
 

    

 

 

Abstract— In this paper, a mathematical model is proposed and 

analyzed to study the effect of toxicant in a three species food chain 

system with “food limited” growth of prey population. The 

mathematical model is formulated using the system of non-linear 

ordinary differential equation. In the model, there are seven state 

variables, viz, prey population density, intermediate predator 

population density, top predator population density, toxicant 

concentration in the environment, toxicant concentration in the prey 

population, toxicant concentration in the intermediate predator 

population, toxicant concentration in the top predator population. 

Approximate analytical solutions for all above seven state variables 

are presented using Homotopy Perturbation Method (HPM) for all 

possible values of parameter. In addition, in this work the numerical 

simulation of the problem is also presented using MATLAB program 

to investigate the dynamic of the system. The same information also 

presented in graphical form which makes it easier to understand. A 

good agreement found between the analytical and the numerical 

solution.   

Keywords— Analytical solution, Concentration, Food chain 

model, Homotopy perturbation method, Non-linear system of 

differential equations.  

  

I. INTRODUCTION 

Many species are exposed to various kinds of stresses 

including toxicants which are affecting their growth rate, 

carrying capacity and their resources. The effects of toxicants 

on ecological communities including three-species food chain 

system are very complex dynamical systems to be undertaken 

for mathematical study. Three species food chain system have 

received much attention from many applied mathematical and 

ecologists in recent years [1-3]. Previously, some research has 

been done on tri- trophic food-chain systems including 

toxicant effects on the survival or extinction of species in the 

system [4, 5]. It has been observed that toxicants have very 

pronounced effects on the species if the availability of the 

resources is limited.  

In order to use and regulate toxic substance wisely, we must 

asses the risk of the populations exposed to toxicant. The 

problem of estimating qualitatively the effect of a toxicant on a 

population by mathematical models is a relatively new field 

that began only in the early 1980s. For a general class of a 

single population models with toxicant stress, Ma et al. [6] 

obtained a survival threshold distinguishing between 

persistence in the mean end extinction of a single population 

under the hypothesis that the capacity of the environment is 

large relative to the population biomass, and that the 

exogenous input of toxicant into the environment is bounded. 

The threshold of the survival for a system of two species in a 

polluted environment was studied by Huaping and Ma [7]. 

Population toxicant coupling has been applied in several 

contexts including Lotka-Volterra and chemostat like 

environments, resulting in ordinary, integro-differential and 

stochastic models. All these studies rely on the hypothesis of a 

complete spatially homogenous environment.  

In recent years, several investigators have studied the effects 

of toxicants on a single species population. In  particular, Zhan 

Li et al. [8] and Hallam et al. [9] studied the effect of a 

toxicant present in the environment on a single species 

population by assuming that its growth rate density decreases 

linearly with the concentration but the corresponding carrying 

capacity does not depend upon the concentration of toxicant 

present in the environment. However, Freedaman and shukla 

[10] proposed models to study the effects of a toxicant on 

single species and predator-prey systems by assuming that the 

intrinsic growth rate of the species decreases as the uptake 

concentration of the toxicant increases while its carrying 

capacity decreases with the environmental concentration of the 

toxicant..  

In recent decades, several investigators have studied the 

system of two biological species in a polluted environment; In 

particular, Huaping and Ma Zhien [11] proposed a 

mathematical model to study the effect of a toxicant on 

population of two competing species and derived persistence-

extinction criteria for each population. Shukla et al. [12] have 

also studied the survival of two competing species in a 

polluted environment and showed that the usual competitive 

outcomes may be altered in the presence of a toxicant Hsu et 

al. [13] proposed and analyzed a model to study the interaction 

between two species competing for a resource in the presence 

of an inhibitor or a toxicant that affects one of the competitors 

but is removed by the other.  To our knowledge, almost no 

studies have been conducted to investigate the effect of 

toxicant on a three species food chain systems with ‘‘food 

limited’’ growth of prey population and therefore, in the paper, 
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a mathematical model is proposed to study the effects of 

toxicants on a three species food –chain system with ‘‘food 

limited’’ growth of prey population. The present model may be 

suited for the food chain system comprising of Spider-_Mouse 

_Snake and also for the food chain system consisting of 

Spider-Lizard-Hawk.  

