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Abstract: - Stock options pricing is of key importance for markets and traders and is largely based on 
theoretical models like the Black-Scholes model. However, developments in machine learning open a novel, 
data-driven, perspective in contrast to the theoretical ones. This work explores the feasibility of artificial neural 
network model utilization for call option pricing, using the traditional Black-Scholes model as a benchmark. A 
multilayer perceptron model is trained to learn the Black-Scholes function and tested in real market call options 
data originating from thirty-five S&P 100 stocks. Findings demonstrate that artificial neural networks perform 
relatively well with market data and can be a valid data-driven approach for call option pricing, competitive to 
Black-Scholes. A unique contribution of this study is that testing data is not derived from the same distribution 
as training data, something common in existing works with similar models. Although further exploration and 
experimentation are required to reach the required robustness and become less ad hoc and data sensitive, data-
driven pricing using artificial neural networks is a promising approach and can play a substantial role in option 
pricing.  
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1   Introduction 
Stock options comprise a dynamic domain in 
financial research and numerous models have been 
proposed during the past few decades for their 
efficient pricing. The older and more traditional 
models rely mainly on theory, while recent 
developments in pricing include models that rely on 
data. The major characteristic and benefit of the 
conventional models, like the seminal Black-
Scholes model, is that they offer closed-form 
mathematical solutions, something that makes them 
very valuable approaches for pricing in market 
conditions. They are very popular due to their speed, 
flexibility, and accuracy, however, they are quite 
limited, as only some option types can be supported 
and only if specific assumptions and parameter 
values are met. On the other hand, alternative 
models exist, relying on numerical procedures, like 
Monte Carlo simulation and the Binomial model. 
These approaches follow theoretical constructs and 
simulate the behavior of underlying assets to 
estimate option prices. These models can support a 
wider set of option types compared to the limited 
Black-Scholes model, [1], [2], [3], [4]. The key 
limitation of conventional approaches is that they 
are theoretical abstractions and, as such, they are not 

able to capture the entire complexity and dynamics 
of the underlying process market mechanisms. So, 
they inevitably have limitations in assumptions, or 
their parameters and they do not perform accurately 
or promptly in every setting or option type.  

Following the developments in machine 
learning and artificial neural networks, researchers 
in the domain proposed novel option pricing models 
that rely on data instead of theory. These models use 
either empirical or artificially generated data for 
training and testing and they do not require any 
theoretical construct beforehand. Artificial neural 
network approaches are the most representative 
approach from this group of methods, and they can 
be competitive with conventional models in many 
option types. Machine learning models, and 
especially artificial neural networks, can model any 
kind of nonlinear behavior and interaction, without 
the need of underlying theoretical abstraction. 
However, their approach makes it very hard to 
generate an explainable model, something that is an 
inherent feature of artificial neural networks. So, 
their black-box behavior, even if the model is 
successful in pricing, remains an issue for 
researchers. Also, machine learning models require 
large volumes of data to be trained accurately, 
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which is not always feasible. Additionally, as they 
rely on the training approach and dataset, they tend 
to be domain and data-specific, rather than universal 
as compared to the traditional models. So, even if 
machine learning-based models are becoming a 
competitive alternative to traditional pricing 
methods, further research is necessary to offer more 
robust and widely used approaches, [5], [6], [7], [8], 
[9].  

Following the above, this work explores the 
feasibility of using artificial neural networks in 
option pricing, using the traditional Black-Scholes 
model as a benchmark. Relevant approaches 
demonstrate artificial neural networks trained to 
learn the Black-Scholes function, but very few 
works use market data to test the models. The 
majority use simulated or generated datasets for 
both training and prediction. In this work, we train 
the network using artificially generated data of 
around 6.5 million instances, and then we apply the 
testing in real market option data from thirty-five 
S&P100 stocks. So, testing data is not derived from 
the same distribution as training, and we can 
examine model performance in real market data, 
adding thus a unique contribution to existing 
research.  

