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Abstract—Identifying codes in graphs are related to the
classical notion of dominating sets [1]. Since there first
introduction in 1998 [2], they have been widely studied and
extended to several application, such as: detection of faulty
processor in multiprocessor systems, locating danger or threats
in sensor networks.
Let G=(V,E) an unoriented connected graph. The minimum
identifying code in graphs is the smallest subset of vertices C,
such that every vertex in V have a unique set of neighbors in
C. In our work, we focus on finding minimum cardinality of an
identifying code in oriented paths and circuits.
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I. I NTRODUCTION

After their introduction for modelize the problem of
detecting a failures in multiprocessors system[2], the notion
of identifying code have been also used in numerious
applications such as locating and detecting danger or threats
in indoor environments [3] and wireless Network Monitoring
[4]. Actually, the theories and the applications of identifying
code attracted the attention of many researchers. This led
to many results that have been obtained in hypercubes [5],
[6], grids [7], [8], paths and cycles [9], [10], [11], [12]. An
updated bibliography on the subject can be found in [13].

Let G = (V,E) a simple, connected and undirected graph,
whereV is the set of vertices andE the set of edges. We
call a code any noempty subset of vertices and its elements
a codewords. We defineBr(v), a ball of centerv and radius
r by Br(v) = {u ∈ V |d(u, v) ≤ r}, whered(x, y) denotes
the length (number of edges) of the shortest path between the
verticesx andy.
Thus, anr-identifying code is any subsetC ⊆ V such that:

1) ∀ v ∈ V,Br(v) ∩ C 6= ∅,
2) Br(u) ∩ C 6= Br(v) ∩ C, for all u, v ∈ V, u 6= v.

Therefore, the first condition ensures that every vertice of
the graph is covered by at least one codeword, and the second
one ensures that every pair of different vertices is separated.
In other words, each vertex of the graphG is covered by a
unique set of codewords. The setBr(v) ∩C, denoted also by
Ir(v), is called ther-identifying set of v (simply identifying
set whenr = 1).
For an oriented graphG = (V,A), we just replaceBr(v)∩C
by Γ−

r (v) ∩ C = I−r (v), where the setΓ−

r [x] = {y ∈ V |

d(y, x) ≤ r} contains all the predecessors at distance at most
r from x (x within).

The problem with identifying code is finding one with the
fewest elements. This problem is known to be an NP-complete
problem [14].
Our work studies this problem in oriented graphs, particularly
in oriented paths and circuits. Thus, some partial results were
obtained.

II. I DENTIFYING CODE IN ORIENTED PATHS

As mentioned before, we are interested in finding an
optimal identifying code in oriented paths and circuits.
First, we give some notations that will be used in the next
paragraphs.
We denote byPn an oriented path of lengthn, ie it contains
exactly n + 1 vertices, andCn a circuit of lengthn. Let
M−

r (G) denotes the minimum cardinality of anr-identifying
code in graphG.

First, we investigate the 1-identifying code (or simply
identifying code, if there’s no ambiguity) then the 2-identifying
code.

A. 1-Identifying Code

Lemma 1: A subsetC ⊆ V is an identifying code inPn

if and only if: 1.

1) The two verticesx0 andx1 belong to the codeC,
2) For every pair of consecutive verticesxi and xi+1,

i ∈ {2, 3, . . . , n− 1}, xi or xi+1 is a codeword.
3) For every triplet of consecutive verticesxi, xi+1 and

xi+2, i ∈ {2, 3, . . . , n−2}, xi or xi+2 is a codeword.

Proof: For (1),x0 is covered by itself, thenx0 must be
a codeword. In addition,x1 must belong to code to separate
the pairs of vertices(x0, x1).
For the second condition, suppose thatxi /∈ C andxi+1 /∈ C.
Then I−(xi+1) = ∅ (xi+1 isn’t covered). Then eitherxi or
xi+1 must belong to the code.
For (3), suppose that neitherxi nor xi+2 belong to the code.
Then we have two cases:

Case 1 If xi+1 ∈ C, then I−(xi+1) = I−(xi+2) =
{xi+1}, ie the two verticesxi+1 andxi+2 aren’t
seperated.
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Case 2: Ifxi+1 /∈ C, necesseraly the two verticesxi+1

andxi+2 will not be covered becauseI−(xi+1) =
I−(xi+2) = ∅.

