
first and second-order derivatives in the loss function
for fractional derivative calculation, the presented
method involves a higher computational burden com-
pared to classic gradient descent. Future endeavors
should focus on investigating methods to mitigate
computational demands, making the approach more
feasible for real-world applications. These consider-
ations underscore the potential for refinement and en-
hancement in the proposed gradient descent method,
paving the way for its broader adoption and practical
utility.
References:
[1] L. Euler, De progressionibus transcendentibus
seu quarum termini generales algebraice dari
nequeunt, Commentarii academiae scientiarum
Petropolitanae (1738) 36–57.
[2] P. Laplace, Théorie analytique des probabilités,
courcier, paris, Oeuvres Complètes de Laplace
7 (1812) 523–525.
[3] J. B. J. Fourier, Théorie analytique de la chaleur,
Gauthier-Villars et fils, 1888.
[4] N. H. Abel, œuvres complètes de Niels Henrik
Abel, Vol. 1, Grøndahl, 1881.
[5] A. Letnikov, : On historical development of dif-
ferentiation theory with an arbitrary index. mat.
sb. 3, 85-112 (1868).
[6] A. Letnikov, Theory of differentiation with an
arbitrary index, moscow mat (1868).
[7] A. Letnikov, On explanation of the main propo-
sitions of differentiation theory with an arbitrary
index, Sb. Math 6 (1872) 413–445.
[8] J. Liouville, Mémoire sur quelques questions
de géométrie et de mécanique, et sur un nou-
veau genre de calcul pour résoudre ces ques-
tions, 1832.
[9] J. Liouville, Mémoire sur le changement de la
variable indépendante, dans le calcul des dif-
férentielles a indices quelconques, 1835.
[10] A. K. Grunwald, Uber” begrente” derivationen
und deren anwedung, Zangew Math und Phys 12
(1867) 441–480.
[11] B. Riemann, Versuch einer allgemeinen auffas-
sung der integration und differentiation, Gesam-
melte Werke 62 (1876) (1876).
[12] H. Laurent, Sur le calcul des dérivées à indices
quelconques, Nouvelles annales de mathéma-
tiques: journal des candidats aux écoles poly-
technique et normale 3 (1884) 240–252.
[13] O. Heaviside, Iii. on operators in physical math-
ematics. part i., Proceedings of the Royal Soci-
ety of London 52 (315-320) (1893) 504–529.
[14] P. Kulczycki, J. Korbicz, J. Kacprzyk, Fractional
Dynamical Systems: Methods, Algorithms and
Applications, Vol. 402, Springer, 2022.
[15] R. P. Agarwal, Y. Zhou, Y. He, Existence of
fractional neutral functional differential equa-
tions, Computers & Mathematics with Applica-
tions 59 (3) (2010) 1095–1100.
[16] R. P. Agarwal, D. O’Regan, S. Staněk, Posi-
tive solutions for dirichlet problems of singular
nonlinear fractional differential equations, Jour-
nal of Mathematical Analysis and Applications
371 (1) (2010) 57–68.
[17] R. P. Agarwal, M. Benchohra, S. Hamani,
A survey on existence results for boundary
value problems of nonlinear fractional differen-
tial equations and inclusions, Acta Applicandae
Mathematicae 109 (2010) 973–1033.
[18] N.-e. Tatar, Mild solutions for a problem involv-
ing fractional derivatives in the nonlinearity and
in the non-local conditions, Advances in Differ-
ence Equations 2011 (2011) 1–12.
[19] K. Diethelm, N. J. Ford, Volterra integral equa-
tions and fractional calculus: do neighboring so-
lutions intersect?, The Journal of Integral Equa-
tions and Applications (2012) 25–37.
[20] D. Baleanu, K. Diethelm, E. Scalas, J. J. Tru-
jillo, Fractional calculus: models and numerical
methods, Vol. 3, World Scientific, 2012.
[21] C. Ionescu, A. Lopes, D. Copot, J. T. Machado,
J. H. Bates, The role of fractional calculus
in modeling biological phenomena: A review,
Communications in Nonlinear Science and Nu-
merical Simulation 51 (2017) 141–159.
[22] J. S. Jacob, J. H. Priya, A. Karthika, Applica-
tions of fractional calculus in science and engi-
neering, J. Crit. Rev 7 (13) (2020) 4385–4394.
[23] T.-Q. Tang, Z. Shah, R. Jan, E. Alzahrani, Mod-
eling the dynamics of tumor–immune cells in-
teractions via fractional calculus, The European
Physical Journal Plus 137 (3) (2022) 367.
[24] T. Alinei-Poiana, E.-H. Dulf, L. Kovacs, Frac-
tional calculus in mathematical oncology, Sci-
entific Reports 13 (1) (2023) 10083.
Engineering World
DOI:10.37394/232025.2024.6.12
Robab Kalantari, Khashayar Rahimi, Saman Naderi Mezajin