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Abstract—Identifying codes in graphs are related to the d(y,z) < r} contains all the predecessors at distance at most
classical notion of dominating sets [1]. Since there first » from z (x within).
introduction in 1998 [2], they have been widely studied and

extended to several application, such as: detection of faulty The problem with identifying code is finding one with the
processor in multiprocessor systems, locating danger or threats fewest elements. This problem is known to be an NP-complete
in sensor networks. problem [14].

Let G=(V,E) an unoriented connected graph. The minimum  Our work studies this problem in oriented graphs, particularly

identifying code in graphs is the smallest subset of vertices C, in griented paths and circuits. Thus, some partial results were
such that every vertex in V have a unique set of neighbors in  gptained.

C. In our work, we focus on finding minimum cardinality of an

identifying code in oriented paths and circuits.
II. IDENTIFYING CODE IN ORIENTED PATHS

Keywords: Identifying code, Oriented paths, Circuits. As mentioned before, we are interested in finding an

optimal identifying code in oriented paths and circuits.

First, we give some notations that will be used in the next
After their introduction for modelize the problem of paragraphs.

detecting a failures in multiprocessors system[2], the notioVe denote byP,, an oriented path of length, ie it contains

of identifying code have been also used in numeriougxactly n + 1 vertices, andC, a circuit of lengthn. Let

applications such as locating and detecting danger or threafd, (G) denotes the minimum cardinality of aridentifying

in indoor environments [3] and wireless Network Monitoring code in graptG.

[4]. Actually, the theories and the applications of identifying

code attracted the attention of many researchers. This led First, we investigate the 1-identifying code (or simply

to many results that have been obtained in hypercubes [5identifying code, if there’s no ambiguity) then the 2-identifying

[6], grids [7], [8], paths and cycles [9], [10], [11], [12]. An Code.

updated bibliography on the subject can be found in [13].

I. INTRODUCTION

A. 1-lIdentifying Code

Let G = (V, E) a simple, connected and undirected graph, Lemma 1: A subsetC' C V is an identifying code irP,
whereV is the set of vertices and’ the set of edges. We if and only if: 1.

call a code any noempty subset of vertices and its elements

a codewords. We defineB,.(v), a ball of centerv and radius 1) The two verticesy, andx; belong to the codé€’,

r by B,(v) = {u € Vl]d(u,v) < r}, whered(z,y) denotes 2) For every pair of consecutive vertices and z;41,

the length (number of edges) of the shortest path between the i€42,3,...,n =1}, x; or z;;, is a codeword.

verticesx andy. 3) For every triplet of consecutive vertices, x;.1 and

Thus, anr-identifying code is any subsét C V' such that: Tiv2,1 € {2,3,...,n—2}, x; Or z;12 is @ codeword.
1) VoeeV,B.(v)NnC #0, Proof: For (1), zg is covered by itself, themy; must be
2) B.(uynC#B,.(v)NC, forall u,veV,u#w. a codeword. In additionz:; must belong to code to separate

) - ) the pairs of vertice$zo, z1).

Therefore, the first condition ensures that every vertice of-or the second condition, suppose thatt C andz;, ¢ C.
the graph is covered by at least one codeword, and the secofflen 7-(x,,,1) = () (x,1 isn't covered). Then either; or
one ensures that every pair of different vertices is separated, , must belong to the code.

In .Othel’ WOFdS, each vertex of the gl’aﬁzhls covered by a For (3), suppose that neitheg nor Tito be|ong to the code.
unique set of codewords. The sBt(v) N C, denoted also by Then we have two cases:
I.(v), is called ther-identifying set of v (simply identifying

set whenr = 1). Casel Ifz;11 € C, thenZ (x;41) = I (miy2) =
For an oriented grapty = (V, A), we just replaceB,.(v) N C {zi+1}, ie the two vertices;;1; andx; o aren’t
by ', (v) N C = I (v), where the sel’ [z] = {y € V | seperated.
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Case 2: Ifz;41 ¢ C, necsseraly the two vertices,;
andz; o will not be covered because (z;41) =
AN (xi+2) = @

Thus, in the two cases eithef or ;.2 must be a codeword.

0 1 2—€ D—(5—0 P n=8=2[3]
000006000 =
0 1 @) 3 4 () B D—0® 9 n=10=1[3]

One can see the necessity and the sufficiency of the three

conditions to cover all the vertices @,,, this comes from

the fact that every semi-ball contains exactly two consecutive

vertices.