Thus, in the two cases eitherxi or xi+2 must be a codeword.
One can see the necessity and the sufficiency of the three
conditions to cover all the vertices ofPn, this comes from
the fact that every semi-ball contains exactly two consecutive
vertices.
Now, let’s show the sufficiency of the three conditions for the
separation.
Let xi andxj be two vertices, then we have two cases:

Case 1 The vertices are neighbours. Without loss of gen-
erality, we putj = i+ 1. Above, we have shown
that Condition (1) separates the verticesx0 and
x1. Therefore, by Condition (3), we known that
xi−1 ∈ C or xi+1 ∈ C, then we haveI−(xi) 6=
I−(xj). Thus,xi andxj were separated.

Case 2 xi et xj are not neighbours, ie the distance
d(xi, xj) ≥ 2.
Suppose, without loss of generality, thatj =
i + 2. Then, we haveΓ−

1 [xi] = {xi−1, xi} and
Γ−

1 [xj ] = {xi+1, xi+2}, but by Condition (2),
we haveI−(xi) 6= I−(xj). Thenxi andxj are
separated.

This completes the proof of the lemma.

By the following theorem we give a minimum cardinality
of an identifying code in oriented paths.

Theorem 1: For an oriented pathPn, we have:

M−

1 (Pn) =







2p if n=3p,
2p+ 1 if n=3p+1,
2p+ 2 if n=3p+2.

Proof: Let V the set vertices ofPn. If we denote byL
the set of vertices identified by one codeword (or covered by
one codeword). Then, the other vertices (|V|−|L|) are covered
by at least two codewords. In other words,C double covers
these vertices. Thus, using the fact that|L| ≤ |C| (at most|C|
vertices are covered by one codeword), therefore we have the
following inequality

2(|V | − |L|) + |L| ≤
∑

xi∈C

|Γ−

1 [xi]| ≤ 2.|C|

so
2|V | − |L| ≤ 2|C| ⇔ 2|V | − |C| ≤ 2|C|

⇔ 2
3 |V | ≤ |C|

which leads to

|C| ≥
⌈

2n

3

⌉

Let n = 3p+ q, with q ∈ {0, 1, 2}. Thus we obtain:
⌈

2n

3

⌉

=

⌈

2(3p+ q)

3

⌉

= 2p+

⌈

2q

3

⌉

Therefore: If q = 0, then⌈ 2q
3 ⌉ = 0. If q = 1, then ⌈ 2q

3 ⌉ = 1.
And finaly, if q = 2, then⌈ 2q

3 ⌉ = 2.

n=10== 1[3]

8 n=9== 0[3]

n=8== 2[3]1 2 3 5 74 60

1 2 3 5 74 60

81 2 3 5 74 60 9

Fig. 1 – An Example of identifying code in oriented paths of
length 7,8 and 9

To conclude, we exhibit an identifying code which reaches
the bound for each case. Thus, we can chooseC = {xi|i ≡
0[3] and i ≡ 1[3]} for all cases (see figure 1).

B. 2-Identifying Code

Before proceding to the proof of our results we need the
following result:
Let Pn = {x0, x1, . . . , xn} an oriented path of lengthn, and
C a code inPn.

Lemma 2: A subsetC is a2-identifying code inPn if and
only if the following three conditions are satisfied: 1.

1) The verticesx0,x1 andx2 must belong toC,
2) For every group of three consecutive vertices,

xi, xi+1, xi+2, i ∈ {3, 4, . . . , n − 2}, at least one
belong to the codeC,

3) For every group of four consecutive vertices,
xi, xi+1, xi+2, xi+3, i ∈ {3, 4, . . . , n − 3}, we can’t
havexi /∈ C andxi+3 /∈ C.