The structure of the paper is as follows. In the 
next sections, key background information for 
options and their pricing is presented. The Black-
Scholes method is also presented briefly in the 
section along with key terminology of artificial 
neural networks. Several key relevant publications 
on machine learning models and their applicability 
in pricing are also discussed. In section three, we 
present the method and the datasets, followed by 
results and a discussion on findings. The work 
concludes with some discussion of the findings and 
next steps. Overall, the key outcome from the 
present work is that artificial neural networks can 
play a substantial role in option pricing, although 
further exploration and experimentation are needed 
to reach the required robustness and become less ad 
hoc and data-sensitive as a method.  
 

 

2   Background 
 

2.1  Options Basics  
In general, an asset’s present value is linked to its 
expected cash flow. However, some assets, called 
options, depend on underlying assets, derive their 
value from them, and their cash flows depend on the 
occurrence of specific events. So, the expected cash 
flows approach cannot be used to estimate their 
value. For this reason, alternative methods have 

been developed to price them fairly. Options are 
financial instruments used either for risk reduction 
and hedging or as investments following market 
trends of the underlying assets, [1].  

An option is a contract between two parties for a 
specific quantity of an underlying asset, with an 
expiration date (maturity date). The holder of the 
contract has the right, but not the obligation, to buy 
or sell the specified quantity of the asset at a 
specified price (strike price), either at the maturity 
or earlier. If an option is exercised by the holder, it 
expires without any further obligation. Concerning 
the right to buy or sell the underlying asset, options 
are distinguished into call and put options.  

Call options offer the right to buy a specified 
quantity of the underlying asset at the strike price, 
either on maturity or any time before. If the option 
is not exercised until the expiration date, it expires 
without any benefit or further obligation for the 
holder. The holder pays a price to purchase the 
option expecting a benefit if the price of the 
underlying asset is higher than the strike price. In 
this case, the holder exercises the option at strike 
price and buys the underlying asset at this price, 
instead of the higher market price. The difference is 
the gross investment profit. If the asset price is 
lower than the strike price at maturity or earlier, the 
option is not exercised. So, the net profit is the 
difference between the gross profit and the call 
purchase price, if the option is exercised.  

Put options offer the right to sell a specified 
quantity of the underlying asset, at strike price, 
again either at maturity or earlier. A put option has a 
price paid by the investor who expects a profit in 
case the price of the underlying asset is less than the 
strike price of the option. If the underlying asset has 
a price lower than the strike price of the put option 
on maturity or before, the option is exercised and 
the option holder sells the underlying asset at a 
higher price compared to the market value, which 
comprises the gross profit of the investment. In case 
the underlying asset has a price higher than the 
strike price, the option is left to expire. The net 
profit again comprises the difference between the 
gross profit and the put option purchase price, [2].  

Options can be also classified in terms of the 
exercise date or the underlying asset types. So, 
European options do not allow for exercise before 
maturity and the exercise date is defined in the 
option contract. American options, on the other 
hand, allow for exercise at any point of time before 
maturity and are more attractive for trading. 
Considering some fundamental asset types, options 
can be either stock options, stock index options, 
future options, or product options. Many more 

Financial Engineering 
DOI: 10.37394/232032.2024.2.2 Georgios Rigopoulos

E-ISSN: 2945-1140 14 Volume 2, 2024



option types exist, but in this work, we focus on the 
two most known, the American and European ones.  
 
2.2  Option Pricing Methods  
The key idea behind option pricing is that options 
are traded in exchanges in mature markets, or 
specially organized exchanges in less developed 
markets. So, typically, at the initiation of an option 
contract, the buyer pays the option price (premium) 
to the option seller (writer). The premium defines 
the maximum profit the seller can receive from the 
transaction. Consequently, fair, and accurate option 
pricing is key for the efficiency of option markets. 
Following finance theory, the determinants of 
option price are the following:  
• The current value of the underlying asset.  
• The value variance of the underlying asset or 

volatility.  
• The dividends of the underlying asset.  
• The strike price of the option.  
• The expiration date of the option or time to 

maturity.  
• The risk-free interest rate during the option life.  

Based on the above, a variety of pricing methods 
and variations have been introduced to price options 
accurately. The Black-Scholes model is the 
predecessor of all and since its introduction in 1973 
remains the most influential, [3]. It offers an 
analytical method to estimate the theoretical 
arbitrage-free price of an option provided that some 
market parameters are known. Another widely used 
model is the Binomial which was introduced in 
1978 and follows a discrete-time approach, [4].  

