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Abstract: The Perpendicular Distance Estimation Method (PDEM), a method to estimate the precision of a Digital 
Elevation Model (DEM), in “Effectiveness of Geometric Quality Control Using a Distance Evaluation Method” 
was tested assuming independent normal random for the vertical and horizontal error, considering isotropic this 
horizontal error. Here the PDEM is tested in the case of a DEM obtained by IFSAR technology, also, assuming 
independent normal random errors, but this time in three independent directions. Because vertical direction is 
correlated with one horizontal direction, -the range axis direction-, a rotation has to be done and so, three 
independent directions are obtained. 
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1. Introduction and Description of 

Challenges. 
A Digital Elevation Model (DEM) is a Digital 
Surface Model (DSM) of a terrain surface. It can be 
defined as a set of points, laid out on a regular square 
grid or on a triangular grid, where the altitudes are 
known in the vertices. The elevation anywhere else is 
obtained by interpolation. In the literature, often, the 
evaluation of the precision of a given DEM is 
obtained by “comparison” with a reference DEM 
considered “much more precise or exact” estimating 
the standard deviation of the discrepancies between 
them. To know the precision of different methods to 
obtain a DEM allows one to choose the method that 
has the best relation precision / price. 
To carry out this comparison, two methods stand out 
in the literature: the measurement of vertical 
distances between the models and the comparison 
with benchmark points. 
Zelasco2019 [17] describes these methods and 
establishes their limitations and drawbacks.  
Briefly: the measurements of these vertical distances 
are affected by the slope of the reference DEM; and 
the corresponding points of these benchmarks may be 
subject to particular conditions or the benchmarks 
which have identifiable corresponding points are not 
a representative sample of the surface, Hirano et al. 
2003 [8]. 
Also, in Zelasco2019 [17] the Perpendicular Distance 
Evaluation Method is formally presented and tested 
assuming independent normal random for the vertical 

and horizontal error and considering isotropic the 
horizontal error. 
The purpose of this article is to test the PDEM 
evaluating the geometric quality of a DEM obtained 
employing IFSAR technology. For the rest of the 
document, the given DEM will be referred to as the 
evaluated DEM (e-DEM). The reference DEM (r-
DEM) is a real DEM of 100,000 points. The e-DEM 
is obtained by simulated errors from the r-DEM. 
Therefore, e-DEM errors are known. The PDEM 
evaluates the errors of the e-DEM by estimating the 
standard deviation in relation to the surface of the r-
DEM. To test the PDEM it suffices to compare the 
estimated error values obtained by the PDEM with 
the known error values. As in Zelasco2019 [17], here, 
is assumed that the measurement errors are 
independent random variables with components in 
three orthogonal directions, and because the vertical 
direction is correlated with range axis a rotation has 
to be done given the beam axis, the azimuth axis and 
the axis normal to the previous two (y’; the rotated 
range axis).   
The rest of this paper is organized as follows: Section 
2 provides the background of this study. Section 3 
presents a brief description of the proposed method. 
Section 4 explains the error correlation of the e-DEM 
obtained by the IFSAR technology and the 
reformulation. Section 5 describes the experiments. 
Section 6 evaluates the results. Section. Finally, 
section 7 gives some concluding remarks regarding 
this study. 
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2. Background and Previous Problem 

Treatments. 
The evaluation of a DEM error is an important 

topic, in the literature several attempts have been 
made for the evaluation of a DSM (e-DSM) error 
relating to a more precise reference DSM (r-DMS). 
Zelasco2019 [17] mention many previous works as 
Guptill and Morrison 1995 [5]; Harvey 1997 [6]; 
Laurini and Milleret-Raffort 1993 [10]; Ubeda and 
Servigne 1996 [15], and other several solutions 
concerning the DEM´s quality proposed on Dunn et 
al. 1990 [2], Lester and Chrisman 1991 [9], etc. Also, 
analogous problems were studied for horizontal 
errors in maps in Abbas 1994 [1]; Grussenmeyer et 
al. 1994 [4]; Hottier 1996 [8]. They successfully use 
Hausdorff distance to evaluate the errors in maps, but 
this does not work in two dimensions in the cases 
when the components have different errors. Anyway, 
no solution to the simultaneous evaluation of vertical 
and horizontal errors is proposed. 

  The DEM Quality Assessment chapter in Maune 
2001 [13], states that horizontal accuracy, although 
recognized as a part of DEM quality, is generally 
considered difficult to evaluate in the absence of an 
image coincident with the e-DEM (check points or 
benchmarks), or of clearly discernable surface 
features.  