Fig. 1 — An Example of identifying code in oriented paths of
length 7,8 and 9

Now, let's show the sufficiency of the three conditions for the

separation.
Let z; andz; be two vertices, then we have two cases:

Case 1 The vertices are neighbours. Without loss of genQ[

erality, we putj = ¢ + 1. Above, we have shown
that Condition (1) separates the verticas and
x1. Therefore, by Condition (3), we known that
xzi—1 € C or z;41 € C, then we havel —(x;) #
I~ (x;). Thus,z; andz; were separated.

Case 2
d(Ii,.’,Ej) Z 2.
Suppose, without loss of generality, that =
i+ 2. Then, we hava'[ [z;] = {xi—1,%;} and
Fl_[:vj] = {.I'i+1,$i+2}, but by Condition (2),
we haveZ™ (z;) # I~ (z;). Thenz, andx; are
separated.

This completes the proof of the lemma.
[ |

By the following theorem we give a minimum cardinality
of an identifying code in oriented paths.

Theorem 1. For an oriented patf®,,, we have:

2p if Nn=3p,
M;(Pn)=<2p+1 ifn=3p+l
2p+2 if n=3p+2

Proof: Let V' the set vertices of?,. If we denote byL

x; et x; are not neighbours, ie the distance

To conclude, we exhibit an identifying code which reaches
the bound for each case. Thus, we can chadse {z;|i =
3] and i = 1[3]} for all cases (see figure 1). [ |

B. 2-Identifying Code

Before proceding to the proof of our results we need the
following result:
Let P, = {:vo,xl, ..
C a code inP,,.

., Zn} an oriented path of length, and

Lemma 2: A subsetC is a2-identifying code inP,, if and
only if the following three conditions are satisfied: 1.

1) The verticesrg,z; andzs must belong taC,

2) For every group of three consecutive vertices,
Xy Tiv1, Tig2, © € {3,4,...,n — 2}, at least one
belong to the cod€’,

3) For every group of four consecutive vertices,

Tjy Xjt1,Lit2, Lit3, 1€ {3,4, RN (e 3}, we can’t
havez; ¢ C andx; 3 ¢ C.

Proof: For the condition (1), ifzg ¢ C, then we have
I [zo] = 0 (the vertex is not covered). Thus must be a
codeword.
For (2), we can see that if any of the three vertices
Xy Tiy1, Tiyo, fOralli e {3,4,...,n—2}, is not a codeword
then Z—(z;42) = (0 which contradicts the fact that’ is a

the set of vertices identified by one codeword (or covered byovering code.

one codeword). Then, the other vertices|{V/L|) are covered
by at least two codewords. In other words,double covers
these vertices. Thus, using the fact that < |C| (at most|C|

Finaly for the condition (3), suppose that neithgmor x; 5 is
in C then the two vertices; 2 andz;. 3 will not be separated
becauséZQ_ (.I'H_g) = IQ_ ($i+3) = {$i+1,l‘i+2}. ThUS,Ti eC

vertices are covered by one codeword), therefore we have th z;3 € C, forall i € {3,4,...,n —2

following inequality

2V = L)) + 1Ll < Y [Ty [zl < 2C)

z,€C
2lV| — |L| <2|C| < 2[V|-|C|<2(C|
& 2vi<ic|
which leads to )
n
Cl> | =
a2 2]

Let n = 3p + ¢, with ¢ € {0, 1,2}. Thus we obtain:

3] [

3
Therdore: If g = 0, then[22] = 0. If ¢ = 1, then[2%1] = 1.
And finaly, if ¢ = 2, then[Z!] = 2.

Noow

3
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We remark that the condition (1) and (2) are necessary and
sufficient for the condition thatl’; [z;] N C' # 0 for all
1€{0,1,...,n}.

We need to show that the three conditions of the previous
lemma are sufficient for the separation. bgtandz; be two
distinct vertices. Thus, two cases appear:

Case 1 The two vertices are neighboyrs; i+ 1. In this
case, by (1) we have the paifsy, 1), (21, z2),
(xz2,x3) seperated, and by the condition (3), we
havex;_3 € C andz; € C for all pairs(z;, x;41),
wherei € {3,4,...,n— 1}. We can observe that
5 (x;) # I, (x441) for all pairs of consecutive
vertices. Thus, the vertices andz; are separated
by the codeC.