Except for those two popular methods, many 
variations and novel approaches have been 
introduced, as the domain is very active and the 
stakes in the finance industry are very high. 
However, despite the introduction of more 
sophisticated methods, the traditional ones seem to 
outperform some comparative studies for American 
options, where analytical solutions cannot be 
generated, [5]. In the following, we review some 
representative works of artificial neural networks 
approaches in pricing, that use the Black-Scholes 
model as baseline.  

 
2.3  Black-Scholes Model 
The Black-Scholes model introduced by Fisher 
Black and Myron Scholes in 1973 is considered one 
of the most influential models in finance, [3]. It 
assumes that stock prices follow a random walk 
move and, for a market to be efficient, stock prices 
should not follow a pattern that could be predicted. 
If this assumption does not hold, stock future prices 
can be predicted and there could be financial gain. 

Since its introduction, there have been many 
variations, but in its initial version there is no 
dividend until the option maturity date, no 
transaction fees are charged, and the risk-free rate 
and volatility are known constants.  

The model is parametric and its famous formula 
for the arbitrage-free price of an option can be used 
to price options as a function of current stock or 
underlying asset price, option strike price, option 
time to maturity or expiration, risk-free rate and 
volatility of the underlying stock return. The 
formula for call option price is the following:   

 

𝐶 = 𝑆 ∗ 𝑁 𝑑1 − 𝐾 ∗  𝑒−
𝑟𝑓

𝑇  ∗ 𝑁(𝑑2)  (1) 

with  
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 ∗𝑇
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The formula for the put option price is:  

𝑃 = 𝐾 ∗  𝑒−
𝑟𝑓

𝑇  ∗ 𝑁 −𝑑2 − 𝑆 ∗ 𝑁 −𝑑1  (4) 

 
where: 

• C: the price of the call option  
• P: the price of the put option  
• S: the current price of the stock or underlying 

asset  
• N(d): the cumulative normal probability density 

function  
• K: the strike price of the option  
• σ: the volatility of the stock or underlying asset 
• T: the time to expiration of the option  
• rf: the risk-free interest rate 

 
Several adjustments have been proposed to the 

initial model to account for limitations that do not 
hold for all options. The model is widely used and 
referenced in almost every option pricing related 
work, and interested readers can find a decent 
review of the work of Hull among others, [6].  
 
2.4  Artificial Neural Networks   
Artificial neural networks were initiated back in 
1943 by the work of McCulloch and Pitts, where the 
idea was to use mathematical formulation on the 
concept of a biological neuron to be able to execute 
computations mimicking brain neurons' 
functionality. In the past decades, there has been 
exponential research developments, driven mainly 
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by big data and computing power evolution in the 
past decade. Applications were so successful, that 
we can find numerous domains which utilize the 
power of artificial neural networks and deep 
learning models. A groundbreaking work that set the 
ground for further developments was the universal 
approximation theorem, which proves that an 
artificial neural network can approximate any 
continuous function in a closed interval based on 
input variables. The importance of the theorem is 
quite high as, based on it, we can use an artificial 
neural network, even with one hidden layer, to 
model any complex non-linear relationship, [9]. 
This is a key benefit of artificial neural network 
models, as most real-world problems cannot be 
modeled and solved analytically.  

A domain where complexity and non-linearity 
are combined with real-time transactions and 
stochastic processes, and where mathematical 
modeling is not feasible, is derivatives markets. 
Under some abstractions and limitations, we can 
model analytically, but again not all problems can 
be solved. Option pricing is an example of a key 
problem for the financial industry, that can partially 
be modeled by parametric methods and solved 
analytically. Black-Scholes variations and Monte 
Carlo simulation are the key parametric traditional 
methods. However, following the advent of data and 
artificial neural networks, researchers in the nineties 
proposed alternative nonparametric approaches 
based on machine learning. They were among the 
first researchers to study a data-driven approach and 
propose the utilization of artificial neural networks 
for option pricing, [10]. Those initial approaches 
opened a new research direction for financial 
derivatives pricing using machine learning methods. 
Some early works reported a quite high level of 
accuracy, [11], [12], followed by recent works with 
rich analysis and benchmarking, [7], [8]. As the 
number of works in machine learning-based option 
pricing is increasing, not all researchers agree to 
positive results. Controversy on whether artificial 
neural networks outperform compared to traditional 
methods and in what settings is still under research. 
Usually, works were based on plain neural network 
architectures and limited data, so reported weak 
results for neural networks compared to Black-
Scholes, something expected as neural networks 
require large training datasets. Also, some 
researchers claimed that results differ if we examine 
options in the money out of the money, or other 
factors. However, an increasing corpus of papers 
agree on the high level of neural network accuracy 
for option pricing compared to traditional models.  

