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Abstract: — This paper presents a approach to control a switched reluctance motor (SRM) in the context of a 
high-precision positioning system using artificial neural networks (ANNs). The SRM is known for its 
robustness and simplicity, making it suitable for various applications, including positioning systems where 
precision is paramount. Traditional control methods often struggle to achieve the desired level of accuracy due 
to the non-linear and dynamic nature of the SRM. In this study, we propose an advanced control strategy 
leveraging the adaptive learning capabilities of ANNs. The neural network is trained to capture the intricate 
relationships between the motor's inputs and outputs, allowing for precise control in real-time. By measuring 
the electromagnetic torque and phase currents, the neural network is able to estimate the rotor position, 
facilitating the elimination of the rotor position sensor. The training data set of the neural network consists of 
magnetization data for the SRM with the electromagnetic torque and current as inputs and the corresponding 
position as outputs in this set. With a sufficiently large training data set, the artificial neural networks (ANN) 
can be correlated for appropriate network architecture. 

Key-words: — Switched Reluctance Motor (SRM), Rotor Position, artificial neural networks, and 
electromagnetic torque.
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1. Introduction 

Switched reluctance motors (SRM) are a type of 
stepper motor that are receiving increased attention 
for high-precision positioning applications. SRMs 
have several advantages over other motors: 
• Simple and robust structure with no windings or 
permanent magnets on the rotor. This makes them 
reliable and suitable for harsh environments. 
• Low cost due to the simple construction and 
absence of rare earth materials. 
• Good torque-to-weight ratio and torque density, 
enabling high-precision motion control. 
However, SRMs also possess some challenges for 
effective control: 
• Highly nonlinear torque-speed and torque-current 
characteristics. The torque produced depends on the 
relative positions of the stator and rotor poles. 
• Parameter variations due to temperature changes, 
aging effects, and load disturbances. This affects the 
motor's performance over time. 
Conventional control methods for SRM include 
closed-loop PID control and open-loop voltage 
control. These methods struggle to adapt to the 
motor's nonlinearities and variations. 

Artificial neural networks (ANN) can potentially 
solve this problem as they can learn the complex 
input-output relationships of the SRM through 
training. An ANN controller can be developed based 
on experimental motor data to produce optimal 
control signals for the inverter driving the SRM. 
Previous research has demonstrated the benefits of 
ANN control for SRMs, including: 
• Improved steady-state and dynamic performance 
• Higher precision for speed and position control 
• Better adaptation to motor nonlinearities and 
parameter variations, [1, 2]. 

In order to get more accurate characteristics than 
those given by analytical modelling, numerical 
analysis methods are a potentially effective means 
and often produce results that are very close to 
reality. In particular, in the field of electromagnetic 
structures, the use of finite elements methods allows 
a precise characterization of electromagnetic devices 
using materials with non-linear characteristics and 
complex geometry. These finite elements methods 
are the basis for powerful electromagnetic 
calculation software known as computer-aided 
design.  Recent work has often combined these 
methods with non-conventional modelling 
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techniques. Among these modelling techniques, 
artificial neural networks are particularly 
noteworthy, as they have shown their power in 
modelling non-linear systems, [3, 4]. In addition, the 
works published in the recent literature propose 
various contributions, mainly focused on improving 
the performance of SRM’s used in propulsion mode 
and not in positioning mode. Obviously, the strong 
distortion of the angular characteristics is a handicap 
for the use of this actuator for positioning purposes. 
This handicap is all the more pronounced the more 
demanding the positioning requirements are in terms 
of accuracy. It is in this perspective that our research 
work, developed in this paper, is situated. It consists 
mainly in proposing control approaches for the use 
of this actuator in positioning. 

The main contributions are: 
1. An ANN-based position estimator that 

learns the nonlinear relationship between stator 
current and rotor position of the SRM. This ANN 
(ANN1) is trained offline using FEA data and 
estimates the rotor position based on the supplied 
current. 

2.    An ANN-based controller that generates 
the optimal stator current required driving the rotor 
to a desired position. This ANN (ANN2) is trained 
online during motor operation to minimize position 
error. 

3. An integrated control approach that 
combines ANN1 and ANN2 to achieve high-
precision positioning of the SRM. ANN1 estimates 
the current position based on the stator current, 
while ANN2 generates the next current command 
based on the position error. 

