
In Pakistan, 40% of total electricity consumption comes 
from households, putting immense pressure on power 
generation companies to manage resources [1]. Understanding 
and improving energy usage patterns requires investigating 
seasonal fluctuations and climatic impacts on residential 
electricity demand. Seasonal variations, such as temperature 
changes from summer to winter, have a significant impact on 
the demand for heating, ventilation, and air conditioning 
systems, which account for a large portion of residential 
energy consumption [2]. Climate variables such as humidity 
and precipitation can influence energy usage patterns. DSM is 
considered promising strategy to address this challenge. It 
reduces overall power consumption by predicting and 
managing user’s consumption patter [3]. Power generation 
companies are realising the importance of this information, 
leading to a demand for new methods to predict and control 
home electricity usage. By studying these variations and their 
effects, scholars and policymakers can develop better 
strategies for regulating demand, increasing energy efficiency, 
and promoting sustainable residential energy usage. This 
research work examines 300 households' energy usage pattern 
using an agent-based modelling approach to forecast 
electricity consumption patterns. Agent-based modelling is a 
potent technique that enables the calculation of base and 
shiftable loads of households using variables and functions 
[4]. It enables generation companies to make well-informed 
decisions and enhance energy utilisation capacity.  

Smart grid technology uses load profile data from 
customers to increase operational capacity and efficiency [5]. 
The DSM of smart grid collects load profile data from users 
by simulating consumption patterns, taking into account 

fluctuating loads and generation capacities [6]. Energy policy

 

makers through DSM modifies consumer demand for energy

 

through various methods such as smart metering, indirect load

 

control like incentive-based schemes and direct load control 
which include monetary incentive for turning off loads or

 

rescheduling loads [7]. Figure 1 shows categories of DSM in

 

respect of time required for implementation and subsequent 

impact generated on electricity utilization patterns. It carries 
out two approaches that are energy efficiency and demand 
response. Energy Efficiency is related to employing advanced 
efficient appliances to increase energy efficiency.  
Implementing energy efficiency program under demand side 
management umbrella is rather difficult as it needs a major 
overhaul of entire electrical power infrastructure.  

Demand Response deals with behavioural change in 
consumer consumption patterns to increase efficiency by 
reducing peak demand of residential sector which constitutes 
major chunk of total cost incurred [8]. During demand 
response programs, users provide permission to electricity 
distribution companies to remotely turn off appliances using 
direct load control during peak demand times or power supply 
issues using a preset program on controllable devices [9]. This 
partnership enables the adjustment of load profiles, providing 
clients with advantages on their electricity bills.  

 Each household has a distinct load profile, making it 
difficult to predict one household's profile from another's data 
[10]. Shift base load rely on environmental conditions. 
Anticipating the trend of shiftable load by analyzing their 
usage pattern would result in better resource distribution and 
increased grid dependability [11]. To meet the capacity during 
peak demand hours, use of renewable energy sources such as 
solar and wind power can be helpful in terms of low carbon 
emissions and improved grid reliability.  

This research work proposes a methodology to enhance 
prediction accuracy across different loads and weather 
situations. This research work utilises agent-based modelling 
for power profiling with real-world usage statistics from an 
electrical distribution provider. It also shows the impact of 
seasonal variation on electricity consumption. This article 
consists of five sections, related literature review is 
overviewed in 2nd section. Third section explains agent based 
modelling and proposed system model. Fourth section 
explains system model. Fifth section discusses results. Last 
section concludes the article.  
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Fig 1: Categories of Demand side management [7] 

 Previous work carried out in the field of electricity 
load profiling and DSM can be classified as techniques 
followed on the basis of statistical / probabilistic / Time of use 
(TOU) models, agent base models, smart meters / home 
energy management systems / optimization algorithms such 
as particle swarm algorithm / genetic algorithms / neural 
networks / fuzzy logic and models based on effect of weather 
/ occupancy on electricity consumption [12]. DSM employing 
heuristic optimization techniques is an effective tool for 
utilities to increase the flexibility of electrical distribution 
network and augment the efficiency of electrical system in the 
presence of distributed generation facilities in a smart grid 
environment [13]. DSM implementation in residential areas 
can improve the overall efficiency and reliability of the 
electrical system by minimising the demand for new power 
plants while increasing energy efficiency and power quality 
[14].  

