zB(xN , yp) =
= zB(xp, yp) = zB(xN , yN ) = 0
thus (yN ) and (yp) are totally equivalent strategies for
B.

Thus the two solutions of the game are equivalent
and interchangeable, moreover, due to the symmetry of
the game, the strategies of the two players are equal,
(xN ) = (yN ) and (xp) = (yp), and the expected payoffs
shall be opposite; in this case both are zero.

This result is in agreement with the finding of a
unique equilibrium pair by Owen [7].

3.3 Example 3

As a third example a general sum game published as
exercise by Owen [7] is shown in Table 5.

Table 5

Moves of player B
y1 y2 y3

Moves of player A
x1 2, 1 0, 0 1, 2
x2 1, 2 2, 1 0, 0
x3 0, 0 1, 2 2, 1

Formulas 17, 18, 21, 22 and 9, 10, 13, 14 give the
vectors of the probability distribution on the moves re-
spectively for player A and B and the expected payoffs
are

zA = 3x1y1+0x1y2+3x2y1+3x2y2−x1−2x2−2y1+
− 2y2 + 2

zB = 0x1y1−3x1y2+3x2y1+0x2y2+x1−x2− y1+
+ y2 + 1

The strategies are following:

• first way (prudential strategy)

(xp) = (0, 2/3, 1/3) for player A

(yp) = (1/3, 1/3, 1/3) for player B

with zA(xp, yp) = zA(xp, yN ) = 2/3 and
zB(xp, yp) = zB(xp, yN ) = 1

• second way (Nash’s strategy)

(xN ) = (1/3, 1/3, 1/3) for player A

(yN ) = (1/3, 1/3, 1/3) for player B

with zA(xN , yN ) = zA(xN , yp) = 2/3 and
zB(xN , yN ) = zB(xN , yp) = 1

For A it comes out that
zA(xN , yp) = zA(xp, yN ) = zA(xp, yp) =
= zA(xN , yN ) = 2/3
thus (xN ) and (xp) are totally equivalent strategies for
A.

For B it comes out that zB(xp, yN ) = zB(xN , yp) =
= zB(xp, yp) = zB(xN , yN ) = 1
thus, (yN ) and (yp) are totally equivalent strategies for
B.

Thus, the two solutions of the game are equivalent
and interchangeable. Owen [7] finds only the Nash so-
lution.

3.4 Example 4

As a forth example a general sum game, symmetric bi-
matrix game published as exercise by Owen [7], is shown
in Table 6.

Table 6

Moves of player B
y1 y2 y3

Moves of player A
x1 1, 1 2, 2 3, 2
x2 2, 2 1, 1 4, 3
x3 2, 3 3, 4 1, 1

Formulas 17, 18, 21, 22 and 9, 10, 13, 14 give the
vectors of the probability distribution on the moves re-
spectively for player A and B and the expected payoffs
are

zA = −3x1y1 − 3x1y2 − 3x2y1 − 5x2y2 +2x1 +3x2 +
+ y1 + 2y2 + 1

zB = −3x1y1 − 3x1y2 − 3x2y1 − 5x2y2 + x1 + 2x2 +
+ 2y1 + 3y2 + 1

First of all the Nash strategies are here below deter-
mined.

∂zA/∂x1 = −3y1 − 3y2 + 2 = 0

∂zA/∂x2 = −3y1 − 5y2 + 2 = 0

implies

y1 = 1/6 = yN1

y2 = 1/2 = yN2

and

6

Financial Engineering 
DOI: 10.37394/232032.2025.3.14 Maurizio Angelo Zola

E-ISSN: 2945-1140 177 Volume 3, 2025



∂zB/∂y1 = −3x1 − 3x2 + 2 = 0

∂zB/∂y2 = −3x1 − 5x2 + 3 = 0

implies

x1 = 1/6 = xN1

x2 = 1/2 = xN2

The Nash strategies are following:

(xN ) = (1/6, 1/2, 1/3) for player A

(yN ) = (1/6, 1/2, 1/3) for player B

with zA(xN , yN ) = 13/6 and zB(xN , yN ) = 13/6

The prudential strategies are here below determined.