Proof: For the condition (1), ifx0 /∈ C, then we have
Γ−

2 [x0] = ∅ (the vertex is not covered). Thusx0 must be a
codeword.
For (2), we can see that if any of the three vertices
xi, xi+1, xi+2, for all i ∈ {3, 4, . . . , n− 2}, is not a codeword
then I−(xi+2) = ∅ which contradicts the fact thatC is a
covering code.
Finaly for the condition (3), suppose that neitherxi norxi+3 is
in C then the two verticesxi+2 andxi+3 will not be separated
becauseI−

2 (xi+2) = I−

2 (xi+3) = {xi+1, xi+2}. Thusxi ∈ C
or xi+3 ∈ C, for all i ∈ {3, 4, . . . , n− 2}.
We remark that the condition (1) and (2) are necessary and
sufficient for the condition thatΓ−

2 [xi] ∩ C 6= ∅ for all
i ∈ {0, 1, . . . , n}.
We need to show that the three conditions of the previous
lemma are sufficient for the separation. Letxi andxj be two
distinct vertices. Thus, two cases appear:

Case 1 The two vertices are neighbours,j = i+1. In this
case, by (1) we have the pairs(x0, x1), (x1, x2),
(x2, x3) seperated, and by the condition (3), we
havexi−3 ∈ C andxi ∈ C for all pairs(xi, xi+1),
wherei ∈ {3, 4, . . . , n− 1}. We can observe that
I−

2 (xi) 6= I−

2 (xi+1) for all pairs of consecutive
vertices. Thus, the verticesxi andxj are separated
by the codeC.

Case 2 The two verticesxi andxj are at distance at least
2, ie d(xi, xj) ≥ 2. In this case, ifd(xi, xj) > 2
(j > i + 2), then by (2) we haveI−

2 (xi) 6=
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I−

2 (xj), and if d(xi, xj) = 2, then by the condi-
tions (2) and (3) we have alsoI−

2 (xi) 6= I−

2 (xj).
Thus, in this case, alsoxi and xj are separated
by the codeC.

For more clearness, we will denote each vertexxi by its
subscript i.
We know that each2-identifying code is2-separator inPn.
Also, we know that for each vertexi ∈ Pn (i ≥ 2) we have
Γ−

2 [i]∆Γ−

2 [i + 1] = {i − 2, i + 1}1, then ∀ i ∈ Pn one of
the verticesi − 2 and i + 1 must belong toC (condition
(3) of lemma 2). Thus, we havei − 2 ∈ C or i + 1 ∈ C
for each vertexi ∈ {2, n − 1} from Pn (see figure 2).
Such disjunction will be called (iei − 2 ∈ C or i + 1 ∈ C)
Elementary Constraint (EC), so it is abbreviated asi−2∨i+1.

Fig. 2 – One of the two vertices i or i + 3 belong to a code
to separate i+ 2 and i+ 3

Next, we introduce an example which clear up some
notations that we will use in the rest of this paper.

Example 1: Let P10 = x0, x1, . . . , x9, an oriented path of
length 9. To obtain a2-identifying code we have to separate
nine pairs of consecutive vertices. Thus, we have nine ECs
to satisfy those we enumerate as follows :0 ∨ 3, 3 ∨ 6, 6 ∨
9, 1 ∨ 4, 4 ∨ 7, 2 ∨ 5, 5 ∨ 8. Note that we omit the two
ECs which separate the pairs (0,1) et (1,2), because they
are separated (condition (1) of lemma 2). The set of these
constraints will be calledGeneral Constraint (GC). This set of
elementary constraints (or GC) can partitioned in three subsets
of constraints, calledPartial Constraints (PC), such as :

0 ∨ 3, 3 ∨ 6, 6 ∨ 9
1 ∨ 4, 4 ∨ 7
2 ∨ 5, 5 ∨ 8

However, in order to get a general formulation, we give some
adaptation for this notation. Thus, we can write the above PCs
as follows:

0 ∨ 0 + 1× 3, 0 + 1× 3 ∨ 0 + 2× 3, 0 + 2× 3 ∨ 0 + 3× 3 (C0)
1 ∨ 1 + 1× 3, 1 + 1× 3 ∨ 1 + 2× 3 (C1)
2 ∨ 2 + 1× 3, 2 + 1× 3 ∨ 2 + 2× 3 (C2)

we callCi, i = 0, 1, 2, the partial constrainti.