Agent-based Modelling and Simulation (ABMS) 
approach is used by researchers for complex socio-technical 
problems to serve as a pre-requisite for implementing DSM 
policies by forecasting electricity load profiles [15]. [16] used 
the agent-based simulation approach by dividing the London 
urban area into zones using socio-demographic parameters. 
For each zone, a heterogeneous group of agents is created with 
an occupancy profile which simulates the hourly electricity 
consumption for heat-pumps, electric vehicles, and residential 
energy. The focus of the researcher was electric vehicles and 
residential use was represented as an aggregate in total 
electricity consumption. [4] used an agent-based model to 
study office building electricity consumption. Table I gives 
summarized previous literature work analysis. 

Table I: Summary of the related work on DSM 

Ref. Description Data Source 

[17] 

Energy credits are 
awarded for better 
contribution in DR which 
can be used in non-DR 
period 

Power is nonzero and 
initially assumed to be 12 
kW from the total of the 
40 households. 

[18] 
A centralized DR selects 
an optimal combination of 
individual load profiles. 

PV generation with a total 
rated power of 1MW. 

[19] 

The tool employs Monte 
Carlo simulations to 
generate hot water 
consumption profiles.  

Energy metering data of 

279 households across 

Tasmania. 
 

[20] 

 

Used survey for actual 

and forecasted demand 

considering different 

scenarios of growth rate. 

96 households were 

surveyed. 

[16] 
Cost efficiency-based 
algorithm to optimize cost 
benefit per unit cost 

Synthetic consumption 

patterns by clustering 

method. 

[21] 

The model considered the 
factors of land use, energy 
landscape, and customer 
inclination.  

 

[22] 
Energy Management 
controller using Markov 
modelling 

Detecting User behaviour 
pattern through preset 
reference models. 

[23] 

Non-Cooperative game 
theory, Day ahead energy 
market is considered and 
minimization of cost in 
robust situations with 
distributed algorithm is 
presented. 

Synthetic, general 
framework 

[18] 

Implemented DCCM, 
TSCM using SQ (state 
queuing) approach for 
refrigerator load to 
achieve hybrid scheme for 
better regulation and load 
management capabilities. 

Simulation of model uses 

Calgary city estimated 
900,000 devices rated at 
110W, resulting in 99 
MW of power Capacity. 

[24] 

Produced structures by 
DLC are optimized by 
Integer Genetic Algorithm 
that is discussed in this 
paper. 

In residential area, it is 
assumed that 210 
equipment are controllable 
out of 1650 and in 
industrial area, 50 
equipment are controllable 

[25] 

CPSDS (Cyber physical 
smart distribution system) 
in which RLAs are 
presented with various 
categories of incentives 
for event-based DSM 
mechanism.  

The proposed DSM 
framework for CPSDS is 
examined using IEEE 37 
bus test system residential, 
industrial and commercial 
loads. 

[26] 

The paper describes the 
modelling of DR using a 
fuzzy system approach 
which is typically a 
rational decision making 
model.  

Two peak periods (6am-
9am, 6pm-9pm) are 
considered with peak of 
3.1 kw. 

[27] 

PSO is implemented, hour 
breakdown scheme is used 
to arrange appliances 
according to particular 
type.  

14 different controllable 
types of appliances are 
considered. 

[28] 

GA and Binary PSO are 
utilized to build a hybrid 
algorithm. Peak and cost 
minimization with 
maximizing user comfort 
is considered. 

14 types of appliances 
considered. 
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 Agent-based modelling is a technique for determining 

household power consumption patterns by simulating the 

behaviour of various factors influencing electricity usage as 

separate agents. In this research work, agents are 

environmental temperature, occupancy patterns, load unit 

types, and household members. Each agent has unique 

characteristics and behaviours. The environmental 

temperature agent, for example, is important in determining 

the household's heating and cooling needs based on current 

weather conditions, whereas the occupancy pattern agent 

monitors the presence or absence of occupants and their 

activities. The load unit agent is responsible for the various 

appliances and devices used in the home, each with its own 

distinct power consumption pattern. All these agents interact 

with one another and the environment. Household occupancy 

patterns, for example, can have a significant impact on 

appliance usage, which then affects overall electricity 

consumption. Furthermore, external factors such as pricing 

schemes and energy-saving initiatives can influence these 

agents' decision-making processes. By simulating the 

interactions of these agents over time, the model estimates the 

household's total electricity consumption and generate a 

detailed power usage profile. ABM provides a thorough 

understanding of how various factors influence overall 

electricity consumption, which can be used to develop 

strategies for improving energy efficiency and demand-side 

management. Based on the benefits of using the agent-based 

approach to simulate the power usage profile, this work 

adopts technique. It uses Any-Logic software to develop and 

run the model. The software makes it possible to model and 

simulate all these households' power usage and provide a 

viable model and results. Given these advantages of agent-

based modelling, it emerges as more superior to other 

methods used in such instances. Figure 2 shows an example 

of agents of the electricity consumption model taken from 

[29] 