II. MATHEMATICAL MODEL 

Consider a three species food chain system under the stress 

of a toxicant considering “food-limited” growth of population. 

The model is formulated with the help of following system of 

ordinary differential equation [14], 
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III. APPROXIMATE ANALYTICAL SOLUTION OF THE SYSTEM OF 

NONLINEAR EQNS. (1)-(8) USING HOMOTOPY 

PERTURBATION METHOD (HPM) 

Recently, HPM is often working to solve a number of 

systematic problems. In addition, several groups established 

the efficient and suitability of the HPM for solving non-linear 

differential equation problems. Recently, there are so many 

authors have applied the HPM to various  non-linear problems 

and  demonstrated  the  efficiency  of  the  HPM  for  handling  

non-linear  structures  and solving  various  physics  and  

engineering  problems  [15-18]. Using HPM (refer Appendix 

A), we obtain the approximate solutions of the Eqns. (1)-(7) 

with the initial condition Eqn. (8) as follows: 
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IV. NUMERICAL SOLUTION 

 In this section, we expressed the dynamical behavior of a 

three species food chain system with “foot-limited” growth of 

prey population with toxicant numerically to help the 

interpretation of our mathematical findings. In order to 

investigate accuracy of the HPM solution with finite number of 

terms, the system of differential equation were solved  

numerically for various values of  L, M, N, P, A, B and D and 

all other given parameters by using MATLAB software. The 

figures illustrate the models for the given sets of parameters 

and the graphs have been plotted by using MATLAB software. 

The MATLAB program is also given in Appendix B. 

V. RESULTS AND DISCUSSION 

 Equations (9)-(15) represent the analytical expressions of 

seven state populations for all values of parameters. To 

compare our mathematical finding with numerical solution we 

are considering the following two sets of parameters referred 

from [14].  

(i)  
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   In the following figures, we present the series of normalized 

population profile for a prey, intermediate predator, top 

predator population, toxin in the environment, toxin in the 

prey, toxin in the intermediate predator and toxin in the top 

predator for various values of parameters [14].  All series 

solutions satisfy the initial conditions. We used the first set of 

parameter to draw Figures (1)-(3). From these figures, it is 

inferred that the maximum and minimum values of prey, 

intermediate predator and top predator affected by the 

increasing values of parameters. When the dimensionless time 

t increases, all the populations are increase. We used the 

second set of parameter to draw Figures (4)-(6). From these 

figures, it is inferred that when the dimensionless time t 

increases, the prey population x, the intermediate predator 

population y, toxin in the environment T, toxin in prey U and 

toxin in intermediate predator V  are increase and top predator 

population z and toxin in top predator W remain same.  

   From Figure (7), it is inferred that the values of the intrinsic 

growth rate of prey r0 increases, the prey population x also 

increases. From Figures (8) and (9), it is inferred that the 

values of the conversion coefficient 1β  and the death rates of 

intermediate predator d1 increase; the intermediate predator 

population y also increases. From Figure (10), it is inferred 

that the values of the death rate of top predator population d2 

increases, the top predator population z decreases.  From 

Figure (11), it is inferred that the values of the rate of 

introduction of toxicant into the environment Q0 increases, the 

toxin in the environment T decreases. From Figure (12), it is 

inferred that the values of the rate of toxicants in the 

population 1δ  increases, the toxin in prey populations U is 

decreases. From Figure (13), it is inferred that the values of the 

rate of toxicants in the population 2δ  increases, the toxin in 

intermediate predator population V decreases. From Figure 

(14), it is inferred that the values of the rate of toxicants in the 

population 3δ increases, the toxin in top predator population W 

decreases. 

 
Fig. (1) 

Fig.(1) Profiles of the populations of the prey x, intermediate 

predator y and top predator z were computed using equations 

(9)-(11).  Populations versus time t for the values of 

parameters L = M =N= P=A=B=D= 0.0001 with the first set 

of parameters. 
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                           Fig. (2) 

 

Fig.(2) Profiles of the populations of the toxicant in the 

environment T, toxicant in the prey U, toxicant in the 

intermediate predator V and toxicant in the top predator W 

were computed using equations (12)-(15).  Populations versus 

time t for the values of parameters L = M =N=P=A=B=D= 

0.0001 with the first set of parameters. 