This paper is divided into two distinct parts.  In 
the first section, a finite element study is carried out 
to characterize the SRM in order to determine its 
electromagnetic properties. This electromagnetic 
study is based on the CAD environment "Magnet 
2D". The second part is dedicated to the 
development of a control approach, using both the 
database generated by the finite element method 
(FEM) and a cascade of estimators based on 
artificial neural networks, in order to correct the 
asymmetry of the machine through the control and 
to achieve precise positioning of the actuator, 
operating at constant load or fluctuating by stages. 

 

2. Electromagnetic characteristics 

of the SRM 
The SRM performance analysis, both electric 

and magnetic, depends on its geometric construction 
and materials used.  It  is  almost  impossible  to  
determine  exact  mathematical  equations  that  take  
into  account  all  these  influential  parameters.  In  
this  way , it is  able  to  give  useful  results  to  
calculate  the  electric  machine performance.  
Figure 1 presents all the dimensions of the SRM. 
Some significant mechanical parameters of the three 
topologies are shown in Table 1. 

 
Table. 1. Mechanical and electrical parameters of 

the SRM 8/6 considered 

 

 
Fig. 1- Switched reluctance machine dimensions 

 
The SRM 8/6 exhibits a symmetric and 
homogeneous structure and geometry, enabling us 
to analyze and obtain the properties of other phases 
based on the analysis of a single phase. To 
understand the characteristics of the SRM, we can 
model the system from aligned and unaligned 
positions.  

Figure 2 shows the magnetic spectrum of the SRM 
at the aligned position where the rotor and stator 
poles are perfectly aligned. Figure 2(a) depicts the 
flux linkage which is maximum in this position 

Parameters Symbol Value 
Rotor pole angle 𝛽𝑟 24.5° 
Stator pole angle 𝛽s 22.5° 
Stator external diameter 𝐷𝑠 160mm 
Rotor diameter 𝐷r 91.1mm 
Air gap length g 0.3mm 
Stator pole height Hr 13mm 
Rotor pole height Hs 22mm 
Stator yoke Ys 12.45mm 
  Rotor yoke Yr 15mm 
Shaft diameter D0 34.5mm 
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indicating high inductance. Figure 2(b) shows the 
high density of Mesh distribution in the overlapped 
region of rotor and stator poles. Figure 2(c) 
illustrates the magnetic field distribution which is 
strongly concentrated in the pole overlap region. 
Figure 3(d) displays the induction vector which is 
uniformly distributed in this region of maximum 
inductance aiding development of torque. 

 

 
Fig.2- Magnetic spectrum of SRM at aligned 

position 
(a)- Flux linkage     (b)- Mesh distribution 

(c)- Magnetic field distribution (d)- Induction vector 

 

Fig.3- Magnetic spectrum of SRM at unaligned 
position 

(a)- Flux linkage     (b)- Mesh distribution 

(c)- Magnetic field distribution (d)- Induction vector 
 

Figure 3 shows the magnetic spectrum of SRM at 
the unaligned position where rotational 
misalignment exists between rotor and stator poles. 
Figure 3(a) presents the flux linkage which is now 
minimum in this position of low inductance. Figure 
3(b) reveals sparse distribution of flux lines between 
the poles. Figure 3(c) depicts the magnetic field 
spreading wider instead of being focused in the 
overlap region. Figure 3(d) shows the induction 
vector spreading unevenly outside the region of 
highest inductance not contributing to torque. These 
spectral representations provide a visual insight into 
variation of magnetic quantities affecting operation 
from aligned to unaligned position, helping better 
understand SRM electromagnetic behavior. 

Understanding the SRM requires a detailed 
analysis of the torques, flux linkage and inductances 
for different rotor positions and different values of 
stator excitation currents based on FEA. Therefore, 
an FEA simulation tool was used to solve the 
magnetic circuit to determine the magnetic fields 
and electromagnetic quantities of each machine. 
This simulation tool allows us to obtain a data set 
that fully characterizes the magnetic and 
electromagnetic states of the SRMs. Examples of 
this data are shown in Figure 4. 
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Fig.4- Electromagnetic performances of SRM 
(a)- Torque profile     (b)- Inductance profile     (c)- 

Flux linkage profile 
 

The evolution of the magnetic flux depends 
essentially on the level of saturation of the magnetic 
circuit. In fact, for a constant position, such as that 
of alignment, it is observed that the more the 
excitation current increases, the more the flux 
variation is limited, figure 4c. The value of the 
inductance can be determined by using the 
calculation results of the magnetic flux as a function 
of the rotor position at constant excitation levels. 
The results shown in Figure 4b show that the 
inductance of a stator phase varies inversely with 
the excitation current in the vicinity of the alignment 
position (30°), while in the vicinity of the opposition 
position (0°) the influence of the current on this 
inductance is very limited. For a fixed position, it 
can be seen that the influence on the inductance 
decreases as the saturation level increases. The real 
angular characteristics determined by the finite 
element method are distorted and far from being 
sinusoidal, which shows the inadequacy of the 
analytical method based on the simplifying 
assumptions adopted. Thus, in Figure 4a we can see 
the presence of some oscillations at the levels of 
these characteristics. 