∂zA/∂y1 = −3x1 − 3x2 + 1 = 0

∂zA/∂y2 = −3x1 − 5x2 + 2 = 0

implies

x1 = −1/6 = xp1

x2 = 1/2 = xp2

and

∂zB/∂x1 = −3y1 − 3y2 + 1 = 0

∂zB/∂x2 = −3y1 − 5y2 + 2 = 0

implies

y1 = −1/6 = yp1

y2 = 1/2 = yp2

For the prudential probability distribution the result is
not acceptable for either player.

Moreover for A it comes out that zA(x, yN ) = 13/16
and it is independent of the strategy (x) of player A.

Analogously for B it comes out that zB(xN , y) =
13/16 and it is independent of the strategy (y) of player
B.

Nevertheless for A it comes out that zA(xN , y) is de-
pending upon the (y) strategy adopted by player B and
for B it comes out that zB(x, yN ) is depending upon the

(x) strategy adopted by player A.

Thus the only solution is the Nash’s strategy and
the prudential strategy is not existing and, moreover,
due to the symmetry of the game, the two players have
the same probability distribution on the moves and the
same expected payoff.

3.5 Example 5

As a fifth example a zero sum game, symmetric bimatrix
game published by Gambarelli [14], is shown in Table 7.

Table 7

Moves of player B
y1 y2 y3

Moves of player A
x1 2,−2 1,−1 0, 0
x2 1,−1 2,−2 1,−1
x3 0, 0 1,−1 2,−2

First of all the Nash strategies are determined. For-
mulas 11 and 12 give the system of equations to be
solved to find the vector of the probability distribution
on the moves for player A

∂zB/∂y1 = −4x1 − 2x2 + 2 = 0

∂zB/∂y2 = −2x1 − 2x2 + 1 = 0

The solution of this system of equations is:

x1 = 1/2 = xN1

x2 = 0 = xN2

x3 = 1/2 = xN3

Formulas 7 and 8 give the system of equations to be
solved to find the vector of the probability distribution
on the moves for player B

∂zA/∂x1 = 4y1 + 0y2 − 2 = 0

∂zA/∂x2 = 2y1 + 2y2 − 1 = 0

implies

y1 = 1/2 = yN1

y2 = 0 = yN2

y3 = 1/2 = yN3

The Nash strategies are following:

(xN ) = (1/2, 0, 1/2) for player A

(yN ) = (1/2, 0, 1/2) for player B
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with zA(xN , yN ) = 1 and zB(xN , yN ) = −1

The prudential strategies are here below determined.
Formulas 15 and 16 give the system of equations to be
solved to find the vector of the probability distribution
on the moves for player A

∂zA/∂y1 = 4x1 − 2 = 0

∂zA/∂y2 = 2x1 + 2x2 − 1 = 0

The solution of this system of equations is:

x1 = 1/2 = xp1

x2 = 0 = xp2

x3 = 1/2 = xp3

Formulas 19 and 20 give the system of equations to be
solved to find the vector of the probability distribution
on the moves for player B

∂zB/∂x1 = −4y1 − 2y2 + 2 = 0

∂zB/∂x2 = −2y1 − 2y2 + 2 = 0

implies

y1 = 1/2 = yp1

y2 = 0 = yp2

y3 = 1/2 = yp3

The prudential strategies are following:

(xp) = (1/2, 0, 1/2) for player A

(yp) = (1/2, 0, 1/2) for player B

with zA(xp, yp) = 1 and zB(xp, yp) = −1

It can be concluded that:

zA(xp, yp) = zA(xN , yN ) = zA(xp, yN ) = 1

zB(xp, yp) = zB(xN , yN ) = zB(xN , yp) = −1

moreover

zA(xN , yp) = 1

zB(xp, yN ) = −1

Therefore the two solutions are equivalent and inter-
changeable, moreover, due to the symmetry of the game,
the strategies of the two players are equal, (xN ) = (yN )
and (xp) = (yp), and the expected payoffs are opposite.

3.6 Example 6

As a sixth example a zero sum game, published by Dixit
and Skeath [10] to show the application of the mixed
strategy concept, is shown in Table 8.
The game is a simplified representation of a penalty kick
in soccer; both players have just three pure strategies:
the kicker, row player A, can kick to his left, center or
right and the goalie, column player B, can move to left,
center or right (left and right are referred for both to
the kicker).

