
Analysis and Calorimetry, 145(4),
pp.2033-2044.
[14] Kotha, G., Kolipaula, V.R., Venkata
Subba Rao, M., Penki, S. and Chamkha,
A.J., 2020. Internal heat generation on
bioconvection of an MHD nanofluid flow
due to gyrotactic microorganisms. The
European Physical Journal Plus, 135(7),
pp.1-19.
[15] Shafiq, A., Rasool, G., Khalique, C.M.
and Aslam, S., 2020. Second grade
bioconvective nanofluid flow with
buoyancy effect and chemical
reaction. Symmetry, 12(4), p.621.
[16] Khan, S.A., Nie, Y. and Ali, B., 2020.
Multiple slip effects on MHD unsteady
viscoelastic nano-fluid flow over a
permeable stretching sheet with radiation
using the finite element method. SN
Applied Sciences, 2(1), pp.1-14.
[17] Nasr, M.E., Gnaneswara Reddy, M.,
Abbas, W., Megahed, A.M., Awwad, E.
and Khalil, K.M., 2022. Analysis of Non-
Linear Radiation and Activation Energy
Analysis on Hydromagnetic Reiner–
Philippoff Fluid Flow with Cattaneo–
Christov Double
Diffusions. Mathematics, 10(9), p.1534.
[18] Famakinwa, O.A., Koriko, O.K.,
Adegbie, K.S. and Omowaye, A.J., 2022.
Effects of viscous variation, thermal
radiation, and Arrhenius reaction: The case
of MHD nanofluid flow containing
gyrotactic microorganisms over a
convectively heated surface. Partial
Differential Equations in Applied
Mathematics, 5, p.100232.
[19] Muhammad, T., Waqas, H., Manzoor,
U., Farooq, U. and Rizvi, Z.F., 2022. On
doubly stratified bioconvective transport of
Jeffrey nanofluid with gyrotactic motile
microorganisms. Alexandria Engineering
Journal, 61(2), pp.1571-1583.
[20] Khan, M.J., Zuhra, S., Nawaz, R.,
Duraisamy, B., Nisar, K.S., Jamshed, W.
and Abbas, M., 2022. Numerical analysis of
bioconvection-MHD flow of Williamson
nanofluid with gyrotactic microbes and
thermal radiation: New iterative
method. Open Physics, 20(1), pp.470-483.
[21] Khashi'ie, N.S., Waini, I., Kasim,
A.R.M., Zainal, N.A., Ishak, A. and Pop, I.,
2022. Magnetohydrodynamic and viscous
dissipation effects on radiative heat transfer
of non-Newtonian fluid flow past a
nonlinearly shrinking sheet: Reiner–
Philippoff model. Alexandria Engineering
Journal, 61(10), pp.7605-7617.
[22] Waini, I., Mohd Kasim, A.R.,
Khashi’ie, N.S., Zainal, N.A., Ishak, A. and
Pop, I., 2022. Insight into Stability Analysis
on Modified Magnetic Field of Radiative
Non-Newtonian Reiner–Philippoff Fluid
Model. Journal of Applied and
Computational Mechanics, 8(2), pp.745-
753.
[23] Li, Y.X., Waqas, H., Al-Khaled, K.,
Hussain, S., Khan, S.U., Sun, T.C., Khan,
M.I., Malik, M.Y. and Tlili, I., 2021. Study
of radiative Reiner–Philippoff nanofluid
model with gyrotactic microorganisms and
activation energy: A Cattaneo–Christov
Double Diffusion (CCDD) model
analysis. Chinese Journal of Physics, 73,
pp.569-580.
[24] Khan, S.U., Al-Khaled, K. and Bhatti,
M.M., 2021. Numerical experiment of
Reiner–Philippoff nanofluid flow subject to
the higher-order slip features, activation
energy, and bioconvection. Partial
Differential Equations in Applied
Mathematics, 4, p.100126.
[25] Khan, N.M., Abidi, A., Khan, I.,
Alotaibi, F., Alghtani, A.H., Aljohani, M.A.
and Galal, A.M., 2021. Dynamics of
radiative Eyring-Powell MHD nanofluid
containing gyrotactic microorganisms
exposed to surface suction and viscosity
variation. Case Studies in Thermal
Engineering, 28, p.101659.
[26] Koriko, O.K., Shah, N.A., Saleem, S.,
Chung, J.D., Omowaye, A.J. and Oreyeni,
T., 2021. Exploration of bioconvection
flow of MHD thixotropic nanofluid past a
vertical surface coexisting with both
nanoparticles and gyrotactic
microorganisms. Scientific Reports, 11(1),
pp.1-15.
Engineering World
DOI:10.37394/232025.2023.5.8
S. K. Prasanna Lakshmi,
S. Sreedhar, S. V. V Rama Devi