In general, if the number of vertices isn, then we suppose
that n = 3p + q, with p ∈ {1, 2, . . . , [n3 ]} and q ∈ {0, 1, 2}.
Thus the PCi has the following form:

i∨ i+1×3, i+1×3∨ i+2×3, . . . , i+(si−1)×3∨ i+si×3

1A∆B = A ∪ B \A ∩B, called symmetric difference

where si is the greatest integer for which the following
inequality checked:

i+ si × 3 ≤ n.

In the above example, we haves0 = 3 for the PCC0, .

Let Vi be the set of vertices in the PCi. We remark that
Vi ∩ Vj = ∅, for all i 6= j|i, j ∈ {0, 1, 2}. In other word, all
the PCs have disjoint sets of vertices.
Thus, satisfying the GC, to obtain an2-identifying code,
amounts to satisfy all PCs.
Using this notation, we get the following result:

Theorem 2: Given an oriented pathPn of lengthn, where
n = 3p+ q andq ∈ {0, 1, 2}. If C is an2-identifying code in
Pn. Then:

(1) If p = 0, thenM−

2 (Pn) = q + 1
(2) If q = 0, p ≥ 1, M−

2 (Pn) =
{

3p
2 + 1 if p is even
3(p+1)

2 if p is odd

(3) If q = 1, p ≥ 1, M−

2 (Pn) =
{

3p
2 + 2 if p is even
3(p+1)

2 otherwise

(4) If q = 2, p ≥ 1, M−

2 (Pn) =
{

3p
2 + 2 if p is even
3(p+1)

2 + 1 otherwise

Proof: If p = 0 (n ≤ 2) the minimum cardinality of
a 2-identifying code inPn is deduced from the first condition
of lemma 2.

For the second case, iep ≥ 1 andq = 0, we know, by the
condition (1) of lemma 2, that the vertices0, 1 and 2 belong
to the code, which satisfies the first EC of the PCs 0,1 and 2.
On the other hand, we have, by condition (2) of lemma 2,
necessary at least one codeword between3, 4 and5, thus we
have one EC between the PCs 0,1 and 2 for which two vertices
are a codeword. Without loss of generality, let3 this vertex,
then this satisfies two ECs in the PC 0. In this case, we need to
satisfy (p− 3) ECs, then at least⌈p−3

2 ⌉ codeword are needed
to satisfy the rest of ECs in PC 0.
In addition, for each of the partial constraints 1 and 2 we
have one elementary constraint satisfied (since1, 2 ∈ C), then
(p− 2) ECs aren’t satisfied for each one. Thus, at least⌈p−2

2 ⌉
codewords are needed to satify the rest of ECs for PCs 1 and
2.
We conclude that we need, totally, at least:

4 + 2

⌈

p− 2

2

⌉

+

⌈

p− 3

2

⌉

codewords to satisfy the general constraint.

If p is even, thenM−

2 (Pn) ≥ 3p
2 + 1. Else, M−

2 (Pn) ≥
3(p+1)

2 .
Finally, we construct a 2-identifying code that reaches the
bound to conclude. Indeed, we use the following construction:
We take all verticesi ∈ V , wherei is even and adding vertices
0 and1.

The proof of the casep ≥ 1 andq = 1 is similar. Indeed,
concerning the first EC of CP 0, we have(p−1) ECs to satisfy,
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0 1 2 4 63 5 7 8

Fig. 3 – 2-identifying code (C = {2, 4, 6, 8} ∪ {0, 1}) for an
oriented path of length 8 (n = 3× 3 + 0 vertices)

since0 ∈ C. Thus, we need at least⌈p−1
2 ⌉ codewords. For the

PCs 1 and 2 we need, respectively, at least⌈p−3
2 ⌉ and⌈p−2

2 ⌉
codewords to satisfy the rest of elementary constraints. Thus,
we need at least :

4 +

⌈

p− 3

2

⌉

+

⌈

p− 2

2

⌉

+

⌈

p− 1

2

⌉

codeword.
Then, if p is even, thenM−

2 (Pn) ≥ 3p
2 + 2. Else,

M−

2 (Pn) ≥ 3(p+1)
2 .

