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Abstract — In this article an Artificial Neural Network 
(ANN) approach for the motion planning of redundant 
robot manipulators is presented. The approach is based on 
formulating an inverse kinematics problem under an 
inexact context. This procedure permits to deal with the 
avoidance of obstacles with an appropriate and easy to 
compute null space vector; whereas the avoidance of 
singularities is attained by the proper pseudoinverse 
perturbation. Here the computation of the inverse 
kinematics problem is performed by a properly trained 
ANN and including a null space vector for obstacle 
avoidance which is also calculated by another properly 
trained ANN. The approach is tested on the simulation of a 
planar redundant manipulator performing some obstacle 
avoidance tasks. From the results obtained, the approach 
compares favorably with the numerical approach. 

Keywords — ANNs; Motion Planning; Obstacle Avoidance; 
Redundant Robot Manipulators 

I. INTRODUCTION 
One of the most challenging problems that frequently 

arises in the field of robot manipulators is the trajectory/path 
planning problem. A general formulation of this problem 
usually includes the obstacle avoidance as a sub-problem. The 
trajectory/path planning of robot manipulators can be 
performed either in the joint space [9]; or in the Cartesian 
space [9]. Planning paths in the configuration space has the 
advantage that by establishing some via joint configurations it 
is possible to obtain smooth motions while achieving certain 
tasks. However, this approach has the disadvantage that it does 
not provide the means for the end effector to follow a desired 
trajectory. Alternatively, the planning in the operational space 
has the property that certain tasks requiring specific end- 
effector trajectories motions can be achieved. Nevertheless, 
this approach has the main disadvantages that due to the 
presence of singularities not all the trajectories in the 
operational space can be realized. Hence, the planning of paths 
and trajectories depends mainly on the assigned task. 
Therefore, is necessary to distinguish some different problems 
and preferably formulate (solve) them as an optimization 
problem [9], and also properly consider an inverse kinematics 
problem [7]. 

     The inverse kinematics problem for redundant 
manipulators is usually studied under an exact context, where 
a precise solution is required, by global or local approaches. 
The global methods are limited to off-line programming and 
are not easily implementable in sensor based environments. 
Therefore, considerable efforts have been devoted to develop 
real-time local approaches [9]. Nevertheless, singularities-safe 
paths cannot always be ensured [9]. 

     An alternative way to deal with the inverse kinematics 
problem, which can also be applied to non-redundant 
manipulators, is to consider the problem under an inexact 
context [7]. Under this approach the exactness to a solution is 
relaxed and either [7]: (a) the problem is reduced to one of 
priority subtasks; or (b) a damped least squares problem is 
considered. The damped least squares approach has the 
advantages of producing a subtle (temporary) degradation of 
the end effector near a singularity, and still be able to utilize 
the redundant degrees of freedom for the avoidance of 
obstacles by the proper use of the null space vector [7]. 
However, the approach in some cases may be computational 
expensive even for a few and simple obstacles. Therefore, 
there is still a need to improve this approach.  

In this article a novel Artificial Neural Network (ANN) 
approach for the obstacle avoidance of redundant robot 
manipulators is presented. The approach is based (as in [8]) on 
formulating an inverse kinematics problem under a local 
inexact context, which permits to deal with the avoidance of 
obstacles with an appropriate and easy to compute null space 
vector; whereas the avoidance of singularities is attained by 
the proper pseudo-inverse perturbation. However, here the 
null space vector for obstacle avoidance is computed by a 
properly trained off-line ANN. Furthermore, once properly 
trained, the ANN can be used in real time to compute the null 
space vector and be included in the computation of the inverse 
kinematics which is also performed by another properly 
trained ANN, [6], [7]. Here, the proposed overall ANN 
approach is successfully tested on the obstacle avoidance of a 
planar redundant robot manipulator performing some 
benchmark tests. Here it is demonstrated that the proposed 
ANN approach compares favorably with its corresponding 
conventional numerical local version. 
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II. THE INVERSE KINEMATICS PROBLEM 
 

One of the main problems that arise when studying the 
kinematics aspects of a robot manipulator is the so-called 
inverse kinematics problem. For a given manipulator, at any 
instant of time, a configuration of joints establishes a unique 
position and orientation of the end effectors in the Cartesian 
space. Formally, consider a manipulator with n  degrees of 
freedom.  At any instant of time, denote variables by );(tii    