Table 8

Moves of player B
y1 y2 y3

Moves of player A
x1 45,−45 90,−90 90,−90
x2 85,−85 0, 0 85,−85
x3 95,−95 95,−95 60,−60

First of all the Nash strategies are determined. For-
mulas 11 and 12 give the system of equations to be
solved to find the vector of the probability distribution
on the moves for player A

∂zB/∂y1 = 80x1 + 35x2 − 35 = 0

∂zB/∂y2 = 35x1 + 120x2 − 35 = 0

The solution of this system of equations is:

x1 = 119/335 = 0, 355 = xN1

x2 = 63/335 = 0, 188 = xN2

x3 = 153/335 = 0, 457 = xN3

Formulas 7 and 8 give the system of equations to be
solved to find the vector of the probability distribution
on the moves for player B

∂zA/∂x1 = −80y1 − 35y2 + 30 = 0

∂zA/∂x2 = −35y1 − 120y2 + 25 = 0

implies

y1 = 109/335 = 0, 325 = yN1

y2 = 38/335 = 0, 113 = yN2

y3 = 188/335 = 0, 562 = yN3

The Nash strategies are following:

(xN ) = (119/335, 63/335, 153/335) for player A

(yN ) = (109/335, 38/335, 188/335) for player B

with zA(xN , yN ) = 75, 4 and zB(xN , yN ) = −75, 4

The prudential strategies are here below determined.
Formulas 15 and 16 give the system of equations to be
solved to find the vector of the probability distribution
on the moves for player A
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∂zB/∂y1 = −80x1 − 35x2 + 35 = 0

∂zB/∂y2 = −35x1 − 120x2 + 35 = 0

The solution of this system of equations is:

x1 = 119/335 = 0, 355 = xp1

x2 = 63/335 = 0, 188 = xp2

x3 = 153/335 = 0, 457 = xp3

Formulas 19 and 20 give the system of equations to be
solved to find the vector of the probability distribution
on the moves for player B

∂zA/∂x1 = 80y1 + 35y2 − 30 = 0

∂zA/∂x2 = 35y1 + 120y2 − 25 = 0

implies

y1 = 109/335 = 0, 325 = yp1

y2 = 38/335 = 0, 113 = yp2

y3 = 188/335 = 0, 562 = yp3

The prudential strategies are following:

(xp) = (119/335, 63/335, 153/335) for player A

(yp) = (109/335, 38/335, 188/335) for player B

with zA(xp, yp) = 75, 4 and zB(xp, yp) = −75, 4

It can be concluded that:

zA(xp, yp) = zA(xN , yN ) = zA(xp, yN ) = 75, 4

zB(xp, yp) = zB(xN , yN ) = zB(xN , yp) = −75, 4

moreover

zA(xN , yp) = 75, 4

zB(xp, yN ) = −75, 4

Therefore the two solutions are equivalent and in-
terchangeable because in the zero sum games the Nash
and the prudential strategies are equal and the expected
payoffs are opposite.

The same solution is given by Skeath [10].

3.7 Example 7

As a seventh example a tricky zero sum game, published
by Dixit and Skeath [10] Rock-Scissors-Paper, is shown
in Table 9. For both player the first move is Rock, the
second one is Scissors and the third one is Paper; Paper
wins against Rock, but it loses against Scissors and Scis-
sors lose against Rock; if two players choose the same
object, they tie.

Table 9

Moves of player B
y1 y2 y3

Moves of player A
x1 0, 0 10,−10 −10, 10
x2 −10, 10 0, 0 10,−10
x3 10,−10 −10, 10 0, 0

First of all the Nash strategies are determined. For-
mulas 11 and 12 give the system of equations to be
solved to find the vector of the probability distribution
on the moves for player A

∂zB/∂y1 = 0x1 + 30x2 − 10 = 0

∂zB/∂y2 = −30x1 + 0x2 + 10 = 0

The solution of this system of equations is:

x1 = 1/3 = xN1

x2 = 1/3 = xN2

x3 = 1/3 = xN3

Formulas 7 and 8 give the system of equations to be
solved to find the vector of the probability distribution
on the moves for player B

∂zA/∂x1 = 0y1 + 30y2 − 10 = 0

∂zA/∂x2 = −30y1 + 0y2 + 10 = 0

implies

y1 = 1/3 = yN1

y2 = 1/3 = yN2

y3 = 1/3 = yN3

The Nash strategies are following:

xN = (1/3, 1/3, 1/3) for player A

yN = (1/3, 1/3, 1/3) for player B

with zA(xN , yN ) = 0 and zB(xN , yN ) = 0

The prudential strategies are here below determined.
Formulas 15 and 16 give the system of equations to be
solved to find the vector of the probability distribution
on the moves for player A

