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Abstract 

The generalizations of common single-valued artificial neural networks are proposed. The main proposition is to consider multiple-valued 

networks. Such neural networks can have multiple values of elements and multivalued connections between elements at given time moment. 

Modified Hopfield neural networks with strong anticipation property are considered as the examples. New aspects of learning processes 

considered for the case of multiple-valuedness. Branching networks are described. Presumable applications of multivalued neural networks are 

proposed. Also some new research problems are described.  
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I. INTRODUCTION. 

For the establishing of proposed here new problem in the field 

of artificial neural network it is necessary to do some analysis 

of basic concepts of artificial neural network. Here in the 

introduction we first of all give the analyses of the elements of 

general construction of artificial neural networks and highlight 

nine issues concerned the principles of operating of neural 

network. The analysis of such issues is illustrated on the 

example of Hopfield network. Then after such analysis it is 

proposed one of the possible ways of generalization for neural 

networks – namely the multiple-valuedness of networks.  

A. Steps for building and using classic neural networks 

Classic artificial neural networks (ANN) have now become 

one of the most common tools for forecasting, classifying and 

modeling [1-5]. As one of the standard applications of ANN, 

you can specify artificial intelligence and machine learning. 

At the same time, the theory and practice of using classical 

neural networks have gone a long way of development, 

starting from approximately the 50s of the last century (Mc 

Culloch W.&W. Pitts, F. Rosenblatt, M. Minsky, J. Hopfield, 

and many others). In general, it is very approximately possible 

to propose an ANN application scheme consisting of such 

steps: 

1) the choice of architecture 

2) the choice of S spaces for the set of states of an individual 

element (neuron) 

3) the choice of sets (or spaces) for connections between 

elements 

4) the choice of the set for the evolutionary variable 

(equivalent to time) 

5) the choice of an adequate dynamic law for the evolution of 

ANN. 

6) the formal derivation of models and their mathematical 

research. 

7) methods, algorithms and approaches for determining 

relationships and nonlinear activation functions 

8) interpretation of ANN solutions, especially in applications 

9) software and hardware implementations 

 

Initially, point 5 was implemented empirically, by analogy of 

behavior, or from the desire that the behavior of ANN should 

be in accordance with the principles of the subject area where 

ANN is applied. 

Further, usually point 6 helps to build ANN and better 

understand the behavior of ANN. In some cases, the ANN 

model itself can be derived from a rigorous optimization 

problem. 

 

B.  The Hopfield model as an example of the classic ANN 

As a basic example of the implementation of paragraphs 1) -9) 

for ANN, we present the classical Hopfield model. Here: 

1) Architecture: the Hopfield model is a fully connected 

network (in principle, all elements may be connected to all); 

2) }1,0{S ; 

3) }{ ijJJ   is the matrix of connections (bonds), where ijJ  

is the connection of the element i  with the element j ; 

1RJ ij  ; 

4) Hopfield models most often use discrete time 

,...,,...,2,,0  nt     - time step; 

The formulas often use the designation of indices of discrete 

steps: ,...3,2,1,0 ; 

5) the symplest type of dynamics is: 

 





ji

iiji nsJfns ));(()1(                                    , (1) 

 

where   - parameters, f - sigmoidal function, )(nsi . – the 

state of 
thi element in moment n ; 
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6) The dynamics can be derived from minimization of the 

“energy” functional  jiij ssJE . 

Of course, many modifications of Hopfield had been 

considered: hierarchical, vector, with delay, etc. when 

fJS ,,  have evident extending, with using real values. For 

example, we may use 
1RS  or 

111 ... RRRS  . 

 

C.  Some generalizations of classical ANN 

However, more substantial generalizations of the ANN had 

been developed in parallel to classical case. So, we can 

mention complex-valued ANN, (
11, CJCS ij  , where 

1C (
1C is the space of complex numbers, (I. Aizenberd, Kak 

S., Chisley R., Miranker, M. Perus, Nitta T.); octonion ANN 

(T. Isokawa, Y. Kuroe, H. Iima); quaternion ANN (C-A. Popa, 

M. Kobayashi); p-adic ANN (A. Khrennikov, Tirozzi B.); 

ANN with Grossons (Ya. Sergeev)). 

Step 6) Includes methods, algorithms and approaches to 

defining }{ ijJ , functions f , parameters   for achieving 

ANN solution of the formulated problems. Often such 

problems are called learning rules (with teacher, without 

teacher, reinforce learning, training in spike networks and 

training in dendritic networks). 