.,...,2,1 ni   Also, define the manipulation variables describing 
the robot tasks by a vector of m variables );(tXX jj   

.,...,2,1 mj   Furthermore, let nm  ; both for the case 
nm (nonredundant manipulator) and nm  (redundant 

manipulator). Finally, let ],[ 0 fi ttt  where 0t and 
ft are the 

initial and final time of the task interval, and let m and n be 
the m-dimensional and the n-dimensional Euclidean spaces 
respectively, such that T

mXXXtXX ],...,,[)( 21 m and 
nT

nt  ],...,,[)( 21   are related by 
                         )).(()( tftX                                                         (1) 

In general, this relation is nonlinear and pointwise, hence 
an analytical inverse relationship cannot be obtained. By 
differentiating (1) with respect to time and defining 
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The following equation is obtained: 
    ).())(()( ttJtX



                                (4) 
From this equation, it is possible to calculate a )(t  path 

in terms of a prescribed trajectory ).(tX  However, a non-
singular ))(( tJ   for all ],[ 0 fi ttt   cannot be fully guaranteed 
and cyclic behavior cannot be assured [9].  

 
    An alternative approach to deal with the problem of 
singularities, also applicable to nonredundant manipulators, is 
to consider the problem under an inexact context. Under this 
formulation the exactness to the solution of (4) is relaxed and 
a damped least squares problem [7] is considered. Following 
[6], [7], a solution in an inexact context is given by 

 ;)]()([)(   JJIXJ wzwz







                     (5) 
Where the weighted-perturbed pseudoinverse matrix )(


wzJ is 

given by: 
 1111 ])()()[()(   ZJWJJWJ TT

wz            (6) 
                        ;)(])()([ 1 ZJWZJJ TT               (7) 

where, the positive definite symmetric matrices W, Z, act as 
metrics to allow invariance to frame reference and scaling 
(homogenize dimensions). In some cases, W is usually a 
diagonal matrix to deal with joint limits and/or different joint 
units. Also, I  is the identity matrix, 0i is a damping 

factor, and )( itv is an arbitrary vector intended for obstacle or 
singularities avoidance/prevention [7]. It can be easily shown 
that a suitable null space vector is given by: 
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where ).,(


r is a side (scalar) criterion that is also desired to 

be optimized; 0),( 


kkg  , k,= 1, 2, ...,N, 0k
, are some 

constrains to be satisfied; and k  are scalars. Setting k  > 0 
implicitly implies that a constraint is binding, i.e. 

.0),( 


kkg   
Furthermore, suppose that it is desired to decrease 

monotonically a set of functions );(js j = 1, 2, ..., M; over the 
time interval ].,[ 0 ftt This can be achieved by selecting 
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appropriate scalar [3], [7], [8]. Therefore, 
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III. A NULL SPACE VECTOR FOR 
        OBSTACLE AVOIDANCE 

In this article, the null space vector is used for the 
obstacle avoidance of redundant robot manipulators. The 
concept of explicitly maximizing some areas between the links 
and the obstacle is considered as in [8]. The notion of volumes 
and areas determined by a set of vectors in p are addressed 
as in [8] by properly defining a q-box in p ; for .pq   The 
following proposition is easily shown in [2]. 
     Proposition 1 Let .pq  and p

qbb ,...,1
, be a set of 

independent vectors. Then the volume of the q-box in p is 
given by 

 2
1

)}{det( BBV T                                                    (10) 
where B is the p x q matrix containing the qjb j ,...,2,1;    as 
its j-th column vector. 

For the particular, yet important, case that q = p the 
following Corollary it is also easily shown in [2]. 
     Corollary 1 Let q = p, and p

qbb ,..,1
, be a set of 

independent vectors. Then the volume of the q-box in q is 
determined by  
 BV det                                      (11) 
where B is the p x q matrix containing the qjb j ,...,2,1;    as 
its j-th column vector. 