∂zB/∂y1 = 0x1 − 30x2 + 10 = 0

∂zB/∂y2 = 30x1 + 0x2 − 10 = 0
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The solution of this system of equations is:

x1 = 1/3 = xp1

x2 = 1/3 = xp2

x3 = 1/3 = xp3

Formulas 19 and 20 give the system of equations to be
solved to find the vector of the probability distribution
on the moves for player B

∂zA/∂x1 = 0y1 − 30y2 + 10 = 0

∂zA/∂x2 = −30y1 + 0y2 + 10 = 0

implies

y1 = 1/3 = yp1

y2 = 1/3 = yp2

y3 = 1/3 = yp3

The prudential strategies are following:

xp = (1/3, 1/3, 1/3) for player A

yp = (1/3, 1/3, 1/3) for player B

with zA(xp, yp) = 0 and zB(xp, yp) = 0

It can be concluded that:

zA(xp, yp) = zA(xN , yN ) = zA(xp, yN ) = 0

zB(xp, yp) = zB(xN , yN ) = zB(xN , yp) = 0

moreover

zA(xN , yp) = 0

zB(xp, yN ) = 0

The equilibrium strategies are trivial, as it could be
expected: the two solutions are equivalent and inter-
changeable because in the zero sum games the Nash and
the prudential strategies are equal and the expected pay-
offs are opposite and in this case both are equal to zero.

4 Non-cooperative solution of the
normal form of two-person n by
m game

4.1 Theory

As it is well known the normal form of the two persons
n-by-m game is the following one:

being
n∑

i=1

xi = 1 (35)

Table 10

Moves of player B
y1 ...yj ... ym

Moves of player A

x1 a11, b11 ..a1j , b1j .. a1m, b1m
... ..., ... ..., ... ..., ...
xi ai1, bi1 ..aij , bij .. aim, bim
... ..., ... ..., ... ..., ...
xn an1, bn1 ..anj , bnj .. anm, bnm

and
m∑
j=1

yj = 1 (36)

with the constraints

0 ≤ xi ≤ 1 (37)

and
0 ≤ yj ≤ 1 (38)

the row vectors of the probability distribution on the
moves respectively for player A and B are following:

x = (x1, xi, xn) = (x1, xi, 1−
n−1∑
i=1

xi) (39)

and

y = (y1, yj , ym) = (y1, yj , 1−
m−1∑
j=1

yj) (40)

Associated to each possible outcome of the game is
a collection of numerical payoffs, one to each player.

The expected payoff for each player is then given by:

zA = (x)(H)A(y)
T (41)

zB = (x)(H)B(y)
T (42)

where (x) is the vector probability distribution of
player A, (H) is the matrix of the payoff of A and B,
and (y)T is the transposed of vector (y). These formulas
will be used throughout the paper from here on.

As mentioned in my previous paper [1], in literature
there are two ways to calculate the probability distri-
bution for each player: a prudential strategy [8] and a
Nash strategy [2]. These two different strategies can be
determined by calculating the first derivatives of the ex-
pected payoffs and equating them to zero. First of all
the Nash strategies are determined.

∂zA/∂xi =
m−1∑
k=1

(aik−aim−ank+anm)yk+aim−anm = 0

(43)
these partial derivatives equated to zero are n − 1

equations in m− 1 yj unknowns and
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∂zB/∂yj =
n−1∑
k=1

(bkj−bnj−bkm+bnm)xk+bnj−bnm = 0

(44)
these are m− 1 equations in n− 1 xi unknowns.

The solution of the two systems gives the probability
distribution for player B and A after Nash.

The meaning of the Nash strategy is that if player B
chooses (yN ) there is no variation of zA irrespective of
the choice of player A; if player A chooses (xN ) there is
no variation of zB irrespective of the choice of player B.
Therefore it holds:

zA((xN ), (yN )) = zA((xp), (yN ))

zB((xN ), (yN )) = zB((xN ), (yp))

The prudential strategies are following.

∂zB/∂xi =

m−1∑
k=1

(bik−bim−bnk+bnm)yk+bim−bnm = 0

(45)
these partial derivatives equated to zero are n − 1

equations in m− 1 yj unknowns and

∂zA/∂yj =
n−1∑
k=1

(akj−anj−akm+anm)xk+anj−anm = 0

(46)
these are m− 1 equations in n− 1 xi unknowns.