Note that step 7) includes (when it is possible to investigate) a 

theoretical and practical assessment of the capacity of a 

certain class of networks. 

Also it is very important to use ANN in quantum mechanics  

and, most importantly, the use of the ideas of quantum 

mechanics in ANN in connection with quantum computing 

and parallelization of computational processes (D. Deutch, M. 

Perus, Chisley R. and many others). 

However, certain systems, processes lead to the need for 

further theoretical expansion of the possible construction of 

ANN, which appeared explicitly, as it seems, in the works of 

the author. Namely, we are talking about the ANN schemes, in 

which the input parameters, variables, and the bonds can 

simultaneously have MANY values (multiple-valued), unlike 

the previously known ANN schemes, when variables can, for 

example, take a single value not from }1,0{S , but, for 

example, the set m of the values 1m from 

},...,2,1,0{ Ksk  at given time moment. 

In this article, we further develop a description of such 

multiple-valued ANN. The main goals of this paper are to 

describe existing multiple-valued generalization of neural 

networks and to pose new research problems in developing 

and investigation of such objects. In section II we pose the 

description of basic construction of proposed generalization. 

Also we give the description of some aspects of learning 

processes for such networks. The problems of interpretation of 

the calculation results on with multiple-valued networks are 

posed in the section III. One important example of ANN with 

multiple-valuedness – namely ANN with strong anticipation is 

described in section IV. Some propositions for further 

research in the field of multiple-valued neural networks are 

describe in the section V of the paper.  

 

II. STATEMENTS OF RESEARCH TASKS FOR THE 

CASE OF MULTIPLE-VALUED ANN. 

Here in this section we describe some aspects of realization of 

ideas of accounting multiple-valuedness in artificial neural 

networks. The multiple-valuedness of neuron state, bounds 

and propositions for presumable learning of networks are 

considered in subsections below. 

A.  General considerations for possible multi-valued 

generalizations of the ANN 

Here we will discuss the new possibilities of expanding the 

scheme for considering steps 1) -9) from classical ANN neural 

networks into the case of neural networks with multiple-

valued solutions (MANN). Specific examples of such neural 

networks will be given in section 3, where ANNs are 

described with the strong anticipation property. 

Architecture (steps 1) -2)). Suppose that ANN elements can be 

multiple-valued, i.e. let us assume that each element i  from 

the set N  of network elements can have several values from 

the set i at the same time moment. As the simplest case, we 

can consider only two branches for all of the elements 

2i , where .  is the power of the set. But in 

principle there may be case when i . For 

simplicity, we can at first take the case ii  , . 

However, in principle, possible an heterogeneous case, when 

ji  . In the simple examples it is natural to consider  

  as a subset 
1R  (real Euclidean space). However, in the 

future one can also study more complex cases, for example 

 , consisting of a set of sets },...,,{ GBA , where 

GBA ,...,,  are sets in a certain space (for example, in 

Hausdorff space). In the following, we confine ourselves to 

the presentation of case ),...,,( 21 K  with 

KkRk ,...,2,1,1  unless otherwise specified. 

3) Bonds. Suppose that each of the presumable multiple states 

of one element can be associated with each of the multiple 

states of other element. That is, we have a set of bonds 

}{ jikk

ijJ  between elements i  and j which accounting states 

ik  and jk , Kkk ji ,...,2,1,  of elements. 

For fixed i  and j  then we have a matrix of relations between 

these elements (in this case, the size KK  ). An example of 

connections in real systems can be connections between two 

individuals in society: family, jobs, sympathies, etc. relations. 

4) Time As a parameter describing the evolution of the 

network, for simplicity, we take a discrete set 

,...,,...,1,0 nt  . For the Hopfield network, t  is usually the 

time, but it is possible in physics to find models where one of 
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the spatial variables acts as evolution variable. Also the case 

of continuous time may be considered just as for single-valued 

ANN. 

5) Dynamic laws. The choice of a dynamic law strongly 

depends on the choice of variable values in points 1) - 4). 

Even in the case 
111 ... RRR   there are already a 

large number of possible options. For the classical Hopfield 

network f  is a usual function, 
11: RRf  , which is called 

the activation function and is a function from the class of 

sigmoidal functions [1]. In the multiple-valued case, a 

function f  can also, in general, be a multivalued non-linear 

function of a multivalued argument: 
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.                                (2) 

 

That is, the function f  in such case generates multiple-

valued states of element at the time moment )1( n , 

depending on all the values of all elements at the moment 

)(n . But even more interesting variants are possible, when a 

multi-valued function depends on the past and the future, i.e. 

