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Invariants of symmetry groups under transformations of dependent and independent variables lead to simplification of
differential equations and their exact solutions if solutions of the transformed equations are known. Though Lie developed
his Symmetry Analysis for complex functions of complex variables, he did not explicitly use complex analyticity. We have
applied Complex Symmetry Analysis in which we make explicit use of the Cauchy-Riemann equations and find that one
can solve systems of differential equations by it for equations not readily amenable to the usual real methods. We show
that, via complex methods, one can deduce invariants in a simple manner.
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1.I.  INTRODUCTION Intr oduction

Symmetry analysis was developed by Lie (Lie, 1883; Lie,
1884; Lie, 1888) in an initial attempt to extend the works
of Abel and Galois (see for instance (Schwarz, 2008))
for polynomial equations to differential equations (DEs).
Galois managed to classify polynomial equations solvable
by means of radicals by utilising the symmetry of the
roots of the algebraic equations. Lie did not obtain a
corresponding analogue for DEs. Instead of finite groups,
Lie found continuous groups which are also differentiable.
These are called Lie Groups (Schwarz, 2008; Ibragimov,
1999; Ovsiannikov, 1982) and have been widely used
since Lie’s initial works for DEs which can be ordinary
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or partial.
Here we study the invariants for a system of linear

hyperbolic PDEs from the complex viewpoint. We find
expressions involving the dependent and independent
variables (and their derivatives up to some order) that
remain invariant under the group considered and its
prolongations. Such quantities are called differential
invariants. If they are obtained only by a subgroup of
transformations, one refers to them as semi-invariants and
joint invariants otherwise.

Invertible maps of the dependent and independent
variables of the DEs which preserve their form are
known as equivalence transformations. They enable
the derivation of the invariants and reductions of the
corresponding DEs to simpler forms. The semi- and joint
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invariants of a system of two linear hyperbolic equations

utx + a1(t, x)ut + a2(t, x)vt + b1(t, x)ux

+ b2(t, x)vx + c1(t, x)u+ c2(t, x)v = 0,

vtx + a3(t, x)ut + a4(t, x)vt + b3(t, x)ux

+ b4(t, x)vx + c3(t, x)u+ c4(t, x)v = 0, (1)

under an invertible change of the dependent variables
were derived (Tsaousi and Sophocleous, 2010) by the
usual (real) infinitesimal method, where the subscripts
t and x denote partial derivatives with respect to
these independent variables. The most general
group of equivalence transformations (Ibragimov, 1999;
Ovsiannikov, 1982), i.e. invertible change of the
dependent and independent variables, that maps a system
of hyperbolic equations to itself with, in general, different
coefficients is obtained first and then employed to find the
associated invariants in (Tsaousi and Sophocleous, 2010).

Complex symmetry analysis (CSA) explicitly uses
the complex analyticity of the dependent variables as a
function of the real independent variables (Safdar et al.,
2011; Ali et al., 2014). It was found that one could
linearize systems of ODEs (Safdar et al., 2011), and
thereby solve them, even though they may not have
enough symmetries to be solvable using the standard
(real) methods (Ali et al., 2014). Having this in mind,
we wanted to see if the same type of benefits could be
obtained for PDEs. Of course, a major difference between
ODEs and PDEs is that the former always have a finite
number of arbitrary constants, while the latter generally
have arbitrary functions, and thus require boundary
conditions or initial conditions to limit the number of
solutions. As such, one tries to construct invariants
(or joint invariants) to obtain classes of solutions. We
construct invariants by both the standard (real) methods
and the complex methods. We then make a comparison.

Semi-invariants associated with a subclass of a
system of hyperbolic equations (1) under a change of
only the dependent variables had been obtained by CSA
(Mahomed et al., 2011). This subclass of systems is
represented by the following two hyperbolic equations

utx + α1(t, x)ut − α2(t, x)vt + β1(t, x)ux

− β2(t, x)vx + γ1(t, x)u− γ2(t, x)v = 0,

vtx + α2(t, x)ut + α1(t, x)vt + β2(t, x)ux

+ β1(t, x)vx + γ2(t, x)u+ γ1(t, x)v = 0. (2)

This system of hyperbolic equations corresponds to the
scalar complex hyperbolic equation

wtx + α(t, x)wt + β(t, x)wx + γ(t, x)w = 0, (3)

if α1 + ια2 = α, β1 + ιβ2 = β, γ1 + ιγ2 = γ, and
u+ ιv = w. Since the transformations used to obtain the
semi-invariants of (2) satisfy the Cauchy-Riemann (CR)

equations, so do the invariants. These quantities were
found to be real parts of the complex invariants associated
with the base complex equation by means of a change
of the complex dependent variable (Ibragimov, 2004).
All the invariants of the scalar linear hyperbolic equation
are given in (Ibragimov, 2004; Johnpillai et al., 2002).
We present an explicit derivation of invariants of the
system (2), using real and complex symmetry approaches
to show that these are the same when derived under
transformations of only dependent variables, while in
case of transformations of only the independent variables
and both the dependent and independent variables, they
appear different. For the latter cases it is shown
that complex symmetry approach provides an alternate
invariance criterion for systems of two hyperbolic PDEs.

The plan of the paper is as follows. The second
section is on the preliminaries in which the infinitesimal
method is demonstrated. The subsequent section contains
a derivation of invariants of a system of hyperbolic
equations by real symmetry analysis. The fourth section is
on obtaining the invariants for the same class of systems
by the complex procedure and the comparison of these
with the invariants found in the third section. The
penultimate section is on the application of the derived
invariants. Concluding remarks are presented in the final
section.