 

 

Fig. 2. Household energy consumption 

This research work considers  inductive loads which are used 
for cooling and heating. Impact of inductive heating and 

cooling load are different form that of  lights. Climate and 
weather conditions influence the power consumption of these 
loads. High-temperature conditions bring discomfort to 
people, which causes them to use air conditioning appliances 
that bring their houses' temperatures to conducive conditions. 
Similarly, when the temperatures are too low, people use 
appliances that regulate it, making it comfortable for 
occupants of a house. These devices typically have high power 
ratings, which causes them to exert a large load on people's 
power consumption. For instance, air conditioners have a 
typical power rating of 1000 W. Such a rating has a significant 
impact on the total power consumption of a house. In extreme 
climatic conditions, such as during winter or summer, people 
are most likely to use fans and air conditioners more than in 
other periods. These loads may also be in use even when 
people are asleep. In such instances, they will not follow 
similar patterns as described above. When modelling people's 
power consumption profile, it is crucial to consider these loads 
since they can account for large consumption variations from 
other times. On community level the consumption of these 
adjustable loads becomes high. Additionally, these loads 
cause the variability of power consumption among households 
due to different operating conditions such as low cool/heat, 
high cool/heat, turbo mode etc. Therefore, this research work 
considers this dissimilarity and models it to better estimate 
these variations and its impact on the total load. Thermostats 
regulate the consumption of adjustable loads during 
unfavourable extreme temperature conditions. Proposed 
model checks the temperature before estimating the load 
profile of inductive heating or cooling load. If the temperature 
is high (greater than 28℃), then the model considers air 
conditioning loads, and when it is cold (i.e. temperature lower 
than 20℃), it considers heating loads.  Process flow chart is 
shown in figure 3. Another crucial factor to consider when 
simulating domestic power consumption is the variability of 
occupancy based inductive loads such as air conditioner and 
heater. This research work models these variations differently. 
In the case of fixed loads, it only varied the usage patterns of 
users. Precisely, it gave the agents a different amount of time 
to use these fixed loads.  

Start

Check 

temperature

Hot

Consider air 

conditioner

Normal

Do not consider 

A/C

Cold

Consider heating 

loads

End

 

Fig. 3: Impact of climatic conditions on the model 

However, in variable loads, it models different usage 
durations and their varying power ratings. This model also 
considers other inductive loads such as fans, refrigerators, 
dishwashing machines, vacuum cleaners, water pumps, and 
many other appliances that have motors. Typically, these 
loads have a spike in their consumption, when starting which 

3. Agent Based Modelling 

4. System Model 
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is also considered.  Spike of the refrigerator is shown in figure 
4 [30]. Figure 5 shows the modelling process of inductive and 
non-inductive loads. 

 

Fig. 4: The power consumption of a refrigerator [30] 

 

Start

Is load 

resistive or 

inductive?

Not inductive

Do not include 

spike when starting 

load

Inductive

Include spike when 

calculating power 

usage

End

 

Fig. 5: Process flowchart showing modeling of inductive and non-
inductive loads 

    This research work examines the load profiles of 300 
households to understand their energy consumption patterns. 
Monthly and seasonal assessment is done using separate 
simulation with varying time duration. Table II lists the 
parameters for household appliances and load scheduling 
according to three different categories of loads. 

         Table II: Parameters for Appliance Agents  

Load 

category 

Appliances Service time Power 

rating 

Occupancy 

dependent 

load 

Computer State dependent 100W 

Television State dependent 60W 

Lighting 

load 

State dependent 40W 

Adjustable

/ Variable 

load 
Air 

conditioner 

Run time 

Temperature 

dependent 

350-2400W 

 

Shiftable 

load 

Washing 

machine 

Cycle 1 20 min 1000W 

Cycle 2 40 min 400 W 

Dishwasher Cycle 1 25 min 1800W 

Cycle 2 65 min 1200 W 

Asleep

Awake

At work

Home from 

work

Waking up

Returning 

home

Going to 

work

Going 

to bed

 

Fig. 6: The four states/transitions of proposed occupancy model 

The input of the proposed model is states and transitions, 
which is shown in figure 6. The model uses numerical values 
for variables and graphs to represent variable values during 
runtime. Table III outlines conditions and constraints related 
to occupancy states. The model incorporates triangular 
distribution for time periods and power consumption 
calculations. It defines average durations for occupants at 
work, at home, and awake, with four independent phases: 
morning, working, evening, and sleeping. The simulation 
includes variations in power consumption based on activities 
and time periods. The model spans 24 hours and estimates 
total electricity consumption, providing insights for enhancing 
energy efficiency and demand-side management. 