The Proposition 1 constitutes the basis of the proposed 
approach for obstacle avoidance, [8]. That is, it is intended to 
properly fit the vectors ;3,2;,...,1 qbb q

 between the 
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manipulator links and a specified obstacle. Hence, from the 
explicit volume expression a side criterion, to be maximized 
by (5), can be easily obtained. The resultant procedure has the 
property that while the end effector tracks a specified 
trajectory, the links tend to stay away from the obstacle. This 
approach is similar to the one developed in [7]. However, here 
instead of using the null space vector to avoid singularities; it 
is utilized for obstacle avoidance. 

The approach can be explained better by considering the 
case in which q = p = 2. In this case, the volume given by (4) 
in fact constitutes the area of a parallelogram. Now, consider 
the Fig. 1; where a planar redundant (m = 2, n =3) 
manipulator, and obstacle are depicted. Hence, according to 
Corollary 1, the area of the corresponding (parallelogram) k-th 
q-box is given by 

               
kk BV det ;       k =1, 2, 3;                    (12) 

where the, 2 x 2, 
kB matrix contains )(

2
)(

1 , kk bb as column 
vectors. Notice that the vectors )3(

2
)2(

2
)1(

2 ,, bbb  depend on 
 ,,, 211    321 ,,  respectively.  Hence, it becomes natural to 

consider half of the parallelogram area; that is, only the area of 
the triangle determined by the vectors )(

1
kb and )(

2
kb . Then, the 

side function to be maximized is given by 
 ].[

2
1)( 321 VVVs                         (13) 

Then, according to (9), the i-th component of the vector )(v  
intended for obstacle avoidance, is given by   
 ][

4
1)( 321

iii
i

VVV
v















   ;   i = 1, 2,.., n.       (14) 

Notice that each 3,2,1kVk
 is given by (12) and this equation 

above is not continuously differentiable at the point that 
det( kB ) = 0. However, this problem can be dealt with by 
properly defining: 

                  
                     If  0kD             (15) 

 
           Otherwise;           (16) 
where ).det( kk BD   

In the case in which q = p = 2, it is easy to express 
explicitly each ;3,2,1);det(  kBD kk in terms of 321 ,,  . 
Hence, the computation of (14) is a simple and fast one. 

From Fig. 1, it can be easily observed that 
)()(

1
)1( kkk ObP  .  Then, )1()()(

1
 kkk POb .  Therefore, 

],det[ )(
2

)1()( kkk
k bPOD  ],det[ )1()()()(  kkkk PPPO     

))([( )1()()1()(   kkkk
x yyxO  )])(( )1()()1()(   kkkk

y xxyO  
 
where )()( , kk yx are the vector )(

2
kb  components and 

)()( , k
y

k
x OO are the coordinates of the obstacle point )(kO ; 

k=1,2,3. However, notice that each )()( , kk yx in turn can be 
explicitly expressed in terms of the joint coordinates. 

 
 

 Figure 1: Example of an independent set of vectors .' sb i  
 
Therefore from the equation (14) and (15), the components 

;,,2,1 niVi   of the null space vector intended for obstacle 
avoidance can be easily evaluated in explicit form. The 
numerical approach, developed in [8] resolves redundancy at 
the velocity level using smooth null space vector components 
which are effective near and far from the obstacles; however 
here, the null space vector is effectively computed using an 
ANN for true real-time operation. 
 

IV.   A NUMERICAL PROCEDURE FOR THE 
COMPUTATION OF THE INVERSE KINEMATICS 

 
First, it is important to mention here the following fact. In 

general most current industrial robot manipulators operate in a 
non-redundant fashion, that is, m = n = 6. However, by 
specifying nm  , say m = 3 (n = 6) for positional tasks, some 
degrees of freedom become redundant and the manipulator 
can be treated as such. 

The attempt to solve the inverse kinematics problem by 
direct use of (5), including the damping factor, may be 
cumbersome due to the large amount of computation required 
for the evaluation of the pseudoinverse matrix. 