2.II.  PRELIMINARIES Preliminaries
Semi-invariants of the linear hyperbolic equation (3)
(with t, x replaced by z1, z2), under the local re-scaling
transformation of (only) the dependent variables

w(z1, z2) = σ(z1, z2)u(z1, z2), (4)

are given in (Ibragimov, 2004). The infinitesimal form of
the above transformation reads as

w(z1, z2) = [1 + εη(z1, z2)]u(z1, z2), (5)

which leads to the generator

Z = ηz2∂α + ηz1∂β + (ηz1z2 + αηz1 + βηz2)∂γ , (6)

where ηz1 , ηz2 denotes partial derivatives of η, i.e.
∂η
∂z1

, ∂η
∂z2

and ∂α = ∂
∂α . The following first-order

semi-invariants (called Laplace invariants) are deduced in
(Ibragimov, 2004)

h = αz1 + αβ − γ, k = βz2 + αβ − γ. (7)

The first extension of (6) acts on J(α, β, γ, αρ, βρ, γρ),
where ρ ∈ {z1, z2}, to reveal (7) that these are differential
invariants as they contain first-order derivatives of the
coefficients of scalar PDE (3). Similarly, a change of the
independent variables

z1 = φ(t), z2 = ψ(x), (8)
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which can be written in the infinitesimal form as

z1 = t+ εξ1(t), z2 = x+ εξ2(x), (9)

leaves the original hyperbolic PDE invariant. This change
of (only) the independent variables leads to the generator

Z = ξ1∂t + ξ2∂x − αξ2,x∂α − βξ1,t∂β
− γ(ξ1,t + ξ2,x)∂γ , (10)

i.e., the operator obtained after transforming the linear
hyperbolic equation according to (9) and by reading
its infinitesimal coordinates from the transformed new
coefficients. Applying this generator on J(α, β, γ) yields
a zeroth-order semi-invariant

I1 =
γ

αβ
. (11)

We apply the first extension of (10) on
J(α, β, γ, α%, β%, γ%), to obtain the first-order
semi-invariants, where now % ∈ {t, x}. This yields
a system of linear PDEs that provides the following
invariant quantities when solved, viz.

I2 =
αβ

αt
, I3 =

βx
αt
, I4 =

γ

αt
,

I5 =
α(βγt − γβt)

βα2
t

, I6 =
αγx − γαx
α2αt

. (12)

Further, joint invariants of the hyperbolic equation have
been derived (Johnpillai et al., 2002) by applying an
operator of the form (10) on the space of the Laplace
semi-invariants h and k given in (7). Therefore, one needs
to transform the operator (10) to the variables h, k, and
then apply it on J(h, k), J(h, k, h%, k%) and so on, in
order to get the zeroth-, first- and higher-order joint in-
variants of the linear hyperbolic equation, respectively.
On writing the generator (10) in the space of the Laplace
invariants h, k, i.e.

Z = Z(h)∂h + Z(k)∂k, (13)

its first extension reads as

Z[1] = ξ1(t)∂t + ξ2(x)∂x − (ξ1,t + ξ2,x)h∂h − (ξ1,t
+ ξ2,x)k∂k − (ξ1,tth+ 2ξ1,tht + ξ2,xht)∂ht
− (ξ1,thx + ξ2,xxh+ 2ξ2,xhx)∂hx − (ξ1,ttk
+ 2ξ1,tkt + ξ2,xkt)∂kt − (ξ1,tkx + ξ2,xxk
+ 2ξ2,xkx)∂kx .

(14)
It yields the following joint invariants of the original scalar
linear hyperbolic equation

J1 = k
h ,

J2 = (hkt−kht)(hkx−khx)
h5 ,

J3 = khtx+hktx−htkx−hxkt
h3 ,

J4 =
(hkx−khx)2(hkhtt−h2ktt−3kh2

t+3hhtkt)
h9 ,

J5 =
(hkt−kht)2(hkhxx−h2kxx−3kh2

x+3hhxkx)
h9 .

(15)

of which four form a basis (see (Ibragimov, 2004;
Johnpillai et al., 2002)).

III. INVARIANTS OF A SYSTEM OF TWO

 THE REAL PROCEDURE
 HYPERBOLIC EQUATIONS BY

To derive the invariants of the system (1), the infinitesimal
equivalence transformation map is determined in (Tsaousi
and Sophocleous, 2010). The generators associated
with these infinitesimal transformations are then applied
to obtain invariants of (1). This section presents the
derivation of the invariants associated with the subclass
(2) of the system of hyperbolic equations (1) by the real
infinitesimal method.

The system of two hyperbolic PDEs (2) is obtainable
from a hyperbolic PDE with two independent variables
(3), when its dependent variable is considered as a
complex function of two real independent variables. Both
the equations of such systems satisfy the CR equations.
The group of equivalence transformations associated with
(2) is obtained through a generator

Z = ξ1∂t + ξ2∂x + η1∂u + η2∂v + η1
t ∂ut + η1

x∂ux
+ η2

t ∂vt + η2
x∂vx + η1

tx∂utx + η2
tx∂vtx + µ11∂α1

+ µ12∂α2
+ µ21∂β1

+ µ22∂β2
+ µ31∂γ1 + µ32∂γ2 ,

(16)
where ξκ, ηκ and µ1κ, µ2κ, µ3κ, for κ = 1, 2,
are functions of (t, x, u, v) and (t, x, u, v, ακ, βκ, γκ),
respectively. The first extension coefficients ηκt , ηκx , are
obtainable from

η1
t = Dt(η

1)− utDt(ξ
1)− uxDt(ξ

2),

η2
t = Dt(η

2)− vtDt(ξ
1)− vxDt(ξ

2),

η1
x = Dx(η1)− utDx(ξ1)− uxDx(ξ2),

η2
x = Dx(η2)− vtDx(ξ1)− vxDx(ξ2), (17)

with Dt, and Dx, as total derivatives with respect to t and
x. Applying Z, in (16) on both the equations of the system
(2) results in a system of linear PDEs when the coefficients
of ξκ, ηκ, and all their partial derivatives are equated to
zero. Solving it with MAPLE leads to

ξ1 = F1(t), ξ2 = F2(x), (18)

η1 = F3(t, x)u+ F4(t, x)v,

η2 = F3(t, x)v − F4(t, x)u, (19)

µ11 = −F3,x − α1F2,x,
µ12 = F4,x − α2F2,x,
µ21 = −F3,t − β1F1,t,
µ22 = F4,t − β2F1,t,
µ31 = −F3,tx − α1F3,t − α2F4,t − β1F3,x

− β2F4,x − γ1(F1,t + F2,x),
µ32 = F4,tx + α1F4,t − α2F3,t + β1F4,x

− β2F3,x − γ2(F1,t + F2,x).