Table III: Timing and behaviour of each state 

State Behaviours Time  

1 Awaking up 0300-0530 hrs 

2 Going to work / Leave home 0600-0800 hrs 

3 Returning home 1700-2100 hrs 

4 Going to bed 2000-2359 hrs 

The estimated weekly load profile is shown in figure 7, which 
shows that major share of power consumed by EV load is 430 
kWh in one day of the week which turns out to be weekend 
and Heater recording second most consumption given reading 
taken in month of winter season. Other loads such as baseloads 
are shown to consume less amount of power because of low 
power rating. 

 

Fig. 7: Power of different loads within a week 

The proposed model has been designed to have an 
automatically updating temperature that corresponds with 

5. Results 
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actual values depending on climatic conditions. Specifically, 
it simulates temperatures for winter from December to March 
and summer between June and September. Therefore, when 
the simulation runs, the values for A/C and heating loads will 
change depending on corresponding climatic conditions. 
Moreover, the model allows one to change the temperature, 
making it possible to simulate different temperature 
conditions and override the climatic temperature. Figure 8  
shows the corresponding result of air-conditioner  and heating 
loads depending on the two main seasons. Air conditioner load 
gives maximum spike of 50 kWh on one instance in August 
while average consumption of heating load is 12 kWh. This is 
due to the fact that heating loads are resistive in nature and 
energy drop out occurs by converting flow of electrical energy 
to thermal energy. 

 

Fig. 8: Influence of climate on A/C and heating loads 

The climatic condition not only affects the heating and air 
conditioning loads, but it also influences the total power 
consumed in a household for a given time duration. For 
instance, considering the case above of two years, the graph in 
figure 9 shows the corresponding total power consumed 
depending on the climatic conditions.  

 

Fig. 9: Impact of climate on A/C, heating, and total power 
consumption 

Furthermore, figure 10 shows the consumption during winter, 
in the first week of January. At that time, the temperatures are 
low, and therefore, A/C loads are missing, while heating load 
is high. Maximum value of consumption on one day of 
corresponding period is 8,750 kWh. It also shows that 
electricity consumption is higher in weekends since people are 
in their homes. This relates to the modelling of occupancy 
profiles of the occupants. The model simulates weekends by 
letting all people to stay at home and not go to work. 
Therefore, their consumption is much higher than during 
weekdays when they are not at home. 

 

Fig. 10: Winter loads two weeks in January 

It is essential to find the validity of this data by comparing 
with actual results collected. This process helps show if the 
developed model simulates a practical case of power 
consumption or not. This paper compares the results with 
those of a similar case titled “Agent-based modelling of high-
resolution household electricity demand profiles: A novel tool 
for policy evaluation” [31]. The results of that study showed 
a similar response over a day. 

Fig. 11: Reference results for evaluation purposes [31] 

Figure 11 displays the total load for one day in a study on 

domestic power consumption which shows that power usage 

varies based on occupancy patterns, with lower consumption 

when users are not at home or sleeping. Models indicate that 

even when houses are occupied, power loads fluctuate due to 

different activities. This study validates its results using actual 

data from 300 urban households, collected from 14,000 

houses in 2020. The data includes total power and average 

consumption values for validation. 

This study analyzed the energy consumption habits of 300 

families by examining their load profiles using monthly and 

seasonal assessments of different time durations. The research 

established guidelines for household appliances and load 

scheduling based on three load categories, emphasizing the 

complex nature of residential power usage. The model uses 

numerical information and graphs to display real-time 

changes in values, utilizing triangular distributions for periods 

and power consumption calculations. This approach 

calculates the total electricity usage within a 24-hour 

timeframe and provides essential information to improve 

energy efficiency and demand-side management. The model 

updates temperature values dynamically depending on real 

climatic circumstances, resulting in significant effects on A/C 

and heating loads as per simulations. The research validates 

its findings by comparing them with previous studies and real 

data from urban families, demonstrating the usefulness and 

importance of the suggested model in analyzing and 

predicting patterns of domestic electricity usage. 

6. Conclusion 
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