 

)})1(({)})({)},...,2({

)},1({)},({)},...,1({)},(({:





nmnn

nnlnlnf M





                                                                                     ,(3) 

 

where )}({)},...,({)},({)}({ 21 nnnn K  . 

In equation (3), both memory effects (where l  is the depth of 

delay) and advancing (where m  is the horizon of foresight) 

are taken into account. Note that it can have a complex shape 

(for example, an integral dependence), and the effects of delay 

and lead can be infiniti ),(  ml . But even the 

simplest case )1,1(  ml  or even )1,0(  ml  leads to 

completely new properties of such ANN. The fact is that then 

the nonlinear equation: 

 

)})1(({)})(({:  nnf  .                                   (4) 

 

in the simplest cases, takes the form: 

 

}){)},({)},(({)1( 1 jkk

ijiii Jannfn   .        (5) 

 

This equation is generally non-linear and can have many 

solutions, one solution or no solution for the state of an 

individual element. Then, complementing the set of values   

with the empty set ø, we call any sequence consisting of 

values chosen uniquely from all possible states at specified 

times by the branch of the MANN solution. The sequence of 

transitions by the branch of solution consisting of the values 

selected in a unified way from all possible states at specified 

points in time is named the MANN branch of the transitions: 

 

),(,...,),...,2(),1( )(

)1(

)(

)1(

)2(

)(

)1( mnmnp

mnj

np

nj

p

ij

p

i 

         (6) 

 

where it is assumed that the values )1()1(

i  go into value 

)2()2(

)(ij , etc. We assume that the transition from the empty 

value of ø is only possible to the empty value of ø. 

In case of reaching the empty value of ø, we say that the 

branch is terminated. 

At this stage of the research, it has so far been possible to 

investigate the scheme of equations (3) - (5) only in the 

simplest case, when is f  the piecewise linear. 

6) Formalism. So far, mostly single-valued ANN cases have 

been investigated. Examples of MANN were chosen 

empirically, following the samples of classical ANN and those 

that under certain conditions go into the usual unambiguous 

ANN networks. However, many classical ANNs (for example, 

Hopfield) and their classical generalization can be obtained as 

solutions of minimization (i.e., as optimization problems). We 

can expect that this way of formalization and derivation of 

neural networks is basic. Application of general minimization 

can also be applied in the case of MANN. However, it is clear 

that in this case it will be necessary to apply the modern 

apparatus of the calculus of variations and optimization for 

multivalued functional (see the discussion in [6]). 

 

B.  Training and identification of multiple-valued networks 

Here we describe other important features of MANN, which 

are closely related to their mathematical interpretation, and at 

the same time to the interpretation of the behavior of solutions 

for real problems. 

The first important new formulation is the problem of learning 

of MANN. For previously used, primarily “classical” 

networks - Hopfield models, multilayer perceptron, etc., the 

learning process (with teacher, without teacher, reinforce 

learning, etc.) is important. According to certain basic 

examples, the certain procedures (algorithms) exist of 

computing matrix of connections }{ ijJ  between elements i  

and j  of neural networks. Examples are the back-propagation 

process for a multilayer perceptron and the Hebb rule for the 

Hopfield model [1-6], and many others. Note, that for classical 

ANN, these algorithms (learning) are proved by mathematical 

reasoning. At the same time, even to generalize the "classical" 

ANN, the rules of learning are chosen mostly empirically 

(without evidence), but by analogy with the structure of 

known rules (for example, Hebb rules) and by analogy with 

the criterion of the correctness of the choice from the ANN 

prototype. 
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However, for MANN, the formulation of possible learning 

schemes is a difficult task (just in empirical approach, and 

moreover, in terms of mathematical justification in the general 

case). And the complexity here arises in connection with the 

possible multiple-valuedness of both the MANN states and the 

possible multiple-valuedness of connections between the 

elements.  

As with most classical and non-classical methods of 

identification, it is assumed that there is an original process, a 

system, which generates certain data sets. It is assumed that 

for an approximate description of the behavior of such 

systems (the generation of approximations to exact, in a 

certain sense, data), a model is used that provides such 

approximations. Then the most common task of identification 

is to choose a class of models for approximation, then choose 

a narrower subclass of models from a general class and then 

select the parameters of such sub-models, which ensures the 

convergence between real data sets and generated 

approximation models of solutions (data sets). We restrict 

ourselves to subclass of models with discrete time, namely 

artificial neural networks. Then the general problem of 

identification for such objects (MANN) is as follows:  

Identification task for MANN. Let there be some measure 

E(U, V ) of the deviation of the approximated solution (or 

approximation data) V from the exact solution (data set of the 

initial system U). For multivalued neural networks (MANN) it 

depends on many components: the rules for changing the state 

of the elements, the state space of the bonds and many others. 