Zelasco 2019 [17] explains the lack, or at least 
scarcity, of work devoted to the horizontal accuracy 
of a DEM. 

Zelasco et al. 2013 [16] is mostly a users’ tutorial 
of the method. 

In Zelasco 2019 [17] there is a formal presentation 
of the mechanics of the PDEM. The PDEM allows us 
to get statistical information about the horizontal and 
vertical standard deviations, only the perpendicular 
component of a point from the e-DEM to the r-DEM 
surface is required. 
 

3. A brief description of the PDEM 
Resuming Zelasco 2019 [17], the PDEM, unlike 

the vertical distance methods, produces vertical 
standard deviation results without a systematic error 
in the vertical direction and allows to obtain the 
horizontal variance under the condition of sufficient 
surface roughness.  

The error is the vector function which denotes the 
discrepancy between both surfaces, and is defined for 

each point iM  and its homologous point iP  in the r-

DEM. The points iM  define the e-DEM surface, but 

their homologous points iP  are not vertices of the r-
DEM surface triangles. If they were, their 

identification would be easy, and our problem would 
be trivial. However, we want to deal with the more 
common case in which the homologous points are not 
readily identifiable. The error vector is assumed to be 
the result of three stochastically independent 

components, , ,x y ze e e  one in each of the basic axes 
of the x, y, z coordinate system. Notice that this error 
vector is not constrained to be vertical, nor 
necessarily orthogonal to any of the surfaces. 

For each iP  = [xi, yi, zi]T, the error vector 
   , ,i i i i i ix y M x y P   , i 1,2,…,n cannot 

usually be determined because of the difficulties in 

establishing the homologous point iP . However, 

even if the homologous point iP  cannot be identified, 
the triangle Ti  r-DEM containing it, can usually be 
identified. 

Fundamental property: An important property is 
that the projection of the error vector 
   , ,i i i i i ix y M x y P    on a unitary vector Ni 

orthogonal to the surface Ti  r-DEM remains 

invariant if the point iP  is replaced by any other point 
Q   Ti. 

For the projection of the error vector on Ni the 
scalar product is  

[𝑀𝑖(𝑥𝑖, 𝑦𝑖) − 𝑃𝑖]   ⋅  𝑁𝑖 = 𝑀𝑖 −𝑀𝑖
′ (1) 

where iM   is the normal projection of iM  
relative to the surface of the triangle Ti, the point of 
the triangle determined by the line normal to that 

triangle and which passes through iM . 
For any point Q  belonging to the surface of the 

triangle Ti, we define a vector, which it will be called 
Q , the projection of the difference iM Q on N 
coincides with the projection, on N, of 
   , ,i i i i i ix y M x y P    (2) 

Both projections are equal to i iM M  . The 
fundamental property resulting from relation (1) is 
the reason for the choice of the name PDEM.  

This relation implies that the length of the 
projection of the error vector may be computed 
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knowing only the triangle Ti  r-DEM that contains 

iP , even without knowing the exact position of iP . 

Consequently, the variance of i iM M  is 

𝑉𝑎𝑟{𝑀𝑖 −𝑀𝑖
′} = 𝐸 {|𝑀𝑖 −𝑀𝑖

′|
2
} = 𝜎𝑁

2
𝑖
= 𝜎𝑥

2 ⋅

𝑐𝑜𝑠2 𝛼𝑖 + 𝜎𝑦
2 ⋅ 𝑐𝑜𝑠2 𝛽𝑖 + 𝜎𝑧

2 ⋅ 𝑐𝑜𝑠2 𝛾𝑖 (3) 

where cos , cos , cos    are known, because 
they are the direction cosines of the normal unit 
vector, obtained from the data of the surface triangle 
Ti  r-DEM, with 

2 2 2cos cos cos 1      (4). 

An estimator for this 
2
N i is therefore the 

i iM M  ; if n observations were available, the 
estimator would be:  

2

1

n

i i

j

M M

n





 (5) 

For different triangles we have different normal 

vectors, and different values of 
2
N i . Moreover, we 

have one observation for each, and one estimate for 
each. This gives us one relation for each. In these 
expressions, the coefficients:

2 2 2cos , cos , cosi i i    (4), are known, and 
2 2 2,x y z    are unknown, and they are what we 

need to estimate. Our n expressions (4) give us an 
observation matrix, or design matrix 

2 2 2
1 1 1

2 2 2
2 2 2

2 2 2

2 2 2

cos cos cos
cos cos cos

cos cos cos

cos cos cos

i i i

n n n

M

  

  

  

  



  (6) 