0 1 4 65 92 3 7 8

Fig. 4 – A 2-identifying in an oriented path having n = 3 ×
3 + 1 vertices (p = 3, q = 1)

To conclude, we exhibit a code reaching these bound.
Indeed, we remark that for the codeC = {i|i is even}∪{0, 1}
the bound is attained (see figure 4).

Finally, the proof for the last case (p ≥ 1 and q = 2)
is also similar, we have(p − 1) ECs to satisfy for the PCs
0 and 1, and we need respectivey at least⌈p−1

2 ⌉ and ⌈p−2
2 ⌉

codewords. For the PC 2 we have(p−1) EC, since2 ∈ C then
we have(p− 2) ECs to satisfy, then at least⌈p−2

2 ⌉ codewords
are needed. Thus, we need at least :

4 + 2

⌈

p− 2

2

⌉

+

⌈

p− 1

2

⌉

codewords to satisfy the GC.
If p is even, thenM−

2 (Pn) ≥ 3p
2 + 2. If p is odd, then

M−

2 (Pn) ≥ 3(p+1)
2 . To conclude, we just consider the same

construction as the previous cases to exhibit a2-identifying
code reaching the bound.

0 1 4 65 92 3 7 8 10

Fig. 5 – An Example of 2-identifying code in an oriented
path with 3× 3 + 2 = 11 vertices (p = 3, q = 2)

III. I DENTIFYING CODE IN CIRCUITS

In circuits we give an optimal2-identifying code.

A. 2-Identifying Code

In the case of circuit, the two conditions of the lemma 2
are still valid. Then:

Lemma 3: Let Cn = {1, 2, . . . , n, 1} a circuit of lengthn.
C is a 2-identifying code forCn if and only if the following
conditions are satisfied:

1) For all group of three consecutive verticesxi, xi+1

andxi+2 at least one of them is a codeword,
2) For all group of four consecutive vertices

xi, . . . , xi+3 we could not havexi /∈ C and
xi+3 /∈ C.

Proof: The proof is similar to lemma 2. Except adding the
condition that the distance betweeni and j isn’t greater than
that betweenj andi to show the sufficiency and the necessity
of the conditions (1) and (2).

In the case of circuit, Although the reasoning is similar as
in oriented path, there is, however, some differences. Thus, we
define a partial constrainti (i ∈ {1, 2, 3}) as follow:

i∨i+1×3, i+1×3∨i+2×3, . . . , i+(si−1)×3∨i+si×3, i+si×3∨hi

wheresi is the greatest integer such:

i+ si × 3 ≤ n

and hi is such thati + (si + 1) × 3 ≡ hi( mod [n]), (ie
hi ∈ {1, 2, 3}).

Example 2: Let Cn = {1, 2, . . . , n, 1} be a circuit of length
n. Suppose thatn = 10, thusp = 3 andq = 1. Then the PCs,
1,2 et 3, can be written as follows:

1 ∨ 4, 4 ∨ 7, 7 ∨ 10, 10 ∨ 3, (i = 1)
2 ∨ 5, 5 ∨ 8, 8 ∨ 1 (i = 2)
3 ∨ 6, 6 ∨ 9, 9 ∨ 2 (i = 3)

denoting byi|j the elementary constrainti ∨ j. Then the GC
is written:

1|4|7|10|3|6|9|2|5|8|1
If, for example,n = 12, then the GC will be:

1|4|7|10|1, 2|5|8|11|2, 3|6|9|12|3

Thus, we have determined the optimal2-identifying code.
The result is given by the following theorem:

Theorem 3: Let Cn be a circuit of lengthn. Then:

M−

2 (Cn) =















∅ if n ≤ 3, (1)

3 if n = 4, (2)

k if n = 2k, k ≥ 3, (3)

k + 1 if n = 2k + 1, k ≥ 2, (4)

Proof: For (1), it is clear that, ifn ≤ 3, then Cn can’t
admit a 2-identifying code because there are twin vertices2.