 

 
Fig. (3) 

 

Fig.(3) Profiles of the populations of all seven state variables 

were computed using equations (9)-(15).  Populations versus 

time t for the values of parameters L= M =N=P=A=B=D= 

0.0001 with the first set of parameters.  

 
                                        Fig. (4) 

Fig.(4) Profiles of the populations of the prey x, intermediate 

predator y and top predator z were computed using equations 

(9)-(11).  Populations versus time t for the values of 

parameters L = M =N=P=A=B=D= 0.0001 with the second 

set of parameters. 

 
                                        Fig. (5) 

Fig.(5) Profiles of the populations of the toxicant in the 

environment T, toxicant in the prey U, toxicant in the 

intermediate predator V and toxicant in the top predator W 

were computed using equations (12)-(15).  Populations versus 

time t for the values of parameters L = M =N=P=A=B=D= 

0.0001 with the second set of parameters. 

 

                                           Fig.(6) 

Fig.(6) Profiles of the populations of all seven state variables 

were computed using equations (9)-(15).  Populations versus 

time t for the values of parameters L = M =N=P=A=B=D= 

0.0001 with the second set of parameters. 

 

 
                                              Fig.(7) 
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Fig.(7) Profiles of the normalized prey populations were 

computed using Eqn. (9) versus dimensionless time t for 

various values of the intrinsic growth rate of prey 0r . 

 

                                          Fig.(8) 

Fig.(8) Profiles of the normalized intermediate predator 

populations were computed using Eqn. (10) versus 

dimensionless time t for various values of the conversion 

coefficients 1β . 

 

                                        Fig.(9)  

Fig.(9) Profiles of the normalized intermediate predator 

populations were computed using Eqn. (10) versus 

dimensionless time t for various values of the 

death rates of intermediate predator 1d .                                                                                                                               

 

                                             Fig.(10) 

Fig.(10) Profiles of the normalized top predator populations 

were computed using equation (11) versus dimensionless time 

t for various values of the death rate of top predator population 

2d . 

 

                                      Fig.(11) 

Fig.(11) ) Profiles of the normalized toxicant in the 

environment were computed using equation (12) versus 

dimensionless time t for various values of the rate of 

introduction of toxicant into the environment 0Q . 

 

 

                                                 Fig(12) 

Fig.(12) Profiles of the normalized toxicant in prey  

populations were computed using equation (13) versus 

dimensionless time t for various values of the rate of toxicants 

in the population 1δ  . 
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                                           Fig(13)      

Fig.(13) Profiles of the normalized toxicant in intermediate 

predator  populations were computed using equation (14) 

versus dimensionless time t for various values of the rate of 

toxicants in the population 2δ . 

   

 

                                              Fig(14)                                                                           

Fig.(14) Profiles of the normalized toxicant in top predator  

populations were computed using equation (15) versus 

dimensionless time t for various values of the rate of toxicants 

in the population 3δ   . 

VI. CONCLUSION 

   There is a goal that we aimed in this work. That is to employ 

the hopeful homotopy perturbation method to solve non-linear 

equations arising in the mathematical model of effect of 

toxicant in a three species food chain system with “food 

limited” growth of prey population problem. From this we 

achieved good results in predicting the solutions. All the 

analytical results are compared with the numerical solutions. A 

good agreement with the available numerical results is 

notified. The analytical result is a powerful tool for analyzing 

the model. Also the analytical result derived in this paper is 

useful for a better understanding and optimization of the 

biological system.   

APPENDIX A 

Approximate analytical solutions of the system of Eqns. (9)-

(15) using Homotopy perturbation method [19, 20]. To find 

the solutions of equations (1)-(7) with the initial condition (8), 

we first constructed a Homotopy as follows, 
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with the initial approximations are as follows, 
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Substituting Eqns. (A-9) - (A-15) into Eqns. (A-1) - (A-7) and 

comparing the coefficients of like powers  
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After putting Eqns. (A-30) and (A-31) into Eqns. (A-44), (A-

32) and (A-33) into Eqns. (A-45), (A-34) and (A-35) into 

Eqns. (A-46), (A-36) and (A-37) into Eqns. (A-47), (A-38) 

and (A-39) into Eqns. (A-48), (A-40) and (A-41) into Eqns. 