The n expressions (4) allow us to establish n 

estimates for 
2
N i , which form a vector 

1

2

2

2

2

2

i

n

N

N

N

N

L









 
 
 
 
 
 
 
 
 
    (7) 

We may now estimate 
2 2 2, ,x y z    as if they 

were the parameters of an ordinary linear regression 

of the output variable 
2
N i  as a linear function of the 

three variables 
2 2 2cos , cos , cosi i i   , given by 

(4). We have at our disposal n points, and the 
estimates may be obtained by the usual least squares 
regression method. We seek the values of 

2 2 2, ,x y z   , which we may write as a vector  

2

2 2

2

x

y

z



 



 
 

  
 
   (8) 

and we seek to minimize the sum of squares of 
differences 

∑ [𝜎𝑁
2
𝑖
− (𝜎𝑥

2 ⋅ 𝑐𝑜𝑠2 𝛼𝑖 + 𝜎𝑦
2 ⋅ 𝑐𝑜𝑠2 𝛽𝑖 + 𝜎𝑧

2 ⋅𝑛
𝑖=1

𝑐𝑜𝑠2 𝛾𝑖)]
 2
= ∑ 𝜀𝑖

2𝑛
𝑖=1 = (𝐿 −𝑀. 𝜎2)𝑇 ⋅ (𝐿 −

𝑀. 𝜎2) . (9) 

A complete discussion about the method is shown 
in Zelasco 2019 [19].  

4. Error Correlation of the DEM 

Obtained by IFSAR: PDEM Reformu- 

lation. 
The IFSAR geometry, see El-Taweel 2007 [3], 
Redadaa and Benslama, 2005 [14], Massonnet et al 
1996 [11], and Massonnet and Feigl, 1995 [12] 
carries a correlation between 𝑦 axes (range axis) and 
the 𝑧 axis (Fig. 1). 
It gets a diagonal covariance-matrix from a 𝜃 rotation 
around the 𝑥 axis. This rotation joins the 𝑧′axis with 
the direction of the radar.  
This hypothesis is justified by the formulas presented 
in El-Taweel 2007 [3] and Redadaa and Benslama, 
2005 [14] as well as Massonnet et al, 1996 [11].  
After the 𝜃 rotation, in the new referential, the 𝑥 axis 
parallel to the trajectory of the satellite does not 
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change its position, the 𝑦′ and z  directions 
correspond to the normal plane of the trajectory and 
the random variables in the three directions are not 
correlated. 

 
Figure 1 

 
B is the base (distance between antennas 1A  and 

2A ), H  is the height of the antennae 1A  and R  is 
the distance from 1A  to the target C .  
The value of z (height of the target) is given by: 𝑧 =
𝐻 − 𝑅 𝑐𝑜𝑠 𝜃, where H  and R  are known and 𝑐𝑜𝑠 𝜃 
is incognito. 
So: (𝑅 + 𝑟)2 = 𝐵2 + 𝑅2 + 2𝐵𝑅 𝑐𝑜𝑠 𝛼 where R , B

, r  ( r  is functional to the phase-difference and the 
wave length) are known. 
 
In the triangle of vertices 𝐴1, 𝐴2 and 𝐶 formed by the 
two antennas and the target, rR  is the distance 
between A2 and 𝐶, the angle in 𝐴1 is α, and 𝛼 = 90 +
𝜃 − 𝜀 then,  
𝑐𝑜𝑠 𝛼 = 𝑠𝑖𝑛(𝜃 − 𝜀). 
Therefore: 
 𝑐𝑜𝑠 𝜃 = 𝑐𝑜𝑠 𝜀 ⋅ 𝑐𝑜𝑠(𝜃 − 𝜀) − 𝑠𝑖𝑛 𝜀 𝑠𝑖𝑛(𝜃 − 𝜀), 
and 𝑐𝑜𝑠(𝜃 − 𝜀) = (1 − 𝑠𝑖𝑛2(𝜃 − 𝜀))1 2⁄  
Finally: 
𝑧 = 𝐻 − 𝑅 ⋅ 𝑐𝑜𝑠 𝜃 (10) 

sin Ry  (11) 
. 
5. Description of the Experiment 
The r-DEM is composed of a set of points that 
permits the construction of a net of K  triangles. Each 

triangle  KkTk ,,1   belongs to a plane 

defined by a unitary vector  Kkk ,,1 
. 