(20)

Invariants of the system (2) can be derived using a
generator of the form

Z = ξ1∂t + ξ2∂x + µ11∂α1
+ µ12∂α2

+ µ21∂β1

+ µ22∂β2
+ µ31∂γ1 + µ32∂γ2 ,

(21)
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where ξκ, and µ1,κ, µ2,κ, µ3,κ, are as given in (18)
and (20) respectively. The first-order semi-invariants (as
zeroth-order do not exist) obtained are

h
r

1 = α1,t + α1β1 − α2β2 − γ1,

h
r

2 = α2,t + α1β2 + α2β1 − γ2,

k
r

1 = β1,x + α1β1 − α2β2 − γ1,

k
r

2 = β2,x + α1β2 + α2β1 − γ2. (22)

These are associated with the system (2) due to a change
of (only) the dependent variables (19) and are derived by
employing the generator of the form

ZD = −F3,x∂α1
+ F4,x∂α2

− F3,t∂β1
+ F4,t∂β2

− (F3,tx + α1F3,t + α2F4,t + β1F3,x + β2F4,x)∂γ1
+ (F4,tx + α1F4,t − α2F3,t + β1F4,x − β2F3,x)∂γ2 .

(23)
It is extracted from (21) and by considering F1(t) =
F2(x) = 0, and F3(t, x), F4(t, x), as arbitrary functions
of their arguments. By plugging the above generator in
the invariance criterion

Z[1]
D J(ακ, βκ, γκ, ακ,t, βκ,t, γκ,t, ακ,x, βκ,x, γκ,x) = 0,

(24)
leads to a system of linear PDEs when the coefficients
of F3(t, x), F3(t, x), and all their partial derivatives are
equated to zero. On solving the obtained system of PDEs,
one arrives at (22). Transforming only the independent
variables, i.e. keepingF1(t), F2(x), as arbitrary functions
of their arguments and F3(t, x) = F4(t, x) = 0, leads to
the infinitesimal generator

ZI = F1(t)∂t + F2(x)∂x − α1F2,x∂α1
− α2F2,x∂α2

− β1F1,t∂β1 − β2F1,t∂β2 − γ1(F1,t + F2,x)∂γ1
− γ2(F1,t + F2,x)∂γ2 .

(25)
Applying it on J(ακ, βκ, γκ) results in the following
zeroth-order invariants

I
r

1 =
α2

α1
, I

r

2 =
β2

β1
, I

r

3 =
γ1

α1β1
, I

r

4 =
γ2

α1β1
. (26)

Further, the first-order invariants are arrived at when
the first extension of the generator (25) acts on
J(ακ, βκ, γκ, ακ,t, βκ,t, γκ,t, ακ,x, βκ,x, γκ,x), which
gives the following quantities

I
r

5 =
α1,t

α1β1
, I

r

6 =
α2,t

α1β1
, I

r

7 =
β1,x

α1β1
, I

r

8 =
β2,x

α1β1
,

I
r

9 =
β1β2,t−β2β1,t

β3
1

, I
r

10 =
β1γ1,t−γ1β1,t

α1β3
1

,

I
r

11 =
β1γ2,t−γ2β1,t

α1β3
1

, I
r

12 =
α1α2,x−α2α1,x

α3
1

,

I
r

13 =
α1γ1,x−γ1α1,x

α3
1β1

, I
r

14 =
α1γ2,x−γ2α1,x

α3
1β1

,

(27)
including the four zeroth-order invariants (26). The joint
invariants of the system (2)

J
r

1 =
h
r

2

h
r

1

, J
r

2 =
k
r

1

h
r

1

, J
r

3 =
k
r

2

h
r

1

, (28)

are found in (Tsaousi and Sophocleous, 2010) by solving
the PDE

h
r

1∂hr1 + h
r

2∂hr2 + k
r

1∂kr1 + k
r

2∂kr2 = 0. (29)

This equation arises by transforming the first extension of
the generator (25) to the space of invariants, h

r

κ, k
r

κ and
applying it on J(h

r

κ, k
r

κ).

IV. INVARIANTS OF A SYSTEM OF TWO
 HYPERBOLIC EQUATIONS

Semi-invariants associated with the system of two
hyperbolic equations (2) obtained from a scalar linear
hyperbolic equation (3) are derived in this section by
complex methods. A few of the invariants presented
here have already been presented earlier (Mahomed et al.,
2011). Here we demonstrate the complete complex
procedure involved in deriving them. The generator of the
form (6) associated with the equation (3), written in terms
of z1 and z2, becomes complex due to the presence of the
complex dependent variable and the complex coefficients
split (6) into two operators

X1 = η1,z2∂α1
+ η2,z2∂α2

+ η1,z1∂β1
+ η2,z1∂β2

+ (η1,z1z2 + α1η1,z1 − α2η2,z1 + β1η1,z2

− β2η2,z2)∂γ1 + (η2,z1z2 + α2η1,z1 + α1η2,z1

+ β2η1,z2 + β1η2,z2)∂γ2 ,
(30)

X2 = η2,z2∂α1
− η1,z2∂α2

+ η2,z1∂β1
− η1,z1∂β2

+ (η2,z1z2 + α2η1,z1 + α1η2,z1 + β2η1,z2

+ β1η2,z2)∂γ1 − (η1,z1z2 + α1η1,z1 − α2η2,z1

+ β1η1,z2 − β2η2,z2)∂γ2 .
(31)