Then the task of identification of MANN is to determine the 

parameters of the MANN (or part of the parameters) at which 

the minimum deviation E(U, V ) is achieved on a certain 

subset of the initial data. 

The formulation of the identification problem in the proposed 

form allows for a very large scope for detailing of specific 

tasks and used neural networks. So, the measure of deviation 

E(U, V ) can take a different form depending on the task and 

purpose. In the simplest case E(U, V ) may have norms 2L  or 

C . However, even in this case E(U, V ) may depend on the 

values only at the final moment of time, or on all the values of 

the elements on the trajectories at all moments in time. So the 

dimension of the space of adjustable (identifiable) parameters 

can be relatively large even for relatively simple neural 

networks. We also note that for neural networks with strong 

anticipation, we discovered the possibility of many-valued 

solutions, which in principle can significantly increase the 

dimension of the parameter space. As already indicated the 

idea of identification has already been encountered in various 

statements. So, one of the methods was the use of genetic 

algorithms. Another approach is the use of gradient methods. 

In principle the same schemes may be used also in multiple-

valued case. But it is the task for future investigation because 

it needs the adaptation and development of multivalued 

analysis and optimizations.  

There is still a lot of research to be done on this issue. 

However, it is already possible to express some thoughts about 

the formulation of problems, which, it seems, can help in 

further research. 

Option 1. Both elements and connections are multiple-valued. 

Multiplicity can have a different character, for example, just 

infinite sets for values (a more complex variant). In addition, 

the number of possible states may depend on time. More 

simple is Option 1a. 

Option 1a. Let the number of simultaneously possible states 

for each of the N  elements be fixed (for example 

1,  KconstK ), and let the number of connections 

between the elements i  and j  be also less than or equal to 

that of 
2K . It is interesting that, even for a case 2K , the 

differences from the classical case begin to appear. (In 

classical case )1( K  there is only one state for the element 

for the connection )( ijJ  between the elements i  and j ). 

In the case 2K  (let's call this as the “minimum” MANN), 

the elements i  and j  have 2 possible states and 4 possible 

connections )( ijJ . 

 

 

 

 

 

 

Fig. 1 Relationship of two two-state elements at moment n . 

 

 

Then, when training, it is necessary to train 4 connections 

between elements i  and j . If the branches (or trajectories) 

described above did not intersect (did not interact), then 

formally it would be possible to double the number of 

elements (for the case 2K ; the case of large, but finite K  

ones could be interpreted in a similar way). and if separate 

states from two different possible multiple - states did not 

interact with states of another type, (for example, 
)1(

iS  and 

)2(

jS ) then formally, we could assume  0)2)(1( ijJ  for this 

case and we would get two networks that are not connected 

with each other, each of which could be trained in its “classic” 

Hebb rule. 

)((1) nSi  

)((2) nSi  )((2) nS j  

)((1) nS j  

)((1)(1) nJ ij

 

)((1)(2) nJ ij

 

)((2)(2) nJ ij  

)((2)(1) nJ ij  
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In the case of the connection of such sub-states, the task of 

learning becomes much more complex. Interestingly, in this 

case, possible analogies with the convolution neural network 

are seen. 

But the importance of this complex option (multi-valued states 

and multi-valued connections) is still a consequence of the 

architecture for ANN. The point is in the storage capacity of 

information in ANN in general, and even more so in the 

MANN (which can be shown on the example of the Hopfield 

model and the hypothetical MANN, which is its 

generalization). It is recognized that in the Hopfield ANN 

information about the training images is stored in the 

connections between the elements [1-3]. Sometimes this 

property is called an analogue of holography. 

Moreover, for the Hopfield model, there are estimates of the 

storage N capacity of training images, for example, 

NMsave 14.0  where N  is the number of network 

elements, saveM  the number of recognizable different images 

by the network or NM save   in other works. 