It is important to mention though that in all 
works the Black-Scholes model is still used as a 
benchmark to test for errors in pricing. So, despite 
the promising performance of artificial neural 
networks, theoretical models are still dominant. 
However, the research direction is towards 
developing neural network architectures that can 
offer increased accuracy. 

 
 

3   Data and Methods 
This work aims to explore the accuracy level of 
neural network architecture for call option pricing 
estimation using empirical data for testing. The 
approach we followed is to:  
• use a multilayer perceptron network architecture,  
• train it using artificial data generated from the 

Black-Scholes formula, which is considered a 
benchmark method for all option pricing 
methods, and next, 

• test the network in real call options market data 
for a portfolio of thirty-five stocks randomly 
selected from the S&P 100.  
The key research question that we explore is how 

well an artificial network performs in real market 
data when trained with synthetic data. This work 
builds on some related works, [13], [14], however it 
examines real testing data, instead of artificially 
generated. Our approach examines the case that 
testing data, that a neural network is going to use for 
prediction, does not follow the same distribution as 
the training data. In similar works, we see that the 
performance of multilayer perceptron networks in 
option pricing is quite high, using artificial data for 
both training and testing, something that is 
expected, in general. So, we learn the Black-Scholes 
with artificial data and test the accuracy in real data.  

The approach we followed comprises the phases 
below: 

• Generate artificial call options data using the Black-
Scholes formula for a range of realistic values.  

• Define a multilayer perceptron model with initial 
parameters.  

• Train the model with the artificial dataset. 
• Validate the model with a subset of the artificial 

dataset.  
• Collect real market data for call options for thirty-

five randomly selected S&P100 stocks.  
• Test the model with the real market dataset. 
• Evaluate the model using the real market data as the 

benchmark.  
The entire work for the data, both the generation 

of artificial data and collection of market data, was 
executed by specific modules developed in Python 
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3.11, [15]. The multilayer perceptron was 
implemented in Python, using the Keras library and 
Tensorflow as the computational engine. For the 
computations, a typical desktop computer was used 
with Intel Core i5 at 2.90 GHz and 8GB RAM.  

 
3.1  Training Dataset  
The training dataset was generated with artificial 
data using the Black-Scholes formula for a range of 
values, replicating many call options. Even though 
in real trading call option prices deviate from the 
Black-Scholes formula, it is a baseline method to 
calculate option prices formally. For this work, we 
generated around 6.5 million call option prices in 
total, with the process taking 19 minutes of CPU 
time. For the generation, we used stock price values 
ranging between 10 and 200 USD, with strike prices 
as a multiple of stock prices to avoid extreme 
values. So, strike prices range between 10 and 300 
USD. The volatility was selected between 10% and 
60% with a step of 5%, and the risk-free rate was 
ranging between 1% and 2%. Finally, the time to 
maturity was selected between 0.1 and 1 year. In 
Table 1 the values for the training set are 
summarized. 
 
Table 1. Parameters for the 6.5m call option prices 

artificial dataset.  
Parameter Range 

Strike price (K)  0-290 (USD) 
Dividend rate (q)  0% 
Volatility (a)  10%–60% 
Stock price (S)  10–200 (USD) 
Maturity (T)  0.1 to 1 year 
Risk-free rate (r)  1%–3% 

 
The distributions of the generated call prices 

and the strike prices are depicted below for 
reference (Figure 1, Figure 2). The stock prices 
follow a uniform distribution, while the strike prices 
and the call prices are right-skewed. Even if the 
dataset is artificial, as soon as the objective is to 
learn the Black-Scholes formula, the call price is 
generated in the dataset by the actual Black-Scholes 
formula, and this is used in the training phase from 
the artificial neural network to learn the formula.  