We find four first-order semi-invariants

h1 = α1,z1 + α1β1 − α2β2 − γ1,
h2 = α2,z1 + α2β1 + α1β2 − γ2,
k1 = β1,z2 + α1β1 − α2β2 − γ1,
k2 = β2,z2 + α2β1 + α1β2 − γ2,

(32)

associated with the system (2) on using the pair of
operators (30) and (31). These are exactly the same
as represented by h

r

κ, k
r

κ in (22). Therefore, in
this case the real and complex procedures lead to the
same semi-invariants of the system (2). Notice that
all the four semi-invariants (32) are readable from the
the first-order semi-invariants associated with the base
complex hyperbolic linear equation (3) and satisfy

X[1]
1 h1 |

h1=0
= X[1]

2 h2 |
h2=0

= 0,

X[1]
1 k1 |

k1=0
= X[1]

2 k2 |
k2=0

= 0.
(33)

The linear combination X3 of both the operators X1 and
X2 results in the following relations

X[1]
3 h1 |

h1=0
= X[1]

3 h2 |
h2=0

= 0

X[1]
3 k1 |

k1=0
= X[1]

3 k2 |
k2=0

= 0.
(34)
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It was seen that the complex invariants of the base
complex hyperbolic equation (3) split into two real
invariants of the system (2). Further, we observed an
agreement between the real and complex approaches
in the case of invariants that are derived under
transformations of only the dependent variables for
systems (2). In order to show that this will always be the
case let us start with the following invariance criterion

ZJ(α, β, γ, αρ, βρ, γρ) = 0, ρ ∈ {t, x},

where Z, in general, reads as

Z = µ1∂α+ µ2∂β + µ3∂γ,

and µ’s are functions of t, x, w, α, β, and γ, that is used
to derive the zeroth-order invariants of the complex base
equation (3). Here considering Z = X1 + ιX2, µ1 =
µ11 + ιµ12, µ2 = µ21 + ιµ22, µ3 = µ31 + ιµ32 and
J = J1 + ιJ2 as well as splitting the above invariance
criterion we obtain

X1J1 − X2J2 = 0, X2J1 + X1J2 = 0,

which expands to

µ11(J1,α1
+ J2,α2

) + µ12(J1,α2
− J2,α1

)
+µ21(J1,β1

+ J2,β2
) + µ22(J1,β2

− J2,β1
)

+µ31(J1,γ1 + J2,γ2) + µ32(J1,γ2 − J2,γ1) = 0,
µ11(J2,α1 − J1,α2) + µ12(J1,α1 + J2,α2)
+µ21(J2,β1 − J1,β2) + µ22(J1,β1 + J2,β2)
+µ31(J2,γ1 − J1,γ2) + µ32(J1,γ1 + J2,γ2) = 0,

(35)
respectively. On using the CR-equations J1,α1

= J2,α2
,

J1,α2 = −J2,α1 , J1,β1 = J2,β2 , J1,β2 = −J2,β1 , and
J1,γ1 = J2,γ2 , J1,γ2 = −J2,γ1 , the above equations take
the form

µ11J1,α1 + µ12J1,α2 + µ21J1,β1 + µ22J1,β2

+µ31J1,γ1 + µ32J1,γ2 = 0,
µ11J2,α1

+ µ12J2,α2
+ µ21J2,β1

+ µ22J2,β2

+µ31J2,γ1 + µ32J2,γ2 = 0.

(36)

Both these equations are invariance criteria for a system
of two hyperbolic equations (2) to derive its zeroth-order
invariants under transformation of only the dependent
variables, i.e.,

XJ1 = 0, XJ2 = 0,

where

X = µ11∂α1
+ µ12∂α2

+ µ21∂β1
+ µ22∂β2

+µ31∂γ1 + µ32∂γ2 .
(37)

In the above discussion we used the invariance criterion
that yields invariants of order zero associated with
base scalar complex equation (3) due to an invertible

transformation of the dependent variable. The two real
parts of this complex invariance criterion are shown as
equivalent with the help of the CR-equations, to the
invariance criteria that lead to zeroth-order invariants of
systems (2) under transformations of only the dependent
variables. This result could be extended to prove
equivalence of the invariance criteria (of equation (3) and
corresponding systems of the form (2)) of an arbitrary
order q, with the help of the CR-equations.

The semi-invariants of the system (2) under
transformation of only the independent variables are

I
c

1 = (α1γ1+α2γ2)β1+(α1γ2−α2γ1)β2

(α2
1+α2

2)(β2
1+β2

2)
,

I
c

2 = (α1γ2−α2γ1)β1−(α1γ1+α2γ2)β2

(α2
1+α2

2)(β2
1+β2

2)
,

I
c

3 =
(α1β1−α2β2)α1,t+(α2β1+α1β2)α2,t

α2
1,t+α

2
2,t

,

I
c

4 =
(α2β1+α1β2)α1,t−(α1β1−α2β2)α2,t

α2
1,t+α

2
2,t

,

I
c

5 =
α1,tβ1,x+α2,tβ2,x

α2
1,t+α

2
2,t

, I
c

6 =
α1,tβ2,x−α2,tβ1,x

α2
1,t+α

2
2,t

,

I
c

7 =
α1,tγ1+α2,tγ2
α2

1,t+α
2
2,t

, I
c

8 =
α1,tγ2−α2,tγ1
α2

1,t+α
2
2,t

,

I
c

9 =
(α2

1,t−α
2
2,t)(α1β1Ω1−α2β1Ω2+α2β2Ω1+α1β2Ω2)

(α2
1,t+α

2
2,t)

2(β2
1+β2

2)

+
2α1,tα2,t(α2β1Ω2+α1β1Ω2−α1β2Ω1+α2β2Ω2)

(α2
1,t+α

2
2,t)

2(β2
1+β2

2)
,

I
c

10 =
(α2

1,t−α
2
2,t)(α2β1Ω1+α1β1Ω2−α1β2Ω1+α2β2Ω2)