The solution of the two systems gives the prudential
probability distribution for player B and A.

The meaning of the prudential strategy is that if
player B chooses (yp) there is no variation of zB irre-
spective of the choice of player A; if player A chooses
(xp) there is no variation of zA irrespective of the choice
of player B.

The conclusion is that the use of a player of the pru-
dential strategy makes its payoff independent from the
choice of the other player.
Therefore it holds:

zA((xp), (yN )) = zA((xp), (yp))

zB((xp), (yp)) = zB((xN ), (yp))

Moreover it holds:

zA((xN ), (yN )) = zA((xp), (yp))

zB((xp), (yp)) = zB((xN ), (yN ))

that is the Nash strategy and the prudential strategy
are equivalent.

As a matter of fact by substituting in the formulas
of the expected payoffs of each player respectively the
prudential strategies and the Nash’s strategies it can
easily be seen that the expected payoffs are equal in the
two cases, thus the two couples of strategies (xp, yp) and
(xN , yN ) are equivalent.

Moreover combining the prudential strategies with
the Nash’s strategies it is found that:

zA(xp, yp) = zA(xN , yN ) = zA(xp, yN ) = z∗A (47)

and

zB(xp, yp) = zB(xN , yN ) = zB(xN , yp) = z∗B (48)

but in general

zB(xp, yN ) ̸= zB(xp, yp) = zB(xN , yN ) = z∗B (49)

and

zA(xN , yp) ̸= zA(xp, yp) = zA(xN , yN ) = z∗A (50)

this means that in general the two couples of strate-
gies are not interchangeable.

It can be concluded that the couple of strategies does
not represent a solution of the game because they are
equivalent, but not interchangeable (Nash [2]). The non-
cooperative solution does not take into account the pos-
sibility of an agreement between the two players, thus
it is possible that the players choose different strategies
because they are equivalent, but this is not optimal be-
cause they are not interchangeable.

The outcome of the possible choices of the two players
is depicted in the following Table 11.

Table 11

Strategies Expected payoffs
x y zA zB

Nash xN yN z∗A z∗B
Prudential xp yp z∗A z∗B
Nash/Prud. xN yp α z∗B
Prud./Nash xp yN z∗A β

where
α = zA(xN , yp)
β = zB(xp, yN )

It comes out that in order to choose the optimal
strategy the player A should look whether the value of
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zA(xN , yp) is greater or lower than z∗A: if it is greater,
the strategy (xN ) is dominant irrespective of the choice
of player B, if it is lower, the strategy (xp) becomes
dominant irrespective of the choice of player B.

The player B should look whether the value of
zB(xp, yN ) is greater or lower than z∗B : if it is greater,
the strategy (yN ) is dominant irrespective of the choice
of player A, if it is lower, the strategy (yp) becomes dom-
inant irrespective of the choice of player A.

The discussion of the first derivatives of the expected
payoffs gives a rationale of the two different ways to
calculate the probability distribution on the moves:

• the prudential strategy

∂zA/∂y = 0 implies x = xp (51)

∂zB/∂x = 0 implies y = yp (52)

guarantees that each player receives a payoff ir-
respective of the choice of the other player; this
explains why:

zA(xp, yN ) = zA(xp, yp) = zA(xp, y) = z∗A (53)

zB(xN , yp) = zB(xp, yp) = zB(x, yp) = z∗B (54)

• the Nash’s strategy

∂zB/∂y = 0 implies x = xN (55)

∂zA/∂x = 0 implies y = yN (56)

guarantees that each player receives a payoff irre-
spective of his own choice; this explains why:

zA(xp, yN ) = zA(xN , yN ) (57)

zB(xN , yp) = zB(xN , yN ) (58)

4.2 Remarks about the solution of two-
person n by m games

The remarks in section 2.2 are totally applicable to the
solution of two persons and n by m moves games: it is
known that a solution of the game exists [7], but there
are a lot of different ways to find out that solution. The
proposed procedure is very simple for finding the solu-
tion also if in some cases it fails and some other ways
should be used such as the search of the Nash equilibria.
The application of the geometric approach, proposed [1]
to find the non-cooperative solution of the two by two
general sum game with mixed strategies, is not recom-
mended in the case of n by m moves games, because it
becomes too much troublesome in the n by m dimen-
sions space.