Even in a simple case of a network with possible division 

)2( K  into two separate subnets, capacity has an estimate: 

214.0  NMsave , which is already a good result. 

With state correlation (and branches) due to a much larger 

number of links }{ )2)(1(

ijJ  an even greater increase in capacity 

can be expected with the same number of elements. This can 

probably be very important in possible implementation of such 

networks as technical objects or as objects implemented as 

programs on computers. 

A simpler option is when only one single connection is 

allowed (the same for all states) between the elements i  and 

j , i.e. when 2K  , 
)2)(2()1)(2()2)(1()1)(1(

ijijijij JJJJ  . 

Such a case is still very interesting, since it allows us to study 

and use the case of multiple-valued elements with the usual 

connections of the elements i  and j . 

Another important aspect of the general case of the MANN is 

the study of the possible types of the activation function f  

and its influence on the properties and behavior of the MANN 

solutions. 

As mentioned above, the poorly investigated problems are 

tasks related to the activation function f . Theoretically, the 

tasks related to f  can also be discussed in a similar way with 

the possibility of the multivalued activation function f  of 

states and connections of elements above. That is, in the most 

general case, the problem of MANN dynamics can be reduced 

to a general mathematical scheme of the dynamics of 

multivalued map :f . In the most general case, f  

is a multivalued mapping, and is the function on the space   

of subsets of the space. A well-developed mathematical 

apparatus of the behavior of multivalued dynamic systems and 

mappings can already be applied to such a formulation. It is 

theoretically known that in such case a language of dynamical 

systems and attractors, the task of learning ANN is equivalent 

to constructing (synthesizing) dynamical systems with the 

desired configuration of attractors. Such a theoretical (and, in 

principle, complete answer) way is complex and the subject of 

further numerous studies. However, due to the complexity of 

this way, and especially the need for computational 

experiments, it is important investigate simpler cases. The 

simplest (although still new and interesting case) is the case of 

a single-valued function f , but with the existence of a set of 

branches as solutions of nonlinear dynamic MANN equations. 

The results of such studies for simplest example will be 

presented (very briefly) in section IV. 

In this case, as the first attempts, you can take for analogues of 

the Hopfield network and analogs with the well-known Hebb 

rules. But at this stage it is generally possible to consider 

different versions of the functions f . We also note that now 

in the case of unambiguous ANN, various machine learning 

options, especially deep learning, are becoming more 

applicable. 

You can call this the methods of identifying rules (the laws of 

evolution ANN). As applied to the MANN variant with multi-

valued activation functions f , this leads to the need for 

further development in the direction of identification of multi-

valued dynamic systems. In particular, finding multi-valued 

functions f  with different machine learning options should 

be developed, but in the case of multi-valued components. 

Remark here that the examples of learning processes for 

quantum neural networks [7-10] may be useful as the 

prototype of learning for more complex networks with 

multivaluedness. 

Note that the identification of the MANN for really important 

tasks is closely connected with the interpretation of the 

MANN solutions. 

 

III.  TOWARD THE INTERPRETATION OF MANN 

SOLUTIONS. 

 

In classical ANN, the postulate is initially and even 

automatically built in concept that the ANN solution is 

unambiguous (or their trajectories is single-valued, like in 

single-valued dynamic systems). Then usually there are no 

problems with the interpretation of the solution in single-

valued case. In the case of discrete time, at these times, any 

quantities that uniquely characterize the states of a real system 

are measured. The values of the ANN solution at the same 

times are approximations (single-valued) of the true values of 

the system states. 

Regarding the MANN, due to the potential ambiguity of their 

solutions, there are much many opportunities for 

interpretations. It is important that the systems for the study 

and management, which are used by the ANN, are usually 

unambiguous. However, in connection with the MANN, it 

becomes necessary to allow as the possibility and ambiguity 

of the behavior of the source systems, i.e. the existence of 
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many branches. So far, this has been accepted in the 

interpretations of quantum mechanics. But it looks like this 

behavior may be interesting for other systems. 

If there are many branches for a general MANN, then the 

presence of many branches represents a larger set of 

presumable interpretations. If it is possible to obtain (measure) 

the value from each branch, then a set of values is obtained 

both as measurements and as the values of the MANN. 

However, then the perceived picture of the world would be 

perceived as multi-valued. However, usually as a result of 

measurements, a single-valued value of the variable being 

measured is obtained (not multiple-valued). Remark that 

remember the collapse of wave function to single state of 

quantum system under measurement. Then even in the case of 

many branches, there may exist an operator that turns many 

values into one perceived value. Often this operator may be an 

averaging operator. The rules for such averaging operator are 

very important for interpretation. So, the building of such 

operators constitute separate research problem and may 

including the investigation of history of considered multiple-

valued network. At the same time, we note that according to 

this unambiguous sequence, one can try to train or ANN for 

unambiguous interpretation, or at the same time restore the 

approximate learning rules for MANN along the only 

accessible measurable trajectory. 