(α2
1,t+α

2
2,t)

2(β2
1+β2

2)

− 2α1,tα2,t(α1β1Ω1−α2β1Ω2+α2β2Ω1+α1β2Ω2)

(α2
1,t+α

2
2,t)

2(β2
1+β2

2)
,

I
c

11 =
(α2

1−α
2
2)(Ω3α1,t+Ω4α2,t)

(α2
1,t+α

2
2,t)(α

2
1+α2

2)2
+

2α1α2(Ω4α1,t−Ω3α2,t)

(α2
1,t+α

2
2,t)(α

2
1+α2

2)2
,

I
c

12 =
(α2

1−α
2
2)(Ω4α1,t−Ω3α2,t)

(α2
1,t+α

2
2,t)(α

2
1+α2

2)2
− 2α1α2(Ω3α1,t+Ω4α2,t)

(α2
1,t+α

2
2,t)(α

2
1+α2

2)2
,

(38)
where

Ω1 = β1γ1,t − β2γ2,t − γ1β1,t + γ2β2,t,
Ω2 = β2γ1,t + β1γ2,t − γ2β1,t − γ1β2,t,
Ω3 = α1γ1,x − α2γ2,x − γ1α1,x + γ2α2,x,
Ω4 = α2γ1,x + α1γ2,x − γ2α1,x − γ1α2,x.

(39)

We notice that Ic1 , I
c
2 , . . . , I

c
12 constitute an alternate

invariance criterion for system (2) that is different from
Ir1 , I

r
2 , . . . , I

r
14 derived earlier using the real symmetry

method. The correspondence of these semi-invariants of
independent variables with the system (2) is established
due to the following operators

X1 = 2ξ1∂t + 2ξ2∂x − α1ξ2,x∂α1 − α2ξ2,x∂α2 − β1ξ1,t∂β1

− β2ξ1,t∂β2 − γ1(ξ1,t + ξ2,x)∂γ1 − γ2(ξ1,t + ξ2,x)∂γ2 ,
(40)

X2 = −α2ξ2,x∂α1
+ α1ξ2,x∂α2

− β2ξ1,t∂β1
+ β1ξ1,t∂β2

− γ2(ξ1,t + ξ2,x)∂γ1 + γ1(ξ1,t + ξ2,x)∂γ2 ,
(41)

which are the real and imaginary parts of the complex
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generator (10). Using these operators it is observed that

X[1]
1 I

c

1 |
I
c
1=0

= X[1]
2 I

c

2 |
I
c
2=0

= X[1]
1 I

c

3 |
I
c
3=0

= 0,

X[1]
2 I

c

4 |
I
c
3=I

c
4=0

= X[1]
1 I

c

5 |
I
c
5=0

= X[1]
2 I

c

6 |
I
c
5=I

c
6=0

= 0,

X[1]
1 I

c

7 |
I
c
7=0

= X[1]
2 I

c

8 |
I
c
7=I

c
8=0

= X[1]
1 I

c

9 |
I
c
9=0

= 0

X[1]
2 I

c

10 |
I
c
9=I

c
10=0

= X[1]
1 I

c

11 |
I
c
11=0

= X[1]
2 I

c

12 |
I
c
11=I

c
12=0

= 0.

(42)
It is seen that the above invariants are the real parts of
the complex invariants (11) and (12). Similarly, the linear
combination of both X1 and X2, if denoted by X3, satisfy
the relations

X[1]
3 I

c

1 |
I
c
1=0

= X[1]
3 I

c

2 |
I
c
2=0

= X[1]
3 I

c

3 |
I
c
3=0

= 0,

X[1]
3 I

c

4 |
I
c
3=I

c
4=0

= X[1]
3 I

c

5 |
I
c
5=0

= X[1]
3 I

c

6 |
I
c
5=I

c
6=0

= 0,

X[1]
3 I

c

7 |
I
c
7=I

c
8=0

= X[1]
3 I

c

8 |
I
c
7=I

c
8=0

= X[1]
3 I

c

9 |
I
c
9=I

c
10=0

= 0

X[1]
3 I

c

10 |
I
c
9=I

c
10=0

= X[1]
3 I

c

11 |
I
c
11=I

c
12=0

= 0

X[1]
3 I

c

12 |
I
c
11=I

c
12=0

= 0.

(43)
These invariants also satisfy the invariance criterion

Z[1]
I I

c

δ |
I
c
δ
=0

= 0, δ = 1, 2, . . . , 12, (44)

where Z[1]
I , is the first extension of the generator

(25). This implies that semi-invariants derived under
transformations of the independent variables using the
complex approach also satisfy the real invariance criteria.
For derivation of joint invariants of the coupled system of
two hyperbolic equations (2), the operators (40) and (41)
need to be transformed to the space of invariants hκ, kκ.
The same procedure was adopted in (Johnpillai et al.,
2002) before using the generator (10) in determining the
joint invariants of the scalar linear hyperbolic equation.
The complex generator was transformed to h and k, i.e.,
to the space of the semi-invariants associated with the
hyperbolic equation under a change of the dependent
variables. The procedure to transform (40) and (41) to
(hκ, kκ)-space starts by splitting (13) when Z(h) and
Z(k) are taken as complex, i.e. Z(h) = Z(h)1 + ιZ(h)2

and Z(k) = Z(k)1 +ιZ(k)2. The real and imaginary parts
of (13) are

X1 = 1
2 [Z(h)1∂h1 + Z(h)2∂h2 + Z(k)1∂k1 + Z(k)2∂k2 ],

X2 = 1
2 [Z(h)2∂h1

− Z(h)1∂h2
+ Z(k)2∂k1 − Z(k)1∂k2 ],

(45)
where

Z(h)1 = X1h1 − X2h2 = −(ξ1,t + ξ2,x)h1,
Z(h)2 = X2h1 + X1h2 = −(ξ1,t + ξ2,x)h2,
Z(k)1 = X1k1 − X2k2 = −(ξ1,t + ξ2,x)k1,
Z(k)2 = X2k1 + X1k2 = −(ξ1,t + ξ2,x)k2.