(A-49), (A-42) and (A-43) into Eqns. (A-50). We can obtain 

the final results which can be described in Eqns. (9-15). 

APPENDIX B 

MATLAB Program to find the numerical solution of the Eqns. 

(1)- (8) 

function viji2  

options= odeset('RelTol',1e-6,'Stats','on');  

%initial conditions   

Xo = [0.0001;0.0001;0.0001;0.0001;0.0001;0.0001;0.0001];   

tspan = [0,20];  

tic  

[t,X] = ode45(@TestFunction,tspan,Xo,options);  

toc   

figure  

hold on  

plot(t, X(:,1), 'red') 

plot(t, X(:,2), 'black') 

plot(t, X(:,3), 'green') 

plot(t, X(:,4), 'rose') 

plot(t, X(:,5), 'yellow') 

plot(t, X(:,6), 'black') 

plot(t, X(:,7), 'm') 

legend('x1','x2','x3','x4','x5','x6','x7')  

ylabel('x - Population')  

xlabel('t - Time')   

return   

function [dx_dt]= TestFunction(~,x)  

r0=5.66; r1=11.0; k0=16.2; k1=3.0; c=4.25; c3=1.02; 

alpha1=2.12; b1=1.231; beta1=1.2; beta11=1.1; beta2=1.6; 

beta22=1.15; a1=3.22; a2=2.13; a3=2.865; a4=4.21; 

delta0=7.52; delta1=2.5; delta2=3.99; delta3=1.3; Q0=2.988; 

d1=1.45; d2=1.49; 

dx_dt(1)=(x(1)*(r0-(r1*x(5))))*(((k0-(k1*x(4)))-x(1))/((k0-

(k1*x(4)))+(r0*c*x(1))))-(a1*x(1)*x(2)); 

dx_dt(2)=(beta1*a1*x(1)*x(2))-(a2*x(2)*x(3))-(beta11* x(6)* 

x(2)) -(d1*x(2))-(b1*(x(2))^2); 

dx_dt(3)=(beta2*a2*x(2)*x(3))-(beta22*x(7)*x(3))-(d2*x(3))-

(c3*(x(3))^2); 

dx_dt(4) = Q0-( delta0*x(4))-(alpha1*x(1)*x(4)); 

dx_dt(5)=(alpha1*x(1)*x(4))-(delta1*x(5))-

(a3*x(5)*a1*x(1)*x(2)); 

dx_dt(6) =(a3*x(5)*a1*x(1)*x(2))-(delta2*x(6))-

(a4*x(6)*a2*x(2)*x(3)); 

dx_dt(7) =(a4*x(6)*a2*x(2)*x(3))-(delta3*x(7)); 

dx_dt = dx_dt';    

return 

APPENDIX C 

NOMENCLATURE 

SYMBOL MEANING 

x prey population of density 

y intermediate predator population of 

density 

z top predator population of  

density  

T toxicant  concentration  

in the environment 

U   toxicant  concentration 

in the prey population 

V toxicant concentration 

in the  intermediate 

 predator population                                      

W Toxicant concentration   

in the top predator population 

K(T)                             carrying capacity of prey 

1d    death rates of intermediate 

 predator  

2d  death rates of top predator 

r(U) specific growth rate of 

 prey population 
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1β  and 2β  conversion coefficients 

)(3 Uβ and 

)(4 Uβ  

toxicant transfer function 

0Q                             toxicant rate of introduction  into the 

 environment 

3210 ,,, δδδδ                rate of toxicants in the 

 environment as well 

 as in the populations 

11β  and 22β  death rates of predators  

due to organismal  

toxicant concentration             

0k  natural carrying capacity 

1k   rate of decrease carrying capacity  

0r  intrinsic growth rate of prey  

1r  growth rate of prey population 

1α  depletion rate of toxicant in 

 the environment 

4321 ,,,, aaaac  positive constants 

)(3 Uβ  Ua3  

)(4 Vβ  Va4  

)(Ur  Urr 10 −  

)(TK  Tkk 10 −  
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