The following needs to be determined: 
 - the coordinates of the center of each triangle 

expressed in the rotated reference system, 

 a value of standard deviation , and  for 
each direction in which the random variables are 
independent. Based on these values, random 
values that follow the normal law (noise) are 
determined. These new random values will be 
added to the coordinates of the center of mass of 
the triangles in the direction of the 3 axes 
expressed in this new reference. The new 
coordinate points constitute the (simulated) e-
DEM. 

 the coordinates of the normal unitary vector  
to each triangle in the new referential 

 the distance that separates each point from the e-
DEM (simulated to evaluate), to the plane that 
contains the corresponding triangle 

 the normal deviation of the points of the e-DEM 
in the directions of each coordinate of the rotated 

system: ,  and . 
Table 1 shows the results with triangles selected by 
considering the angle they have with the Z axis. 
Results are presented, so that for each simulation they 
show: 
 The value of   used to produce noise on each 

axis, 
 The PDEM estimation, 
 The standard deviation of the estimation (over 20 

times), 
 The relative error (standard deviation/noise) of the 

estimations. 
Fig. 2 shows the histograms of the PDEM, 
considering the angle, only with the Z axis. 

 
Figure 2: Previous Method PDEM Histogram. 

Some results in Table 1 are not satisfactory for x . 
To improve these results, we did other simulations 
(A, B, C, D, E, F) selecting triangles with respect to 
the 3 axes (not only to the Z axis) 
For each simulation, we selected a different number 
of triangles with respect to each axis, indicating the 
triangle slope interval (FI_ALFA, FI_BETA o 
FI_GAMA) in relation to each axis (X, Y, and Z) 
respectively. 

x y
z

K

x y
z
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Table 1 

 
Simulation A produced the best results. For this 
simulation, 500 triangles were selected for each axis. 
The angle that forms the x axis with each of its 500 
triangles does not exceed 60 degrees. The same 
criterion is taken into account for the y axis. It can be 
observed that in the direction of the x axis, the results 
are very satisfactory, except for the first two tests. 
Therefore, in the following section we only evaluate 
this simulation. 
 
6. Evaluation of the Results 
The average values in the three axes are given by: 

  N
n XX n 

; 
  N

n YY n 
;  

  N
n ZZ n 

 

The standard deviation of  (variance-covariance 
matrix after rotation of a θ angle to nullify the 

correlation) is defined as:      212
N

n nn 
  

where  n  is the real value of the sample – very 
similar to the value used to produce the sampling of 

the errors (noise) – and n  is the value obtained by 
the PDEM. 
We did several tests using different values to produce 
the noise (errors that produce the simulated e-DEM 
of study). This enabled us to study the behavior of the 
PDEM for different relations of noise in the axes. 
With the same values of noise, we performed each 
test over 20 times with different random values. 
As it was said, six simulations were performed. The 
one with the best results (Simulation A), is obtained 
by selecting triangles related to the 3 axes in equal 
proportion (500 triangles in each case, it means a total 
of 1500) so that for the X and Y’ axes, the triangle 
slope does not exceed 60 degrees and in the Z’ axis it 
does not exceed 45 degrees. 
For simulation A: 
Table 2 shows the results with triangles selected by 
considering the angle they have with the three axes;  

 
 
And again: 
 The values of   used to produce noise in each 

axis, 
 The PDEM estimation, 
 The standard deviation of the estimations (over 20 

times), 
 The relative error of the estimation. 

 
Table 2: simulation A 
Figure 3 shows the histograms obtained for the 
simulations A. 
The histograms show how, after the rotation needed 
to nullify the correlation, the triangle slopes are 
modified. It is noteworthy that since the rotation is 
performed around the X axis, the first histogram 
remains unchanged. 
 

 
 
Figure 3: Reformulated Method PDEM Histogram 
(Simulation A).  
 
The histograms show how, after the rotation needed 
to nullify the correlation, the triangle slopes are 
modified. It is noteworthy that since the rotation is 
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performed around the X axis, the first histogram 
remains unchanged. 
 
7. Conclusions 
In the case of DEM’s obtained by IFSAR technology, 
the PDEM provides error estimation for the three not 
correlated directions: the beam axis, the azimuth axis 
and the axis normal to the previous two (y’; the 
rotated range axis). As expected, the results are 
excellent in the direction of the beam axis. Since a 
rotation must be done to find the uncorrelated 
directions the unevenness of the surface artificially 
increases in the range axis direction therefore the 
error estimations are very good in the direction of the 
y' axis.  The estimation error in the azimuth direction 
is compromised because it depends on enough 
irregular terrain conditions. 
The PDEM provides a useful tool for evaluating the 
error of Digital Surface Models in the general case, 
as it was shown in previous works, and also when the 
DEM’s are obtained by IFSAR technology. 
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