5 Numerical solutions of some
games larger than 3 by 3 moves

5.1 Example 1

As a first example a general sum game published as ex-
ercise by Maschler [12] is shown in Table 12.

Table 12

Moves of player B
y1 y2 y3 y4

Moves of player A

x1 3, 7 0, 13 4, 5 5, 3
x2 5, 3 4, 5 4, 5 3, 7
x3 4, 5 3, 7 4, 5 5, 3
x4 4, 5 4, 5 4, 5 4, 5

First of all the Nash strategies are determined. For-
mula 44 gives the system of equations to be solved to find
the vector of the probability distribution on the moves
for player A

∂zB/∂y1 = 2x1 − 2x2 + 2x3 = 0

∂zB/∂y2 = 4x1 − 4x2 + 2x3 = 0

∂zB/∂y3 = 10x1 − 2x2 + 4x3 = 0

This is a homogeneous system and the trivial solution is

x1 = 0 = xN1

x2 = 0 = xN2

x3 = 0 = xN3

x4 = 1 = xN4

Formula 43 gives the system of equations to be solved
to find the vector of the probability distribution on the
moves for player B

∂zA/∂x1 = −2y1 − 5y2 − y3 + 1 = 0

∂zA/∂x2 = 2y1 + y2 + y3 − 1 = 0

∂zA/∂x3 = −y1 − 2y2 − y3 + 1 = 0

implies

y1 = 0 = yN1

y2 = 0 = yN2

y3 = 1 = yN3

y4 = 0 = yN4

The Nash strategies are following:

(xN ) = (0, 0, 0, 1) for player A

(yN ) = (0, 0, 1, 0) for player B
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with zA(xN , yN ) = 4 and zB(xN , yN ) = 5

The prudential strategies are here below determined.
Formula 46 gives the system of equations to be solved
to find the vector of the probability distribution on the
moves for player A

∂zA/∂y1 = −2x1 + 2x2 − x3 = 0

∂zA/∂y2 = −5x1 + x2 − 2x3 = 0

∂zA/∂y3 = −x1 + x2 − x3 = 0

This is a homogeneous system and the trivial solution is
the prudential strategy for player A:

x1 = 0 = xp1

x2 = 0 = xp2

x3 = 0 = xp3

x4 = 1 = xp4

Formula 45 gives the system of equations to be solved
to find the vector of the probability distribution on the
moves for player B

∂zB/∂x1 = 4y1 + 10y2 + 2y3 − 2 = 0

∂zB/∂x2 = −4y1 − 2y2 − 2y3 + 2 = 0

∂zB/∂x3 = 2y1 + 4y2 + 2y3 − 2 = 0

implies

y1 = 0 = yp1

y2 = 0 = yp2

y3 = 1 = yp3

y4 = 0 = yp4

The prudential strategies are following:

(xp) = (0, 0, 0, 1) for player A

(yp) = (0, 0, 1, 0) for player B

with zA(xp, yp) = 4 and zB(xp, yp) = 5

It can be concluded that:

zA(xp, yp) = zA(xN , yN ) = zA(xp, yN ) = 4

zB(xp, yp) = zB(xN , yN ) = zB(xN , yp) = 5

moreover

zA(xN , yp) = 4

zB(xp, yN ) = 5

Therefore the two solutions are equal, equivalent and
interchangeable, therefore there is only one solution:

(x) = (0, 0, 0, 1) for player A

(y) = (0, 0, 1, 0) for player B

with zA(x, y) = 4 and zB(x, y) = 5.

5.2 Example 2

As a second example a general sum game published by
Dixit and Skeath [10] to show the application of the ra-
tionalizability concept is shown in Table 13. This con-
cept by Skeath is based on the identification of strategies
that are never a best response and it is deemed that this
property is stronger than the simple dominance princi-
ple.