(46)

Using (46) in (45) gives the following two operators

X1 = − (ξ1,t+ξ2,x)
2 [h1∂h1

+ h2∂h2
+ k1∂k1 + k2∂k2 ],

X2 = − (ξ1,t+ξ2,x)
2 [h2∂h1 − h1∂h2 + k2∂k1 − k1∂k2 ],

(47)
that are the real and imaginary parts of the complex
generator (14). These operators are utilized to deduce
the following joint invariants for the system of two linear
hyperbolic equations, viz. (2)

J11 = h1k1+h2k2
k21+k22

,

J12 = h2k1−h1k2
k21+k22

,

J13 = µ1ν1
µ2
1+µ2

2
ω1 + µ2ν2

µ2
1+µ2

2
ω1 + µ2ν1

µ2
1+µ2

2
ω2 + µ1ν2

µ2
1+µ2

2
ω2,

J14 = −µ2ν1
µ2
1+µ2

2
ω1 + µ1ν2

µ2
1+µ2

2
ω1 + µ1ν1

µ2
1+µ2

2
ω2 + µ2ν2

µ2
1+µ2

2
ω2,

J15 = µ3ν3
µ2
3+µ2

4
+ µ4ν4

µ2
3+µ2

4
,

J16 = µ4ν3
µ2
3+µ2

4
+ µ3ν4

µ2
3+µ2

4
,

J17 = k1µ5+k2µ6

µ2
5+µ2

6
ω3 − k2µ5−k1µ6

µ2
5+µ2

6
ω4,

J18 = k2µ5−k1µ6

µ2
5+µ2

6
ω3 + k1µ5+k2µ6

µ2
5+µ2

6
ω4,

J19 = µ7ν5+µ8ν6
µ2
7+µ2

8
ω5 + µ8ν5−µ7ν6

µ2
7+µ2

8
ω6,

J20 = µ7ν6−µ8ν5
µ2
7+µ2

8
ω5 + µ7ν5+µ8ν6

µ2
7+µ2

8
ω6,

(48)
where

µ1 = h5
1 − 10h3

1h
2
2 + 5h1h

4
2,

µ2 = 5h4
1h2 − 10h2

1h
3
2 + h5

2,
µ3 = h3

1 − 3h1h
2
2,

µ4 = 3h2
1h2 − h3

2,
µ5 = −6h2

1h
2
2 + h4

1 + h4
2,

µ6 = 4h3
1h2 − 4h1h

3
2,

µ7 = h9
1 − 36h7

1h
2
2 + 126h5

1h
4
2 − 84h3

1h
6
2 + 9h1h

8
2,

µ8 = 9h8
1h2 − 84h6

1h
3
2 + 126h4

1h
5
2 − 36h2

1h
7
2 + h9

2,
(49)

ν1 = h1k1,t − h2k2,t − k1h1,t + k2h2,t,
ν2 = h2k1,t + h1k2,t − k2h1,t − k1h2,t,
ν3 = k1h1,tx − k2h2,tx + h1k1,tx − h2k2,tx − h1,tk1,x

+ h2,tk2,x − h1,xk1,t + h2,xk2,t,
ν4 = k2h1,tx + k1h2,tx + h2k1,tx + h1k2,tx − h2,tk1,x

− h1,tk2,x − h2,xk1,t − h1,xk2,t,
ν5 = k2

2h
2
2,x + 2h1k2,xk1h2,x − 2h2k2,xk2h2,x

+ 2h2k1,xk1h2,x − 4k1h1,xk2h2,x − k2
1h

2
2,x

+ h2
2k

2
2,x + 2h2k1,xk2h1,x − 2h1k1,xk1h1,x

+ 2h2k2,xk1h1,x + k2
1h

2
1,x + h2

1k
2
1,x

+ 2h1k2,xk2h1,x − h2
2k

2
1,x − 4h1k1,xh2k2,x

− h2
1k

2
2,x − k2

2h
2
1,x + 2h1k1,xk2h2,x,

ν6 = −2k2h
2
2,xk1 − 2h1k1,xk1h2,x − 2k1h1,xh1k2,x

+ 2h2k2,xk2h1,x − 2k2
2h2,xh1,x + 2h2k2,xk1h2,x

+ 2k2h2,xh2k1,x − 2h2
2k2,xk1,x + 2k2h2,xh1k2,x

+ 2h1k
2
1,xh2 − 2h1k1,xk2h1,x − 2h2k

2
2,xh1

+ 2h2
1k1,xk2,x + 2k1h

2
1,xk2 − 2k1h1,xh2k1,x

+ 2k2
1h1,xh2,x,

(50)
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and

ω1 = h1k1,x − h2k2,x − k1h1,x + k2h2,x,
ω2 = h2k1,x + h1k2,x − k2h1,x − k1h2,x,
ω3 = h1h1,tx − h2h2,tx − h1,th1,x + h2,th2,x,
ω4 = h2h1,tx + h1h2,tx − h2,th1,x − h1,th2,x,
ω5 = (h1k1 − h2k2)h1,tt − (h2k1 + h1k2)h2,tt

− (h2
1 − h2

2)k1,tt + 2h1h2k2,tt − 3k1(h2
1,t

− h2
2,t) + 6k2h1,th2,t + (3h1h1,t − 3h2h2,t)k1,t

− (3h2h1,t + 3h1h2,t)k2,t,
ω6 = (h2k1 + h1k2)h1,tt + (h1k1 − h2k2)h2,tt

+ (−h2
1 + h2

2)k2,tt − 2h1h2k1,tt − 3k2(h2
1,t

− h2
2,t)− 6k1h1,th2,t + (3h2h1,t + 3h1h2,t)k1,t

+ (3h1h1,t − 3h2h2,t)k2,t.
(51)

These invariants are also the real parts of the complex
joint invariants (15). A comparison of (28) and (48)
shows that these appear to be two different invariance
criteria developed for system (2) using the real and
complex symmetry methods. Detailed calculations of
invariants presented in this section and the previous one
are contained in (Aslam, 2014).