Suppose that at iteration i the damping factor 
i  as given 

by a proper scheme (such as in [7]), and the vector ν intended 
for obstacle avoidance as in (14), are available. Then solve for 
  the following system 

 vJXIJJ i
T )(])()([  

                     (17) 
by a Gaussian elimination process that takes into account the 
symmetry of the matrix as described in [7]. Finally, just 
compute 



   by 

                                   vJ T 


 )(                                    (18) 
This simpler approach may not yet conduce to real time 

implementations. Hence, here a novel Artificial Neural 
Network approach is proposed for true real-time operation. 
This approach is still based on (17) and (18); but unlike other 
recent approaches, [1], [4], [5], [10], it is still quite simple and 
effective as it is shown in a subsequent section. 
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V. AN ARTIFICIAL NEURAL NETWORK APPROACH 
Here, Artificial Neural Networks are used to “learn” the 

non-linear relationships given by Eq. (14) and (15); and (17) 
and (18).  The approach is somewhat similar to the ANN 
approach presented in [7], where the null space vector is used 
for singularities avoidance; however, here the null space 
vector is used for obstacle avoidance.  

Now, notice that the null space vector given by (14) and 
(15) can be easily computed using a properly trained ANN. In 
this case, the 

n ,..,1 and the obstacle points O are the inputs 
to the ANN, and the 

nvv ,..,1  are the ANN outputs. The 
training is done off-line; however, once the ANN learns the 
null space vector for obstacle avoidance; it can be easily used 
in real-time. 

 Next, from the equation (17), let nm   and solve for   
which is an n x m matrix. Then, just set 

  as in (18). In this 
case   is computed off-line by a trained neural network (such 
as a multi-layered feedforward with backpropagation) with 
inputs  , such that, [7]: 
 1)(  AJ T                                                     (19) 
where      ].)()([ IJJA i

T                                 (20) 

Next set, 


  as 

 vvJX 


])([                                              (21) 
Finally, a step by step procedure is performed as in [7]: 
(a) Specify an initial set of plant variables )( 0t ; 

(b) Consider a specified task )( itX
 ; 

(c) Apply )( it ; to a trained neural network to obtain )(1 it ; 

(d) Set  )( it


   as in (21); 
(e) Apply an efficient numerical integration (such as a fourth 

      order Runge-Kutta) to get )( 1it ; 
(f) Set ;1 ttt ii 

  

(g) If 
fi tt 1
stop; otherwise set 1 ii and return to step (b). 

 
Here, the entire ANN approach is implemented for the obstacle 
avoidance of a redundant planar manipulator [7], [8]. In this 
case in order to achieve reasonable accurate results, the ANNs 
must be properly trained with the right number of training data 
set which is limited to fit the desired ranges.  Once the ANNs 
are trained with the required range, they can be easily and 
effectively used to compute on-line in Eqs. (4), (19), and (21); 
resulting in a true real time obstacle avoidance approach. 

VI. SIMULATION RESULTS 
The proposed approach described in the previous section, 

is implemented in the simulation of a 3 DOF planar redundant 
manipulator performing some “benchmark tests” as in [8]. 
Notice that effective obstacle avoidance in 2D with only one 
redundant DOF for obstacle avoidance is in fact more difficult 
to achieve that in 3D with one or more redundant DOFs; due to 
the fact that in 2D with only one redundant DOF, the situation 
is quite restrictive. The links are specified in meters as  

85.0,6.0,5.0 210  LLL , and 6.03 L . Notice that in this 
case in the equation (20), 0 . Here the following tasks are 
considered.  

Task 1: Given an initial end-effector position 

  )](),([)(),( 0
)3(

0
)3(

0201 tytxtXtX   = [1.555883, 1.014850] 

with a corresponding initial configuration (rads.) specified by 

                               ]
6

,
2

,
12

[)](),(),([ 030201
 ttt  

Notice that in this task the initial manipulator configuration has 
the third link upwards presenting a difficulty for obstacle 
avoidance approaches, [8]. Also, notice that the considered 
tasks consist on moving the manipulator from an initial end 
effector position along a straight line with constant speed and 

ft = 10 seconds, and trying to move away from the obstacle by 
the effect of the null space vector to a final end effector 
position   )(),( 21 ff tXtX  = [0.60, 0.20] 

The proposed ANN approach is implemented on a Silicon 
Graphics Octane digital computer. Here the Matlab Neural 
Networks Toolbox is used as a platform. In this particular 
case, in order to get more efficient results, the input and output 
data are first preprocessed by restricting between a learnable 
range. Then a feed-forward network is created by using the 
function NEWFF as the 3-layer-network of 35-14-2 for (19) 
and a 3-layer-network of 25-14-3 for the null space vector. In 
this proposed approach, the TANSIG and PURELIN transfer 
functions are used and also the TRAINLM training function is 
employed in the training process. Then the weights and biases 
are calculated for the Network. Once ANNs are trained, the 
propagation of an initial solution is obtained by (21). Then, the 
integration process is carried out (in the training as well as in 
the actual Task simulation) by a fourth order Runge-Kutta 
method with an integration step-size of 0.1. 
 