 

IV.  NEURAL NETWORKS TAKING INTO ACCOUNT 

STRONG ANTISPATION AS AN EXAMPLE OF ANN 

WITH  MULTIPLE-VALUEDNESS 

 

In the previous subsections of the article, thoughts were given 

on the new possible features of multi-valued neural networks 

and the resulting prospects for theory and practice. It seems 

that with the further development of research in this direction, 

the proposals for the design of MANN and their applications 

will increase. 

However, it is already possible to specify an example of 

MANN with multiple values. Namely, this may be an example 

of ANN, taking into account the strong anticipation property 

introduced in the 90s by Daniel Dubois. Details of the study of 

such ANN are given, in particular, in [10] and others. Here we 

present only a very short summary, including information 

about not yet very common information about strong 

anticipation. 

Since the beginning of the 90th, D. Dubois introduced the 

system with strong anticipation [11]: “An incursive discrete 

system is a system which computes its current state at time t , 

as a function of its states at past times 1,2,3,...,  ttt , 

present time, t , and even its states at future times 

,...3,2,1  ttt   

 

)),..,1(),(),1(),2((...,)1(  txtxtxtxAtx
 ,   (7)

 

where the variable x  at future times ,...3,2,1  ttt  is 

computed in using the equation itself”.  

In relation to MANN, this leads to the need of considering 

dynamic equations of the form: 

 

}){)};({)};...;1({)};(({)1( ijjjji Jmnsnsnsfns 

 ,                                                                                        , (8) 

 

 Ni ,...,2,1 ; f - activation function, )(nsi  - element state 

at the time moment nt  , ,...,2,1,0n . 

First of all, the case of the Hopfield model modification had 

been considered taking into account strong anticipation, but 

when f  is usual single-valued piecewise linear function and 

}{ ijJ  is a matrix of connections fixed in time. One of the 

options for taking into account the anticipation is additive: 

 

 
 


ij ij

jijjij nsJnsJff ))1()()1((   ,      (9) 

 

where ]1,0[  is the parameter to account for strong 

anticipation. The case 0  corresponds to the absence of 

an account of anticipation. In the case of relation (9), only the 

case of a unique matrix of bonds and a unique function of 

activation is given. 

 

 

 

 

In Figure 2 below, for an illustration, a graph of the solution of 

the modified Hopfield network is shown taking into account 

strong anticipation ( 1.0 , 8N ), N  is the number of 

network elements, f  is piecewise linear. Elements of a neural 

network are shown on each of the horizontal planes 

corresponding to same time moments. Each arrow on the 

figure corresponds to a specific value from the set of possible 

values of the element states at a given moment of time, and 

Fig. 2 The increasing of number of solution branches in 

case with strong anticipation 

  ISSN: 2692-5079

Volume 2, 2020 25



the length of the arrow indicates the amplitude of separate 

value from set of presumable solutuins. Five time moments 

are represented at the figure (time moment increase from 

bottom to top of the figure 2).  

The analysis of Figure 2 shows the main possible new features 

of the multiple-valued MANN behavior. Namely: 1) the 

possible multivalued behavior of the MANN; 2) possible 

inhomogeneous solutions (for example, some elements have 

unambiguous solutions, and some elements have multi-valued 

values); 3) the potential possibility of "multiplication" of 

ambiguity; 4) implicit change of structure of solution due 

presumable change of branches in solution. 

The property 4 are very interesting and is new in comparing 

with case of neural networks with fixed structure. Moreover 

the useful space of values of elements may be unknown before 

the computation process. 

It is very important that for other MANN with ambiguities we 

should expect similar opportunities in behavior. Therefore, it 

makes sense to consider the hypothetical possibilities arising 

from this in theory and implementation of neural networks. 

Some of these features will be discussed very briefly in the 

next subsection. 

 

V.  POSSIBLE CONSEQUENCES OF THE USE OF ANN 

WITH MULTIPLE-VALUEDNESS 

 

To demonstrate the potential of possible polysemy in ANN, 

here we will give very briefly some of the tasks and 

hypotheses arising from such possibilities. Multiple-

veluedness suggested the following research directions: a 

possible connection with a probabilistic description; proposals 

for a relationship with quantum mechanics; generalizations of 

the classical theory of calculations and the theory of automata, 

and much more [10]. 