The invariants provided by the real approach
under transformations of only the independent
variables are found different from those obtained
by the complex procedure. In order to show that
this is the case, we consider the invariance criterion
ZJ(α, β, γ, αρ, βρ, γρ)=0, for ρ ∈ {t, x}, where

Z = ξ1∂t + ξ2∂x + µ1∂α+ µ2∂β + µ3∂γ.

Inserting it into the given invariance criterion and splitting
it (by considering ξ1 = ξ11 + ιξ12, ξ2 = ξ21 + ιξ22 and all
those used in the previous result) into two real parts and
using the CR-equations we find

2(ξ11J1,t + ξ21J1,x − ξ12J2,t − ξ22J2,x) + µ11J1,α1

+µ12J1,α2
+ µ21J1,β1

+ µ22J1,β2
+ µ31J1,γ1

+µ32J1,γ2 = 0,
2(ξ11J2,t + ξ21J2,x + ξ12J1,t + ξ22J1,x) + µ11J2,α1

+µ12J2,α2 + µ21J2,β1 + µ22J2,β2 + µ31J2,γ1

+µ32J2,γ2 = 0.
(52)

These equations are different from the invariance criteria
associated with a system of two hyperbolic equations (2)
that provide its invariants under transformation of only the
independent variables, i.e.,

XJ1 = 0, XJ2 = 0,

where

X = ξ1∂t + ξ2∂x + µ11∂α1
+ µ12∂α2

+ µ21∂β1
+ µ22∂β2

+ µ31∂γ1 + µ32∂γ2 .
(53)

Indeed, considering ξ1, and ξ2, as real functions one
arrives at the same conclusion. A similar argument can
be presented for the joint invariants.

V. APPLICATIONS

In this section a few examples of systems of hyperbolic
equations are provided to illustrate the invariance criteria
developed.

1. The system of two hyperbolic PDEs

utx +
(
a1 − 1

x

)
ut − a2vt +

(
b1 + 2

t

)
ux − b2vx

+
(
c1 − b1

x + 2a1t −
2
tx

)
u−

(
c2 − b2

x + 2a2t
)
v = 0,

vtx + a2ut +
(
a1 − 1

x

)
vt + b2ux +

(
b1 + 2

t

)
vx

+
(
c2 − b2

x + 2a2t
)
u+

(
c1 − b1

x + 2a1t −
2
tx

)
v = 0,
(54)

corresponds to the complex hyperbolic equation in two
independent variables

wtx +
(
a− 1

x

)
wt +

(
b+ 2

t

)
wx

+
(
c− b

x + 2at −
2
tx

)
w = 0,

(55)

where a is the complex constant a1 + ιa2. The complex
transformation of the dependent variable w = (x/t2)w
maps the above equation to

wtx + awt + bwx + cw = 0. (56)

Transformation of the complex hyperbolic equations (55)
and (56) into each other is guaranteed as the associated
semi-invariants h = ab − c = k agree for both of them.
The system of hyperbolic equations (54) is transformable
to

utx + a1ut − a2vt + b1ux − b2vx + c1u− c2v = 0,
vtx + a2ut + a1vt + b2ux + b1vx + c2u+ c1v = 0,

(57)
under u = (x/t2)u, v = (x/t2)v, that is obtained
by splitting the complex transformation used to map
the complex equations (55) and (56) into each other.
Semi-invariants associated with (54) and (57) are

h1 = a1b1 − a2b2 − c1 = k1,

h2 = a1b2 + a2b1 − c2 = k2, (58)

which implies that both the systems are mappable to each
other.

2. An uncoupled system of PDEs

uz1z2 + 2az2
1uz1 + 2bz1uz2 + 4cz1u = 0,

vz1z2 + 2az2
1vz1 + 2bz1vz2 + 4cz1v = 0, (59)

is transformable to

utx + atut + bux + cu = 0,

vtx + atvt + bvx + cv = 0, (60)

via an invertible change of the independent variables

z1 =
√
t, z2 =

1

2
(x− 1). (61)
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These are the invertible maps that reduce the base complex
hyperbolic equation

wz1z2 + 2az2
1wz1 + 2bz1wz2 + 4cz1w = 0, (62)

with the semi-invariants

I1 =
c

abz2
1

, I2 = bz2
1 , I4 =

c

a
, I3 = I5 = I6 = 0, (63)

to the simple linear form wtx + atwt + bwx + cw = 0,
with the semi-invariants

I1 =
c

abt
, I2 = bt, I4 =

c

a
, I3 = I5 = I6 = 0. (64)

Note that the semi-invariants (63) and (64) are the same
under (61). The complex hyperbolic equation (62)
does not only yield an uncoupled system of hyperbolic
equations (59) but gives a coupled system

uz1z2 + 2a1z
2
1uz1 − 2a2z

2
1vz1 + 2b1z1uz2 − 2b2z1vz2

+ 4c1z1u− 4c2z1v = 0,
vz1z2 + 2a2z

2
1uz1 + 2a1z

2
1vz1 + 2b2z1uz2 + 2b1z1vz2

+ 4c2z1u+ 4c1z1v = 0,
(65)

when we consider a = a1 + ιa2, b = b1 + ιb2 and c =
c1 + ιc2 in (62). This system of two hyperbolic equations
can be mapped to

utx + a1tut − a2tvt + b1ux − b2vx + c1u− c2v = 0,
vtx + a2tut + a1tvt + b2ux + b1vx + c2u+ c1v = 0,

(66)
under the transformations (61) that are already used to
map the base complex equation to its canonical form.
Semi-invariants derived under the transformations of
independent variables using real as well as complex
approach agree for systems (59), (60) and (65), (66),
respectively.