Case 2 The two vertices; andz; are at distance at least
2, ie d(x;,z;) > 2. In this case, ifd(z;,z;) > 2
( > i+ 2), then by (2) we haveZ; (z;) #



Engineering World g5

Open Access Journal 2

ISSN: 2692-5079

Z5 (x4), and if d(z;, z;) = 2, then by the condi-
tions (2) and (3) we have alsb; (z;) # Z; (z;).

Thus, in this case, alsp;, andx; are separated

by the codeC.
[ |

For more clearness, we will denote each vertexoy its
subscripti.
We know that eacl2-identifying code is2-separator inp,.
Also, we know that for each vertexe P,, (i > 2) we have
LS [i]AT, [i + 1] = {i — 2,i + 1}%, thenV i € P,, one of
the verticesi — 2 and ¢ + 1 must belong toC' (condition
(3) of lemma 2). Thus, we have— 2 € C ori+1 € C
for each vertexi € {2,n — 1} from P, (see figure 2).
Such disjunction will be called (ie—2 € Cori+1 € C)
Elementary Constraint (EC), so it is abbreviated ds-2Vvi+1.

Fig. 2 — One of the two vertices 7 or ¢ + 3 belong to a code
to separate : +2and ¢ + 3

Next, we introduce an example which clear up so
notations that we will use in the rest of this paper.

Example 1: Let P19 = x9, 21, - ..,x9, an oriented path o

length 9. To obtain &-identifying code we have to separate

nine pairs of consecutive vertices. Thus, we have nine
to satisfy those we enumerate as followg\v 3, 3V 6, 6V

9, 1v4, 4v7, 2Vv5 5V 8. Note that we omit the two

ECs which separate the pairs (0,1) et (1,2), because

are separated (condition (1) of lemma 2). The set of the

constraints will be calle@eneral Constraint (GC). This set of

elementary constraints (or GC) can partitioned in three subse

of constraints, calledPartial Constraints (PC), such as :

0V3,3V6,6V9
1V4,4V7
2V 5,5V 8

However, in order to get a general formulation, we give som

adaptation for this notation. Thus, we can write the above
as follows:

OVO+1x3,0+1x3VvV0+2x3,0+42x3V0+3x3
IV14+1x3,1+41x3Vv14+2x3 (Cy)
2V24+1x3241x3V2+2x3 (Cq)

we callC;, i = 0,1, 2, the partial constraint.

In general, if the number of verticessis then we suppos
thatn = 3p + ¢, with p € {1,2,...,[2]} andq € {0,1,2}.
Thus the PCi has the following form:

iVi+1x3,i+1x3Vit2x3, ... i+ (si—1)x3Vi+s; x3

1AAB = AU B\ AN B, called symmetric difference
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where s; is the greatest integer for which the following
inequality checked:

14+ s; x3 < n.
In the above example, we hayg = 3 for the PCC, .

Let V; be the set of vertices in the PC We remark that
VinV; =0, for all i # jli,j € {0,1,2}. In other word, all
the PCs have disjoint sets of vertices.

Thus, satisfying the GC, to obtain a2ridentifying code,
amounts to satisfy all PCs.
Using this notation, we get the following result:

Theorem 2: Given an oriented pati®,, of lengthn, where
n=3p+q andq € {0,1,2}. If C is an2-identifying code in
P,.. Then:

1) If p=0, thenMy (P,) =q+1
() f ¢ = 0 p = 1, My(P.) =
32—” +1 if piseven
w if pisodd
3) f ¢ = 1, p > 1, My(P,) =
32—” +2 if piseven
w otherwise
(4) f ¢ = 2, p > 1, My(P,) =
me 3p S
5 +2 if pis even
@ + 1 otherwise
f - L
Proof: If p =0 (n <2)the minimum cardinality of

a 2-identifying code inP, is deduced from the first condition
of lemma 2.
For the second case, je> 1 andq = 0, we know, by the
ndition (1) of lemma 2, that the vertic@s1 and 2 belong
Ségthe code, which satisfies the first EC of the PCs 0,1 and 2.
n the other hand, we have, by condition (2) of lemma 2,
F]gecessary at least one codeword betwgehand 5, thus we
ave one EC between the PCs 0,1 and 2 for which two vertices
are a codeword. Without loss of generality, Jethis vertex,
then this satisfies two ECs in the PC 0. In this case, we need to
satisfy (p — 3) ECs, then at Ieas|’t”—;3] codewad are needed
to satisfy the rest of ECs in PC 0.
n addition, for each of the partial constraints 1 and 2 we
Pcégave one elementary constraint satisfied (sinee C), then
p—2) ECs aren't satisfied for each one. Thus, at Ie{a‘@g]
codewads are needed to satify the rest of ECs for PCs 1 and
2

EC

th

(COWe conclude that we need, totally, at least:
p—2 p—3

el

codewads to satisfy the general constraint.