 

 
Fig. 1: Artificially generated strike price 
distribution  

  

 
Fig. 2: Artificially generated call prices distribution 

 
3.2  Testing Dataset  
For the testing phase, we utilized data originated 
from publicly available market data for thirty-five 
randomly selected S&P 100 stocks. As market data 
do not strictly follow the theoretical calculations, 
and on the other hand include some extreme values 
that are not met in practical trading, we performed 
several adjustments. In total, 3,500 records were 
collected. The decisions taken for data preparation 
are the following:  
• The stocks selected are a random subset of S&P 

100 stocks, to include more diverse data, instead 
of picking based on some criterion, like revenues 
or market capitalization.  

• Stock prices refer to the closing price of the 
previous day. We compared the closing prices 
with the ask and the average of the bid and ask, 
and we did not see deviations, so we kept the 
previous closing price.  

• Dividend was collected from market data as 
provided (forward dividend and yield).  

• For the implied volatility we used the market-
provided volatility, as the mean value over the 
last 30-day period, derived from the average of 
the put and call implied volatilities for options 
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with the relevant expiration date, based on 
market data. 

• We focused on call options, but the same 
analysis can be applied to put options.  

• We selected in-the-money call options.  
• We filtered the data, excluding not realistic and 

non-representative observations from the data to 
obtain more meaningful results.  
Some further filtering was applied, as followed 

in other works, [13], [14], to exclude nonrealistic 
and non-representative observations. Some very 
high option prices were excluded to avoid large 
deviations between theoretical and observed option 
prices. The distributions of the call and strike prices 
for the dataset are depicted below (Figure 3, Figure 
4, Figure 5). The stock prices vary while the strike 
prices and the call prices are right-skewed, in a 
similar way to the artificial dataset. Also, we 
calculated the theoretical call option prices using the 
Black-Scholes formula to use them as a benchmark. 
In general, it seems that even if the market data can 
be considered they depart from the theory, the 
distributions are not substantially different from the 
artificial data.  

  

 
Fig. 3: Market collected call prices distribution 

 

 
Fig. 4: Market collected strike prices distribution 

 

 
Fig. 5: Actual call prices versus theoretical BS 
calculated  

 
3.3  Artificial Neural Network  
For the artificial neural network, we selected the 
architecture of a multilayer perceptron (MLP), as a 
commonly used approach for such works and it also 
fits well in finance settings.  

The model was trained using the entire set of 
parameters as input features:  
• strike price,  
• stock price,  
• risk-free interest rate,  
• time to maturity, and  
• volatility, 
• and the call price as the output.  

Following some similar approach, the input 
variables were normalized, [10]. After some 
experimentation, we used a network with one input 
layer, three hidden layers of 120 neurons each, and 
one output layer for the call option price output. The 
first and the third hidden layers utilize the Elu 
activation function and the second the Relu 
activation function. The model was trained using the 
artificial dataset of 6.5m instances, split into 80% 
subset used as training sample and the remaining 
20% used as validation sample. The test was 
performed on the real market dataset and not the 
synthetic one, where the performance of the model 
was evaluated. The model hyperparameters were 
tuned to a 25% dropout rate, a rule-of-thumb 
dropout rate to prevent overfitting. The number of 
epochs used for training was 100 and the batch size 
(the number of samples processed before updating 
the model) was set to 64. Finally, the loss function 
was optimized using mean square error (MSE). 

 
 

4   Results and Discussion  
The key research question in this work is to explore 
the accuracy of an artificial neural network in 
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estimating option prices on real market data, having 
been trained with artificial data originating from the 
Black-Scholes formula. The approach we followed 
was to test the model on a random set of S&P 100 
stocks and their market-based option data after we 
had trained it and tuned the hyperparameters with 
synthetic data. For both training and testing we 
utilized Python tailor-made libraries along with the 
Tensorflow module, [15]. The set of tuned 
parameters was exported into a file that was used in 
all testing scenarios using the market dataset. We 
focused on in-the-money call options, but the same 
approach can fit at out-of-the-money options.  

The results from the testing phase of the model 
are presented in Table 2, and the normalized 
predicted call prices against the actual ones are 
depicted in Figure 6. As we can see, the Root mean 
square error is equal to as low as 06560. Also, from 
the histogram (Figure 7) of the differences between 
actual and predicted call prices, we can see that the 
error is very small in general. 