3. Consider the uncoupled system of two hyperbolic PDEs

utx +
λ

2
(ut + ux) = 0,

vtx +
λ

2
(vt + vx) = 0, (67)

for which h1 = k1 = λ2

4 and h2 = k2 = 0. This implies
that

J11 = 1, J12 = · · · = J22 = 0. (68)

The system (67) is transformable to another system with
the same invariants as given in (68), where h1 = k1 = −1,
h2 = k2 = 0. The transformed system reads as

uz1z2 + u = 0,

vz1z2 + v = 0. (69)

In (68) we show an agreement between those joint
invariants that are derived using the complex method
(48). The same is true for real joint invariants (28),
i.e., they agree for both the systems given above. The
correspondence between the systems (67) and (69) is
established through

t = 2
λz1, x = − 2

λz2, u = u
exp(z1−z2) , v = v

exp(z1−z2) .

(70)
These transformations are obtainable from

t = 2
λz1, x = − 2

λz2, w = w
exp(z1−z2) , (71)

with w = u + ιv, and w = u + ιv. The complex
transformations map the complex scalar PDE

wtx +
λ

2
(wt + wx) = 0, (72)

with h = k = λ2

4 and J1 = 1, to the equation

wz1z2 + w = 0, (73)

for which h = k = −1 and J1 = 1. Notice here that the
substitution λ = λ1 + ιλ2, in the equation (72) results
in a coupled system of two hyperbolic PDEs but it can
not be transformed by the complex method. The reason
is the complex transformations (71) for which the two
independent variables split into four which adds extra
dimensions. Therefore, the complex procedure does not
apply for that case.

4. The complex transformations

z1 =
1

t
, z2 = 2x, w =

w

x
, (74)

map the Lie canonical form

wz1z2 + αz2
2wz2 + 2w = 0, (75)

to

wtx −
1

x
wt − 4

αx2

t2
wx +

4

t2
(αx− 1)w = 0. (76)

The invariant quantities associated with both the scalar
Lie canonical form and the hyperbolic equations agree.
Insertingw = u+ιv, in the equation (76) while keepingα,
a real constant yields an uncoupled system of two PDEs

utx −
1

x
ut − 4

αx2

t2
ux +

4(αx− 1)

t2
u = 0,

vtx −
1

x
vt − 4

αx2

t2
vx +

4(αx− 1)

t2
v = 0. (77)

The system (77) is transformable to another system of the
form

uz1z2 + αx2uz2 + 2u = 0,
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vz1z2 + αx2vz2 + 2v = 0, (78)

under a change of the dependent and independent
variables

z1 =
1

t
, z2 = 2x, u =

u

x
, v =

v

x
. (79)

These transformations are the real and imaginary parts
of the complex transformations (74) and the transformed
system is obtained by splitting the Lie canonical form (75)
into real and imaginary parts. Joint invariants (48) for both
the systems (77) and (78) are

h1 = 2
t2 , k1 = 2(1−αx)

t2 , h2 = 0 = k2, J11 = −1
αx−1 ,

(80)
and

h1 = −2, k1 = 2(αx− 1), h2 = 0 = k2, J11 = 1
1−αx ,

(81)
respectively, while all others given in (48) are zero. A
coupled system

utx − 1
xut −

4α1x
2

t2 ux + 4α2x
2

t2 vx
+ 4(α1x−1)

t2 u− 4α2x
t2 v = 0,

vtx − 1
xvt −

4α2x
2

t2 ux − 4α1x
2

t2 vx
+ 4α2x

t2 u+ 4(α1x−1)
t2 v = 0,

(82)

with the invariants

h1 = 2
t2 , k1 = 2(1−α1x)

t2 , h2 = 0, k2 = −2α2x
t2 ,

J11 = 1−α1x
(1−α1x)2+α2

2x
2 , J12 = α2x

(1−α1x)2+α2
2x

2 ,

J13 = J14 = . . . = J22 = 0,
(83)

is obtainable from the complex scalar PDE (76) when
α is also complex, i.e., α = α1 + ια2. Employing
the transformations (79) on (65) one arrives at a coupled
system

uz1z2 + α1z
2
2uz2 − α2z

2
2vz2 + 2u = 0,

vz1z2 + α2z
2
2uz2 + α1z

2
2vz2 + 2v = 0, (84)

which is the real analogue of the complex transformed
equation (75) and satisfies the invariance criteria, where

h1 = −2, k1 = 2(α1x− 1), h2 = 0, k2 = 2α2x,
J11 = 1−α1x

(1−α1x)2+α2
2x

2 , J12 = α2x
(1−α1x)2+α2

2x
2 ,

J13 = J14 = . . . = J20 = 0.
(85)

VI. CONCLUSION

Semi-invariants of hyperbolic PDEs in two independent
variables have been obtained by transforming the
dependent or independent variables. Further, the
infinitesimal approach has been used to derive the joint
invariants for linear hyperbolic equations. Semi-invariants

of the hyperbolic PDEs under transformations of only
the dependent variable have been extended to systems
of such equations by CSA. Here using the real and
complex approaches we derive invariants of the system
of two linear hyperbolic equations under transformation
of: (a) only dependent variables (re-derivation); (b)
only independent variables; (c) both the dependent and
independent variables.

In the case of transformation of only the dependent
variables of the system of two linear hyperbolic equations
(2), an agreement between associated semi-invariants
derived by the real and complex procedures is shown.
However, semi-invariants under transformations of the
independent variables, of this class of systems obtained
by real symmetry analysis appear different from those
provided by the complex procedure. Furthermore, the
joint invariants of this system of hyperbolic equations
obtained by both methods are also disparate. Indeed the
complex symmetry approach is seen to reveal different
invariants from those provided by real symmetry analysis.
This is seen mostly in the case where the real method
yields only 3 invariants, see (28), while the complex
method yields 10 invariants, in (48).
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