     First the task is simulated by the numerical approach [8] 
with no provisions for obstacle avoidance )0)(( tv . The 
results are shown on Fig. 2, where a collision is clearly seen. 
Next, the same task is performed with the vector )(tv  for 
obstacle avoidance as given by (14), with .0.4  the results 
obtained using the numerical approach [8], are shown in Fig. 
3, where it is clearly seen that the obstacle avoidance has been 
successful. Here the proposed ANN approach is performed for 
obstacle avoidance based on (14) and (19), three cases can be 
considered: 

1. Computing   by using a trained ANN and v by using a 
numerical method  

2. Computing    by using a numerical method and v by 
using a trained ANN 

3. Determining both   and v by using trained ANNs 
Case 1: Here,   is approximated by the proposed ANN 
approach while v is calculated by a numerical approach. The 
results are shown in the Fig. 4, where it is clearly seen that the 
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manipulator moves in a similar way as using a numerical 
method. 
Case 2: The proposed ANN approach approximates v while 
  is calculated by a numerical approach. Then, the obtained 
results using the proposed approach are shown in Fig. 5.  
Case 3: In this case, both  and v are approximated by the 
proposed ANN approach. Also in this case the task is 
successfully performed as the results shown in Fig. 6 . 

Finally, one more task is also performed. This task is 
similar to the first task with the difference that now the given 
an initial end effector position is 

 )(),( 0201 txtx = [1.495943, 0.559559] 
with an initial configuration given by 

]
6

,
2

,
12

[)](),(),([ 030201
 ttt  

In this case the task is performed with no provisions for 
obstacle avoidance, and with )(tv as in (14), using the 
numerical approach as shown in Fig. 7 and Fig. 8 respectively. 

Also three cases are considered. This task is also 
effectively performed. The obtained results based on Case 1, 
Case 2, and Case 3, are respectively shown in Fig. 9, Fig. 10, 
and Fig. 11. From these figures; the success of the proposed 
ANN approach can be clearly observed. 

VII. CONCLUSIONS 
In this article an Artificial Neural Network approach for 

the obstacle avoidance of redundant robot manipulators has 
been presented. This approach permits the realization of fast 
and robust real-time algorithms for obstacle avoidance. Here a 
null space vector for obstacle avoidance is computed with a 
properly trained ANN. Then, this vector is properly used in 
the inverse kinematics computation which is also performed 
with another properly trained ANN. This article, demonstrates 
that the use of properly trained Artificial Neural Networks for 
the obstacle avoidance of redundant robot manipulators 
compares favorably with a conventional numerical approach. 
Here, the proposed ANN approach it is demonstrated by its 
successful application for the obstacle avoidance of a planar 
redundant manipulator performing some “benchmark tests”. 
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Fig. 2: Task 1: Entire numerically approach. No provision for 
             obstacle avoidance. 

 

    
 

 Fig. 3: Task 1: Numerical approach with v for obstacle 
avoidance 
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Fig. 4: Task 1:   by the proposed ANN approach and v      
             numerically for obstacle avoidance.  
 

 
Fig. 5: Task 1:    numerically, and v by the proposed ANN  
             approach for obstacle avoidance. 
 

 
Fig. 6: Task 1: Both   and v by the proposed ANN approach 

 
.  

 
Fig. 8: Task 2: Numerical approach for obstacle avoidance. 

 

 
Fig. 9: Task 2:   by the proposed ANN approach and v by   

      the numerical approach for obstacle avoidance. 
 
 

 
Fig. 10: Task 2:   by the numerical approach and v by the     
             proposed ANN approach for obstacle avoidance. 
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Fig. 7: Task 2: No provision for obstacle avoidance. 

 
 Fig. 11: Task 2:  Both   and v by proposed ANN approach. 
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