 
Table 2. Testing Error Results with Market Data 

Mean Squared Error:     0.004304196575715178 
Root Mean Squared Error:   0.0656063760294316 
Mean Absolute Error:       0.04031098310438521 
Mean Percent Error:        0.22251207590972308 
 

 
Fig. 6: Predicted call prices against actual ones 

 
Fig. 7: Histogram of difference between predicted 
and actual prices 

 
To check model accuracy, we performed 

additional testing with the market dataset, but we 
replaced call option price, as the output variable, 
with the value calculated from the Black-Scholes 
formula. Even if the market price is not identical to 
the calculated one, as shown previously, it can be 
used as a benchmark.  

So, for the in-the-money call options, the results 
are presented in Table 3, and the normalized 
predicted call prices against the real ones are 
depicted in Figure 8. As we can see, the Root mean 
square error is as low as 0.0284 that is comparable 
to the market dataset, and from the histogram 
(Figure 9) of the differences between actual and 
predicted call prices, we can also see that the error 
follows the same pattern as in the network.  

 
Table 3. Testing Error Results with BS prices 

Mean Squared Error:       0.0008069991156531251 
Root Mean Squared Error:   0.02840772985743713 
Mean Absolute Error:       0.02018331088989721 
Mean Percent Error:        0.06679347660794391 
 

 
Fig. 8: Predicted call prices against actual ones 

Financial Engineering 
DOI: 10.37394/232032.2024.2.2 Georgios Rigopoulos

E-ISSN: 2945-1140 19 Volume 2, 2024



 
Fig. 9: Histogram of the difference between 
predicted and actual prices  

 
So, overall, we can claim that the model, even 

in a preliminary setting, is comparable to the Black-
Scholes formula for calculating option prices at 
market data and can evaluate options in acceptable 
accuracy. Provided that market prices are not strictly 
derived from the Black-Scholes formula, it is 
reasonable to assert that the level of error is within 
reasonable limits. Some additional experiments can 
be performed including put options and combining 
variations of volatility estimations for both in and 
out-of-the-money options. Also, the trained model 
can be benchmarked to various alternative machine 
learning models in terms of accuracy and 
computational performance. 

 
 

5   Conclusion 
In this work, we explored the accuracy of an 
artificial neural network on call option pricing using 
real market data for testing and artificial option 
pricing data for training. We used a multilayer 
perceptron model, a large synthetic dataset for 
training, generated from the Black-Scholes formula, 
and a real market dataset, comprising thirty fine 
randomly selected S&P 100 stocks. As the baseline 
for pricing errors and estimations in the study, we 
used the Black-Sholes model. From the results, we 
can see that a multilayer perceptron is capable of 
learning the BS function accurately using synthetic 
data and estimating prices for options with a high 
level of accuracy, competitive with the Black-
Scholes formula.  

Other relevant works using artificial neural 
networks conclude in similar results, however, this 
work adds the experimentation of using actual 
market data. Provided that the model is not static, 
but it can be retrained using additional data, 
including mixed artificial and actual data, its 

accuracy can be increased, and it can become more 
valuable for practitioners, who might select machine 
learning paradigms for option pricing in various 
assets and markets. Some limitations in this work 
include the training sample, the specific network 
architecture, and the limited focus on S&P 100 
stock options. As artificial neural networks are data-
driven, developing appropriate training datasets is 
critical for their performance, so there is a need for 
diverse training datasets. Also, in this work, we did 
not proceed to feature engineering or advanced 
sampling for the training, something that can be 
examined further in subsequent works. In addition, 
alternative network architectures can be tested or 
further experimentation with hyperparameters can 
be performed, and focus can be expanded to 
additional assets. In the future, we plan to develop 
training processes using market data from a variety 
of sources.  

Despite the limitations, it is evident that 
machine learning models can be used by 
practitioners as main or alternative methods for 
option pricing, however, it is necessary to build 
appropriate user-friendly software solutions to 
deploy similar machine learning models on web 
environments or mobile phone settings. This work, 
and any future contributions, aim to the 
development of this fast evolving area. 
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