Table 13

Moves of player B
y1 y2 y3 y4

Moves of player A

x1 0, 7 2, 5 7, 0 0, 1
x2 5, 2 3, 3 5, 2 0, 1
x3 7, 0 2, 5 0, 7 0, 1
x4 0, 0 0,−2 0, 0 10,−1

It can be seen that there are no dominances. First
of all the Nash strategies are determined. Formula 44
gives the system of equations to be solved to find the
vector of the probability distribution on the moves for
player A

∂zB/∂y1 = 0x1 + 0x2 + 5x3 = −1

∂zB/∂y2 = 5x1 + 0x2 − 2x3 = −1

∂zB/∂y3 = 5x1 + 3x2 + 5x3 = 1

The solution of the system of equations is

x1 = −7/25 < 0

x2 = 1/5

x3 = −1/5 < 0

x4 = 32/25 > 1

The solution is not acceptable because the probabilities
should be non negative and lower than one. Formula 43
gives the system of equations to be solved to find the
vector of the probability distribution on the moves for
player B

∂zA/∂x1 = 10y1 + 12y2 + 17y3 − 10 = 0

∂zA/∂x2 = 15y1 + 13y2 + 15y3 − 10 = 0

∂zA/∂x3 = 17y1 + 12y2 + 10y3 − 10 = 0
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implies

y1 = −10/9 < 0

y2 = 10/3 > 1

y3 = −10/9 < 0

y4 = 19/9 > 1

The solution is not acceptable because the probabilities
should be non negative and lower than one.
There is no Nash strategy and the equilibrium strategy
should be found among the pure strategies.

The prudential strategies are here below determined.
Formula 46 gives the system of equations to be solved
to find the vector of the probability distribution on the
moves for player A

∂zA/∂y1 = 10x1 + 15x2 + 17x3 − 10 = 0

∂zA/∂y2 = 12x1 + 13x2 + 12x3 − 10 = 0

∂zA/∂y3 = 17x1 + 15x2 + 10x3 − 10 = 0

The solution of the system of equations is

x1 = 20/9 > 1

x2 = −20/9 < 0

x3 = 20/9 > 1

x4 = −11/9 < 0

The system has negative solutions, therefore the solu-
tions are not acceptable.

Formula 45 gives the system of equations to be solved
to find the vector of the probability distribution on the
moves for player B

∂zB/∂x1 = 5y1 + 5y2 − 2y3 + 2 = 0

∂zB/∂x2 = 0y1 + 0y2 + 3y3 + 2 = 0

∂zB/∂x3 = −2y1 + 5y2 + 5y3 + 2 = 0

implies

y1 = 4/9

y2 = −2/3 < 0

y3 = 4/9

y4 = 11/9 > 1

The system has negative solutions, therefore the solu-
tions are not acceptable. There are no mixed strategies
solutions either Nash or prudential and the equilibrium

strategy should be found among the pure strategies.
Looking at the bimatrix of the game it can be seen that
there is a Nash equilibrium:

(x) = (0, 1, 0, 0) for player A

(y) = (0, 1, 0, 0) for player B

Therefore in this case the mixed strategies solution
does not exist, nevertheless the solution of the game can
still be found and it is the above found Nash equilibrium
with:
zA(x, y) = 3 and zB(x, y) = 3. This is the same solution
identified by Skeath [10].

Nevertheless the rationalization concept provides a
possible way of solving games that do not have a Nash
equilibrium [10].

6 Conclusions

The proposed non-cooperative solution of two persons
n by m games is based on the application of the domi-
nance principle, therefore the paper is dealing only with
games with no dominances on the pure strategies and
the dominance principle is applied to find the solution
on the mixed strategies too.

The main conclusions holding independently from
the specific values of the payoff matrix are following:

A) The value of the expected payoff corresponding
to the prudential distribution for a player is not
only independent either from the prudential or the
Nash’s distribution of the other player, but it is
independent from every distribution of the other
player; moreover when a player chooses the Nash’s
distribution the expected payoff of the other player
is not depending upon his own strategy distribu-
tion;

B) Generally speaking the couples of prudential and
Nash’s strategies are not interchangeable, but by
applying the dominance principle it is possible to
choose the right equilibrium strategies avoiding
the bad consequences due to the
non-interchangeability of the strategies;

C) It is worth noting that in the case of zero sum
game the prudential and the Nash strategy are co-
incident and they are the unique mixed strategies
solution of the game; as it can easily be under-
stood the zero sum game is a special case of the
general sum games;

D) On the basis of the dominance principle the domi-
nant mixed strategy is given by the point that has
the greatest expected payoff: on the basis of point
B) the so found equilibrium pair is candidate to
be a perfect equilibrium pair [7];
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E) A conjecture of the proposed way of solution is
that the so found solution is unique (Nash [4]). In
this case the so found equilibrium pair of the non-
cooperative solution gives the perfect equilibrium
pair of the game and the corresponding expected
payoff could be the starting point for finding the
cooperative solution of the game too [7].
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