 
3. Neural approach to SRM 

position control 

Knowing the angular characteristics of the 
SRM allows it to be used for positioning. The 
results obtained show that the angular characteristics 
describing the evolution of the torque as a function 
of the rotor position of the variable reluctance 
machine are clearly affected by distortions. 
Therefore, the use of this type of actuator in 
positioning applications cannot be envisaged 
without the development of powerful control 
approaches that allow the appropriate adjustment of 

the stator excitations, taking into account both the 
load to be positioned and the level of distortion 
affecting the characteristics [5-6-7].  In order to 
develop this control strategy, and after having 
carried out a detailed characterization of the 
machine using CAD, we resorted to non-
conventional control techniques, known as 
intelligent, to develop a cascade of control blocks 
based on artificial neural networks. 

Several works prove that multilayer perceptrons 
are the most widely used neural networks today, [5-
6-7] they are able to realize nonlinear associations 
between input and output. The architecture of this 
type of neural network is shown in Figure 5. Each 
neuron has an activation function, which can be 
sigmoid, bipolar sigmoid, log-sigmoid, etc. The 
weights on the connections can be determined by 
the back-propagation algorithm during the training 
process and then used to calculate the outputs. 

 
Fig.5- Architectural graph of a multilayer network 

Error back-propagation in a multilayer network is 
supervised learning. The input is presented for 
which the output is determined. The set of synaptic 
weights determines the operation of the neural 
network. The neurons outputs of the output layer are 
compared with the model values which are the 
desired outputs and the error of each is calculated as 
clearly shown in Figure.6. The most commonly used 
function that we have adopted in this work is the 
squared error function. This function is defined for 
each example (n) a number of behavioural examples 
(N) as inputs to the network, associated with the 
same number (N) of desired outputs as follows: 
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as follows: 
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Fig.6- Multi-layer network learning with error 
determination and back- propagation 

The realization of the learning phase is strongly 
related to the relevant choice and number of 
examples that must be made available to the 
network. These examples must be sufficiently 
representative of the evolution of these angular 
characteristics for the reconstruction to succeed in 
completing this important phase [8-9-10-11].  
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Fig.7- training database of artificial neural network 

(ANN) 
 

For this purpose, we used a numerical 
interpolation technique available in the Matlab 
environment, which led us to develop a computer 
program based on cubic interpolation. The response 
surface shown in Figure.7 is a graphical 
representation of the database describing the 
evolution of the torque as a function of the rotor 
position for the whole operating range of the 
machine. 

3.1. Design and development of the 

position estimation network (ANN1) 
 

In order to estimate the stopping position of the 
considered SRM when the coupled load and the 
stator excitation are known, we preceded to the 
creation of a multilayer neural network (ANN1) 
using predefined functions in the MATLAB 

environment. The inputs of this network are the 
torque exerted by the load and the excitation 
current, while its output is the angular position of 
the rotor. This network consists of a single hidden 
layer of 13 neurons and an output layer of a single 
neuron. The activation function chosen for the 
hidden layer neurons is that of the hyperbolic 
tangent of the sigmoid, while for the output layer 
neuron the activation is provided by the linear 
function.  Through repeated learning and the use of 
the previously developed database, we have ensured 
that this network is capable of estimating the stop 
position over the entire working range of the 
machine, regardless of the level of stator excitation 
and the magnitude of the torque imposed by the 
coupled load [12-13-14-15-16]. 