But definitely, one more direction should be emphasized, 

returning to the original sources of the concept of artificial 

neural networks. Namely - it is concerned understanding and 

modeling of mental processes in the brain. It is generally 

accepted that ANN is one of the main approaches to 

understanding the processes in the brain (including their 

modeling) [4, 5, 10, 12, 13] and a lot of other research. 

But almost always common in modern approaches is the 

postulate that considered basic ANNs are with unambiguous 

solutions. However, it can be proposed the presumable 

multiple-valuedness as a consequence of the property of 

possible ambiguity described in subsections 2–4. A discussion 

of some of these problems is given in the work [13] on models 

of consciousness. There are some possible consequences of 

the assumption about the role of polysemy for the processes of 

consciousness. Thus, the act of consciousness can be 

associated with the choice of an unambiguously perceived 

sensation from a whole set of possible states. 

Also an important area is the search for the possibilities of 

implementing multi-valued ANN not only for living systems. 

Possible candidates for the implementation of MANN can be 

found in modern photonics, where multi-photon element states 

[14] and multi-photon and multi-state message packets of 

photons between elements [15] are allowed. 

 

VI. BRANCHING NEURAL NETWORKS 

Branching of solutions of MANN opens absolutely new 

prospects for application of neural networks. Remark that 

neural networks had been constructed for definite problems 

solutions. In case of MANN because of presumable time-

dependent branching we can named such case as branching 

neural network (BNN). Due such possibilities the different 

networks may have different temporal branching structure. So, 

we can pose the question of searching networks with temporal 

structure of branching with optimal structure of set of 

branches. Moreover it may be posed the problem of optimal 

control of branches set for optimization the computations. 

Remark that for single-valued neural networks and just for 

multiple-valued networks with fixed structure of branches 

such problem cannot be established. 

Recently some efforts have been registered to expand the 

usual scheme of neural network construction. It is quite new to 

consider the case of multidimensional neural networks, where 

elements can take several values simultaneously [10]. One of 

the steps in the development of such a concept is branching 

neural networks, which are described in this paper. 

Definition. Let's call branched artificial neural networks in 

which the number of possible states (Case 1) or the number of 

elements increases with time by dividing the elements with 

multiplication (Case 2).  

The Case 2 is more simple and follows in many respects the 

classical scheme.  

 

 

X X 

X X X X 

X X X X X X X X 

 
Fig. 3 Simplest example of Case 2. The number of elements double at 

each time step. X marks the “active” values of element. Here we 

represent three time steps (from top to down). 

 

 

Much more interesting is the Case 1 with an increase in the 

number of possible states, or the case of combining cases one 

and two. Here on the Fig.4 we give the simplest example for 

Case 2. 

 

O/O X/X X/O 

X/O X/X X/O 

O/O X/X X/X 

 
Fig. 4 Simple example of the network with constant number of 

elements (here N=3) and many but fixed number of states (here 

M=2). Here X correspond to “active” states of elements and “O” to 

“nonactive” (virtual) states. For example X/X corresponds to two 

“active” states of element at the same time. Here we represent three 

time steps (from top to down). 
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X X X 

X X/X X/O O/O 

X X/X/ 

X/X 

X/O/ 

O/X 

X/O/ 

O/O 

X/ 

X 

O/O 

X 

O/O/ 

O/O 

 
Fig. 5 Case of increasing the number of elements and increasing the 

number of states with time. Here we represent three time steps (from 

top to down). We show 3 elements at initial moments, 4 elements at 

second and 7 elements at third step. Some multiple states of elements 

displayed for third time step (for example X/X/X/X). 

 

 

In each of these three cases, one of the main problems is 

teaching the neural network. Let us first discuss the variant 

with multiplication of elements as a simpler one. For 

simplicity we will consider that an element has only two states 

and the number of elements doubles at each step. One of the 

common tasks of teaching classic neural networks is the 

following. There is a set of inputs and corresponding outputs. 

The training consists in selecting the neural network 

parameters. Most often the selected parameters are the values 

of links between elements. First, let's remind the usual training 

of back-propagation. If initially the structure of elements and 

links is set, then the learning coincides with back-propagation, 

only in the classic back-propagation layers and links are taken 

regardless of time, and we have layers of the network at 

different points in time. 