If pis even, thenM; (P,) > 22 + 1. Else M, (P,) >
3(p+1)

.2 . .
Finally, we construct a 2-identifying code that reaches the
bound to conclude. Indeed, we use the following construction:
We take all vertices € V', wherei is even and adding vertices
0 and1.

The proof of the casg > 1 andg = 1 is similar. Indeed,
concerning the first EC of CP 0, we haige-1) ECs to satisfy,

4+2[

e
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0—0 0 10 600 —€ Lemma 3: LetC, = {1,2,...,n,1} a circuit of lengthn.
C is a 2-identifying code focC,, if and only if the following

Fig. 3 — 2-identifying code (C = {2,4, 6,8} U {0,1}) for an conditions are satisfied:

oriented path of length 8 (n = 3 x 3 + 0 vertices)

1) For all group of three consecutive vertices z;;
andz,,- at least one of them is a codeword,

2) For all group of four consecutive vertices
Ziy...,x;43 we could not havex; ¢ C and
Ti+3 ¢ C.

since0 € C. Thus, we need at leaft*] codewads. For the
PCs 1 and 2 we need, respectively, at lgds®] and [252]
codewads to satisfy the rest of elementary constraints. Thus,
we need at least :

[p — 3] {p — 2} [p — 1] Proof: The proof is similar to lemma 2. Except adding the
4+ + +

5 5 5 condition that the distance betweémnd j isn’t greater than
that betweery andi to show the sufficiency and the necessity
codewad. of the conditions (1) and (2). ]

Then, if p 35 e)ven, thenM, (Pn) = 3 + 2. Else In the case of circuit, Although the reasoning is similar as

_ +1 . . . -
My (Pn) = =5 in oriented path, there is, however, some differences. Thus, we
define a partial constrainit(i € {1,2,3}) as follow:

7 - 0—0—C—~0—0—0-0 IVi+1x3,i4+1x3Vi+2x3, ..., i+(s;—1) x3Vi+s; X3, i+s;X3Vh;
Fig. 4 — A 2-identifying in an oriented path having n = 3 x wheres; is the greatest integer such:
3+ 1vertices(p=3,¢g=1) i :
1+5x3<n

£nd h; is such thati + (s; + 1) x 3 = h;( mod [n]), (ie

To conclude, we exhibit a code reaching these boun hi € {1,2,3}).

Indeed, we remark that for the code= {i|: is evert U{0, 1}
the bound is attained (see figure 4).

Example 2: LetC, = {1,2,...,n,1} be acircuit of length
n. Suppose that = 10, thusp = 3 andg = 1. Then the PCs,

Finally, the proof for the last case (> 1 andgq = 2) 12 et 3. can be written as follows:

is also similar, we havép — 1) ECs to satisfy for the PCs
0 and 1, and we need respectivey at leg&f] and [22]

codewads. For the PC 2 we havyg—1) EC, since2 € C then 1v4,4v7,7v10, 10Vv3, (i=1)
we have(p — 2) ECs to satisfy, then at leaft52| codewads 2V5,5V8, 8V 1 (i=2)

3V6,6V9, 9V2 (i=3)
denoting byi|j the elementary constraintv j. Then the GC

are needed. Thus, we need at least :

p—2 p—1 is written:
i+2 {—2 l i {—2 W 1j417110[3/6]912[5]s1
codewads to satisfy the GC. If, for example,n = 12, then the GC will be:
If p is even, thenM,; (P,) > 32_;) + 2. If pis odd, then 1]4|710|1, 2|5|8]11]2, 3|6/9]12|3

M; (Prn) > w. To cortlude, we just consider the same
construction as the previous cases to exhibii-identifying
code reaching the bound. [ ]
Thus, we have determined the optin2aidentifying code.