2We call twin vertices every two verticesu, v such thatΓ−

r (u) = Γ−

r (v)
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For (2), we show that there is no2-identifying code of
cardinality 2 in a circuit of length4. Indeed, suppose
that there are only two vertices as codeword. Without
loss of generality, let1 and 3 be these vertices, then
I−2 (1) = I−2 (3) = {1, 3}. Therefore at least three vertices
must belong to a code. Finally, it suffices to exhibit a code
with cardinality 3 to conclude (see figure 6).

Fig. 6 – Exemple de code 2-identifiant dans C4

Concerning (3), ie the case where the length of the circuit
is even (n = 2k), we know that there isn2 = k ECs to satisfy,
therefore we need at leastk codewords.
It suffices to exhibit a 2-identifying code of cardinalityk
to conclude. Thus, we can take as a code the setC =
{i|i even, 1 ≤ i ≤ n} (see the figure 7) hence the result.

1
2

3

4

5

6

7
8

9

10

11

12

Fig. 7 – An example of 2-identifying code in circuit of length
12. Six codewords are needed to cover and sepa-
rate all the vertices of the circuit.

Similarly to the previous case, whenn = 2k+1 (n is odd)
we need at leastk + 1 codewords to satisfy all the ECs.
Thus, there is at least one EC which has its vertices belong
to the code. We want to show that|C| > k + 1. To do it, we
suppose that we can find a2-identifying codeC of cardinality
k + 1 in a circuit of lengthn, and we get to a contradiction.
Since we havek + 1 vertices as codewords, then necessarily
two codewords are adjacent. Without loss of generality, let1
and 2 these two vertices, or one of the two verticesn and 3
must be a codeword by the condition (2) of lemma 3. Thus,
for every2-identifying code at least three consecutive vertices
are codewords.
Now, there are two cases:

Case 1: Suppose that the length of the circuit is equal to
n = 4p + 3 (k = 2p + 1). Since at least three
consecutive vertices are codewords ( as mentioned
previously), then we need to cover and separate4p
vertices. But by conditions (1) and (2) of lemma 3,
we know that for every four consecutive vertices,
at least two of them are codewords. Thus, we
need at least2p vertices as codeword, therefore
2p+3 = k+2 vertices belong to a code (see the
example of the figure 8). Hence the contradiction.

Fig. 8 – An example of optimal 2-identifying code of cardi-
nality 2× 2 + 3 in circuit of length 4× 2 + 3

Case 2: In this case, we haven = 4p + 1 (k = 2p).
Observing this case, we see that it’s similar to
the first one. We haven = 4p+ 1 = [4(p− 1) +
3] + 2 (k = 2p). Thus, 2(p − 1) + 3 = k + 1
vertices are codewords among the4(p − 1) + 3
vertices that a circuit contains (by condition (2)
of lemma 3) adding the three consecutive vertices
belong to the code.

1
2

n
n-1

n-2

n-3

n-4

n-5

1
2

n
n-1

n-2

n-3

n-4

n-5

Fig. 9 – An example of two optimal 2-identifying code

In the case where the remaining two vertices don’t
belong to the code, saying, without loss of gener-
ality, n− 1 andn− 2, then necessarely the three
verticesn− 3,n− 4 andn− 5 belong to the code
(see the left representation in figure 9). Thereby,
we have4(p − 2) vertices that are couvered and
separated by2(p− 2) codewords plusn− 3,n− 4
etn−5 and the three consecutive vertices. In total
there is2(p−2)+6 = 2p+2 = k+2 codewords.
If, either n− 1 or n− 2 belong to the code then,
we will need 2(p − 1) codewords for covering
and separating the4(p − 1) vertices (conditions
of lemma 3) adding the three consecutive vertices
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(see the left representation in figure 9). Thus, in
total,we will have1+2(p−1)+3 = 2p+2 = k+2
codewords.

Therefore, in the two cases, we will have at leastk + 2
codewords.
We conclude by exhibiting a2-identifying code reaching this
bound. The latter, constituted of the set of verticesC =
{2} ∪ {i ≡ 1[2], 1 ≤ i ≤ n}.

IV. CONCLUSION

In this work we gave some results about identifying code
in oriented paths and circuits. It remains to determine the
minimum cardinality for the case of a 1-identifying code in
circuit. In addition, the question of the general case, ier-
identifying code is also an open problem.
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