The learning problem looks quite different when the 

composition of cells in layers is initially unknown and 

changes over time. One way out is to initially set the 

maximum number of cells on each layer that are initially 

assigned the "inactive" status. Actually working cells are 

"active". Note that this representation is very uneconomical. 

Thus, for N temporary steps, you should work with the 

MN  cells ( M  - the maximum number of elements on the 

layer). For 
N2...22 21  "active" cells we need all the 

elements (so far MN 2 ) for the simplest case of doubling 

the "active" elements. At the same time, we still need to 

process NM 2
 links (compared to only 
2222 ...842 M  for the "active" elements). 

In the case of unknown initial configurations of elements on 

the layers, it is necessary to specify a rule of cell division 

},...,1,1{"""" Miik activenonactive  depending on the 

previous solution, ie. where i - moment of time k - the 

element index on 
thi  time layer. It is logical to assume that if 

the element is not divided, then we can assume that the 

relationships of "active" cells with "active" cells may not 

change (remaining "trained"). One of the possible options is to 

"learn" the newly emerging links "active"  "inactive", 

"inactive"  "inactive", "old"  "new", "new"  "new". 

However, it may turn out that the "active""active" links 

may also be restructured. One way out of this situation is that 

every time there are new elements (multiplication), it is 

necessary to retrain all active connections. But this, of course, 

is very resource-intensive. Therefore, one should look for 

intermediate (approximation) solutions. Probably, we should 

rebuild the links locally only for newly born elements. Thus, 

even in the case of branched neural networks, many research 

tasks already arise from one case. Note only that in this case 

the training parameters (and in the tasks of error 

minimization) are not only the links between elements, but 

also the number and architecture of elements. 

Probably, it is necessary to reconstruct connections locally 

only for newly born elements. Thus, even in the case of 

branched neural networks, many research tasks already arise 

from Case 1. Note only that in this case the training 

parameters (and in the tasks of error minimization) are not 

only the links between the elements, but also the number and 

architecture of the elements. 

The Case 2 corresponds to another branching possibility - 

namely, the multivalence of branching states of the elements, 

including the increasing number of states in the time of each 

of the elements. Again, the simplest option is to set the 

maximum number of states of the element. And initially all 

states are "inactive", and among them there are active at the 

moment of time. Then in the process of learning it is necessary 

to set up all the links between all the states, which is again 

resource-intensive.  

Experience of working with multivalued neural networks has 

revealed the existence of the following situation. With a fixed 

number of elements, the number of "active" states of elements 

can reach tens and hundreds of thousands over time. And there 

is a problem what to do with such reproduction (probably, 

exponential over time). It would seem that it was possible to 

multiply the number of elements so that a single element had a 

maximum permissible (limited with a fixed restriction) 

number of elements. However, all this is resource-intensive 

and difficult to implement. The solution is coarsening of the 

element state space. In this case each element will have the 

maximum number of state classes K . Probably, at the 

following researches it will be proved that such coarsening 

will be used with adequate approximation of the case of 

infinitely multiplying states K . Perhaps the statistical 

mechanics with a brutal apparatus will be useful here. 

Here arises also a whole complex of proposals for the 

construction of neural networks with a given optimal structure 

for a specific given problem. 

It is natural to raise a question about practical applicability of 

branched neural networks. The first example is dendritic 

neural networks, especially in brain and its models. The 

second example of systems with branching structure is 

interpretation of Everett quantum mechanics and branching 

neural networks are suitable for their modeling. And thirdly, 

branching neural networks can be useful as models for 

classical branching processes. 

Presumable multiple-valued structure of MANN (especially of 

branching networks) allows considering the problem of 
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parallel computation on the new background. As usual the 

new properties follows to the new research problems. For 

example new aspects arises in the capacity problem of neural 

network which earlier had been considered for case of single-

valued networks (see [16]). Multi-valuedness can increase the 

capacity. Also the branching of networks may follows to the 

super-computation ability of networks (see the discussion of 

cellular automata case in [17]). 

 

VII.  CONCLUSIONS 

Thus, in the present paper, we give considerations on artificial 

neural networks with multi-valued solutions. Architecture and 

learning processes are discussed. Generalization of Hopfield 

model with strong anticipation is considered as the example of 

neural networks with multiple-valuedness. Both general 

considerations and examples of how to implement the concept 

in the form of the simplest Hopfield model with strong 

anticipation are given. Opportunities for developing the 

concept and setting specific research objectives are also 

discussed. It also should be stressed implicit multiple-

valuedness of the solutions by temporal branching of solutions 

and the possibilities of branching neural networks. 
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