In order to verify the effectiveness of the 
estimation provided by the developed neural 
network across the entire operating range of the 
considered SRM, we proceeded by conducting a 
learning test. This test involved reconstructing 
several other examples that were not included in the 
database presented to the network during the 
training phase and comparing the calculated results 
by the network with the expected results. They 
display, for an excitation current vector ranging 
from 20A to 36A with a step of 0.5A, the evolution 
of the electromagnetic torque based on the target 
positions and the positions estimated by ANN1, 
Figure 8. . For all these examples, the error did not 
exceed 0.8%.  
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Fig.8-effectiveness of ANN1 for unlearned 
responses 

3.2. Design and development of the 

current estimation network (ANN2) 

In order to give the rotor a well defined stop 
position, for an SRM with a given angular 

Desired output

Estimated 
output

Desired output

Estimated 
output
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characteristic, it is necessary to modulate the stator 
excitation according to the resistance force imposed 
by the coupled load. This is the basic idea behind 
the design of the second multilayer neural network, 
ANN2, whose objective is to determine the 
amplitude of the excitation current required to reach 
the target position. Therefore, the inputs or 
attributes for this network can only be the load 
torque and the target position, while the output or 
class is none other than the excitation current. The 
ANN2 is composed of a single hidden layer 
structured around 14 neurons and an output layer 
composed of a single neuron. We have chosen the 
hyperbolic tangent function of the sigmoid for the 
activation of all the neurons of this hidden layer, 
while the activation of the neuron of the output layer 
is provided by the linear function. 

Similarly to the previously designed ANN1 
position estimation network and in order to show 
that the network has learned the characteristics 
presented in the learning base and that the 
performance obtained is satisfactory, we have 
presented in the same Figure 9, for different stable 
positions, the evolution of the torque as a function 
of the target currents and the currents calculated by 
the ANN2 network. In fact, for several positions 
considered by successions of steps of 0.75° and 
delimited by the terminals 15° and 30°, the 
evolution of the torque is plotted by triangular 
patterns as a function of the target intensities and by 
star patterns as a function of the intensities 
estimated by the ANN2. These characteristics are 
determined with a gradual current variation of 1A. 
The results obtained show a satisfactory agreement 
with the error between the values of the target 
intensities and the intensities calculated by the 
designed RMC2 network not exceeding 0.16%.   
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Fig.9- Comparison of target currents and 

calculated currents by ANN2. 
The results presented in Figure 9, show that the 

developed ANN2 is able to accurately estimate the 
appropriate level of stator excitations, allowing to 
give the rotor the target position, taking into account 
the coupled load. 

 

 

3.3. Simulation Validation of the 

Proposed Control Approach 

In this section, we propose to perform numerical 
simulation tests to verify the effectiveness of the 
proposed control approach. For this purpose, we 
have used the first network ANN1 to simulate the 
behavior of the switched reluctance machine 
through its angular characteristics and we have 
inserted the network ANN2 to calibrate the stator 
excitations as a function of both the set position and 
the magnitude of the coupled load, Figure 10. 

 
The tests carried out consist of applying a well-

defined resistive torque to the machine each time 
and successively varying the position setpoint. The 
ANN2 neural network then estimates the amount of 
stator current that must be applied to the machine so 
that its rotor stops at the target position. To verify 
this target position by simulation, we have 
represented the machine by the neural network 
ANN1, which describes the electromagnetic 
behavior of the machine through its angular 
characteristics. 

 
 

Engineering World 
DOI:10.37394/232025.2024.6.14 Imed Mahmoud, Adel Khedher

E-ISSN: 2692-5079 141 Volume 6, 2024



 
 

Fig.10- General overview of the proposed control approach 
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Fig.11-Comparison between the reference and the 
achieved positions 

 
The result presented in Figure 11 highlight the 

effectiveness of the proposed control approach for 
using SRMs as positioning actuators and show that 
control can provide effective solutions to 
significantly mitigate natural machine 
imperfections. 

4. Conclusion 

The choice of SRM is based on its many 
advantages, such as excellent performance in 
extreme environments, simple rotor structure, 
robustness, no coils, no permanent magnets, no 
brushes, high overload capability, low 
manufacturing, repair and maintenance costs, and 
operation in a wide power range. The problem 
discussed is how to overcome the constraint of 
torque ripple for its best use as an electric vehicle 
drive motor in underground mines to replace highly 
polluting diesel vehicles. 

In this paper, we have proposed a control 
approach for the operation of the SRM as a 
positioning actuator. This approach is based on 

artificial intelligence control techniques and in 
particular on artificial neural networks. The results 
obtained show the potential power of the proposed 
control approach for the exploitation of variable 
reluctance machines in the positioning domain. 

Overall, the presented research demonstrates the 
potential of artificial neural networks in enhancing 
the control of switched reluctance motors for high-
precision applications, opening new avenues for 
advancements in positioning system technology. 
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