0—0—00—0—_5—0—0—0—1—0® The result is given by the following theorem:

Fig. 5— An Example of 2-identifying code in an oriented

path with 3 x 3 + 2 = 11 vertices (p = 3, ¢ = 2) Theorem 3: Let C,, be a circuit of lengthu. Then:
[1l. 1 DENTIFYING CODE IN CIRCUITS _ 3 if n=4, (2)
. . o My (Cn) =5, if n=2k k>3 (3)
In circuits we give an optimat-identifying code. ST ehR=
k+1 ifn=2k+1,k>2, (4)

A. 2-ldentifying Code o )
o N Proof: For (1), it is clear that, ifn < 3, then(,, can't
In the case of circuit, the two conditions of the lemma 2admit a 2-identifying code because there are twin vertices
are still valid. Then:

2We cal twin vertices every two vertices, v such thatl, (u) = Ty (v)
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For (2), we show that there is n@-idenifying code of
cardinality 2 in a circuit of length4. Indeed, suppose
that there are only two vertices as codeword. Without
loss of generality, letl and 3 be these vertices, then
I; (1) = I;(3) = {1,3}. Therefore at least three vertices
must belong to a code. Finally, it suffices to exhibit a code
with cardinality 3 to conclude (see figure 6).

Fig. 6 — Exemple de code 2-identifiant dans C4

Concerning (3), ie the case where the length of the circuit
is even . = 2k), we know that there i§ = k ECs to atisfy,
therefore we need at leaktcodewords.

It suffices to exhibit a 2-identifying code of cardinality
to conclude. Thus, we can take as a code the Get=
{ilt even 1 < i < n} (see the figure 7) hence the result.

Fig. 7 — An example of 2-identifying code in circuit of length
12. Six codewords are needed to cover and sepa-
rate all the vertices of the circuit.

Similarly to the previous case, when= 2k +1 (n is odd)
we need at least + 1 codewords to satisfy all the ECs.

Thus, there is at least one EC which has its vertices belong

to the code. We want to show thgt| > k + 1. To do it, we
suppose that we can find2aidentifying codeC' of cardinality
k+ 1 in a circuit of lengthn, and we get to a contradiction.
Since we have: + 1 vertices as codewords, then necessarily
two codewords are adjacent. Without loss of generality] let
and 2 these two vertices, or one of the two verticegand 3
must be a codeword by the condition (2) of lemma 3. Thus,
for every2-identifying code at least three consecutive vertices
are codewords.

Now, there are two cases:

Case 1: Suppose that the length of the circuit is equal to
n =4p+3 (k = 2p+ 1). Since at least three
consecutive vertices are codewords ( as mentioned
previously), then we need to cover and sepatate
vertices. But by conditions (1) and (2) of lemma 3,
we know that for every four consecutive vertices,
at least two of them are codewords. Thus, we
need at leaskp vertices as codeword, therefore
2p+ 3 = k + 2 vertices belong to a code (see the
example of the figure 8). Hence the contradiction.
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Fig. 8 — An example of optimal 2-identifying code of cardi-

nality 2 x 2 + 3 in circuit of length 4 x 2 + 3

Case 2: In this case, we have = 4p + 1 (k = 2p).

Observing this case, we see that it's similar to
the first one. We have =4p+1=[4(p—1) +
3]+2 (k= 2p). Thus,2p— 1) +3 =k +1
vertices are codewords among thé — 1) + 3
vertices that a circuit contains (by condition (2)
of lemma 3) adding the three consecutive vertices
belong to the code.

Fig. 9 — An example of two optimal 2-identifying code

In the case where the remaining two vertices don’t
belong to the code, saying, without loss of gener-
ality, n — 1 andn — 2, then necessarely the three
verticesn — 3,n — 4 andn — 5 belong to the code
(see the left representation in figure 9). Thereby,
we have4(p — 2) vertices that are couvered and
separated b (p — 2) codewords plus. — 3,n — 4
etn—>5 and the three consecutive vertices. In total
there is2(p —2)+6 = 2p+2 = k+ 2 codewords.

If, eithern — 1 or n — 2 belong to the code then,
we will need2(p — 1) codewords for covering
and separating thé(p — 1) vertices (conditions
of lemma 3) adding the three consecutive vertices
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(see the left representation in figure 9). Thus, in
total, we will havel+2(p—1)+3 = 2p+2 = k+2
codewords.

Therefore, in the two cases, we will have at least- 2
codewords.

We conclude by exhibiting &-identifying code reaching this
bound. The latter, constituted of the set of vertid@s=
{2}u{i=1[2],1 <i<n}. [ |

IV. CONCLUSION

In this work we gave some results about identifying code

in oriented paths and circuits. It remains to determine the
minimum cardinality for the case of a 1-identifying code in
circuit. In addition, the question of the general casej-e
identifying code is also an open problem.
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