
“Recent Researches in System science”, Corfu
Island, Greece, July (pp. 14-16).
[19] Zheng, Z., Yang, Y., Niu, X., Dai, H. N., &
Zhou, Y. (2017). Wide and deep convolutional
neural networks for electricity-theft detection to
secure smart grids. IEEE Transactions on
Industrial Informatics, 14(4), 1606-1615.
[20] Hasan, M. N., Toma, R. N., Nahid, A. A., Islam,
M. M., & Kim, J. Electricity theft detection in
smart grid systems: A CNN-LSTM based
approach. Energies, 12(17), 3318, 2019.
[21] Fang, J., Liu, F., Su, L., & Fang, X. (2024).
Research on Abnormity Detection based on Big
Data Analysis of Smart Meter. WSEAS
Transactions on Information Science and
Applications, 21, 348-360.
[22] Yao, Y., Hui, H., Liang, Z., Feng, X., & Guo,
W. AdaBoost-CNN: A hybrid method for
electricity theft detection. 2021 6th Asia
Conference on Power and Electrical
Engineering (ACPEE), 436-440, 2021.
[23] Singh, S., & Venkaiah, C. Multi-layer model
classifier for cyberattack detection in smart
electric grid. 2023 5th International Conference
on Energy, Power and Environment: Towards
Flexible Green Energy Technologies (ICEPE),
1-6, 2023.
[24] Mazid, A. A., Manaullah, M., & Kirmani, S. A
hybrid approach based on principal component
analysis and convolution neural network for
power theft detection. 2023 International
Conference on Recent Advances in Electrical,
Electronics & Digital Healthcare Technologies
(REEDCON), 313-317, 2023.
[25] Zhou, Y., Zhang, X., Tang, Y., Mu, Z., Shao, X.,
Li, Y., & Cai, Q. (2021, July). Convolutional
neural network and data augmentation method
for electricity theft detection. In 2021 IEEE/IAS
Industrial and Commercial Power System Asia
(I&CPS Asia) (pp. 1525-1530). IEEE.
[26] Ibrahim, N. M., Al-Janabi, S. T., & Al-Khateeb,
B. Electricity-theft detection in smart grid based
on deep learning. SSRN Electronic Journal,
202,. https://doi.org/10.2139/ssrn.3915286
[27] Dimf, G. P., Kumar, P., & Joshua, K. P. CNN
with BI-LSTM electricity theft detection based
on Modified Cheetah Optimization Algorithm in
deep learning, 2023.
[28] Abel, S., Tsado, J., & Tola, O. J. Mitigation of
electricity theft at low distribution voltage end
using matrix converter. In 2022 5th Information
Technology for Education and Development
(ITED) (pp. 1-5). IEEE, November, 2022.
[29] Ullah, A., Javaid, N., Yahaya, A. S., Sultana, T.,
Al-Zahrani, F. A., & Zaman, F. A hybrid deep
neural network for electricity theft detection
using intelligent antenna-based smart meters.
Wireless Communications and Mobile
Computing, 2021, 1-19.
https://doi.org/10.1155/2021/6612165
[30] Mhaske, D., Satam, R., Londhe, S., Kohad, T.,
& Kadam, S. An efficient electricity theft
detection using xg boost. International Journal
of Engineering Applied Sciences and
Technology, 282-287, 2022.
[31] Munawar, S., Asif, M., Kabir, B., Pamir, Ullah,
A., & Javaid, N. Electricity theft detection in
smart meters using a hybrid Bi-directional GRU
Bi-directional LSTM model. In Complex,
Intelligent and Software Intensive Systems:
Proceedings of the 15th International
Conference on Complex, Intelligent and
Software Intensive Systems (CISIS-2021) (pp.
297-308). Springer International Publishing,
2021.
[32] Petrlik, I., Lezama, P., Rodriguez, C., Inquilla,
R., Reyna-González, J. E., & Esparza, R.
Electricity Theft Detection using Machine
Learning. International Journal of Advanced
Computer Science and Applications, 13(12),
2022.
[33] Ahmad, I. S., Zhang, S., Saminu, S., Wang, L.,
Isselmou, A. E. K., Cai, Z., ... & Kulsum, U.
(2021). Deep learning based on CNN for
emotion recognition using EEG signal. WSEAS
Transactions on Signal Processing, 17, 28-40.
[34] Agrawal, V., Goswami, P. K., & Sarma, K. K.
(2021). Week-ahead Forecasting of Household
Energy Consumption Using CNN and
Multivariate Data. WSEAS Trans. Comput, 20,
182-188.
[35] Aurélien Géron. Hands-On Machine Learning
with Scikit-Learn, Keras, and TensorFlow
(Third Edition). O’Reilly Media, Inc, 2022.
[36] Serrat, A., & Benyettou, M. (2019). ATNN and
SVM for Autonomous Mobile Robot.
Énternational Journal of Electrical Engineering
and Computer Science (EEACS), 1, 84-89.
[37] SHIRLY, A. D., SUGANYADEVI, M.,
RAMYA, R., ADAIKALAM, I. A. D., &
MUTHUKUMAR, P. Computation of an
Effective Hybrid DFA-SVM Approach Aimed
at Adaptive PV Power Management.
[38] Bhardwaj, N., Sood, M., & Gill, S. (2024).
Design of Transfer Learning based Deep CNN
Paradigm for Brain Tumor Classification.
WSEAS Transactions on Biology and
Biomedicine, 21, 162-169.
Engineering World
DOI:10.37394/232025.2024.6.27
Nenchin Emmanuel, Ademoh A. Isah