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Abstract— In this paper, a mathematical model is proposed and
analyzed to study the effect of toxicant in a three species food chain
system with “food limited” growth of prey population. The
mathematical model is formulated using the system of non-linear
ordinary differential equation. In the model, there are seven state
variables, viz, prey population density, intermediate predator
population density, top predator population density, toxicant
concentration in the environment, toxicant concentration in the prey
population, toxicant concentration in the intermediate predator
population, toxicant concentration in the top predator population.
Approximate analytical solutions for all above seven state variables
are presented using Homotopy Perturbation Method (HPM) for all
possible values of parameter. In addition, in this work the numerical
simulation of the problem is also presented using MATLAB program
to investigate the dynamic of the system. The same information also
presented in graphical form which makes it easier to understand. A
good agreement found between the analytical and the numerical
solution.

Keywords— Analytical solution, Concentration, Food chain
model, Homotopy perturbation method, Non-linear system of
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I. INTRODUCTION

Many species are exposed to various kinds of stresses
including toxicants which are affecting their growth rate,
carrying capacity and their resources. The effects of toxicants
on ecological communities including three-species food chain
system are very complex dynamical systems to be undertaken
for mathematical study. Three species food chain system have
received much attention from many applied mathematical and
ecologists in recent years [1-3]. Previously, some research has
been done on tri- trophic food-chain systems including
toxicant effects on the survival or extinction of species in the
system [4, 5]. It has been observed that toxicants have very
pronounced effects on the species if the availability of the
resources is limited.

In order to use and regulate toxic substance wisely, we must
asses the risk of the populations exposed to toxicant. The
problem of estimating qualitatively the effect of a toxicant on a
population by mathematical models is a relatively new field
that began only in the early 1980s. For a general class of a
single population models with toxicant stress, Ma et al. [6]
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obtained a survival threshold distinguishing between
persistence in the mean end extinction of a single population
under the hypothesis that the capacity of the environment is
large relative to the population biomass, and that the
exogenous input of toxicant into the environment is bounded.
The threshold of the survival for a system of two species in a
polluted environment was studied by Huaping and Ma [7].
Population toxicant coupling has been applied in several
contexts including Lotka-Volterra and chemostat like
environments, resulting in ordinary, integro-differential and
stochastic models. All these studies rely on the hypothesis of a
complete spatially homogenous environment.

In recent years, several investigators have studied the effects
of toxicants on a single species population. In particular, Zhan
Li et al. [8] and Hallam et al. [9] studied the effect of a
toxicant present in the environment on a single species
population by assuming that its growth rate density decreases
linearly with the concentration but the corresponding carrying
capacity does not depend upon the concentration of toxicant
present in the environment. However, Freedaman and shukla
[10] proposed models to study the effects of a toxicant on
single species and predator-prey systems by assuming that the
intrinsic growth rate of the species decreases as the uptake
concentration of the toxicant increases while its carrying
capacity decreases with the environmental concentration of the
toxicant..

In recent decades, several investigators have studied the
system of two biological species in a polluted environment; In
particular, Huaping and Ma Zhien [11] proposed a
mathematical model to study the effect of a toxicant on
population of two competing species and derived persistence-
extinction criteria for each population. Shukla et al. [12] have
also studied the survival of two competing species in a
polluted environment and showed that the usual competitive
outcomes may be altered in the presence of a toxicant Hsu et
al. [13] proposed and analyzed a model to study the interaction
between two species competing for a resource in the presence
of an inhibitor or a toxicant that affects one of the competitors
but is removed by the other. To our knowledge, almost no
studies have been conducted to investigate the effect of
toxicant on a three species food chain systems with ‘“food
limited”” growth of prey population and therefore, in the paper,
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a mathematical model is proposed to study the effects of
toxicants on a three species food —chain system with ‘‘food
limited’” growth of prey population. The present model may be
suited for the food chain system comprising of Spider- Mouse
_Snake and also for the food chain system consisting of
Spider-Lizard-Hawk.

II. MATHEMATICAL MODEL

Consider a three species food chain system under the stress
of a toxicant considering “food-limited” growth of population.
The model is formulated with the help of following system of
ordinary differential equation [14],
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with the initial conditions

x(0) > 0, (0) > 0, (0) > 0, 7(0) > 0, ©

U0)=0,70)=20,w0)=0
III. APPROXIMATE ANALYTICAL SOLUTION OF THE SYSTEM OF
NONLINEAR EQNS. (1)-(8) USING HOMOTOPY
PERTURBATION METHOD (HPM)

Recently, HPM is often working to solve a number of
systematic problems. In addition, several groups established
the efficient and suitability of the HPM for solving non-linear
differential equation problems. Recently, there are so many
authors have applied the HPM to various non-linear problems
and demonstrated the efficiency of the HPM for handling
non-linear structures and solving various physics and
engineering problems [15-18]. Using HPM (refer Appendix
A), we obtain the approximate solutions of the Eqns. (1)-(7)
with the initial condition Eqn. (8) as follows:
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IV. NUMERICAL SOLUTION

In this section, we expressed the dynamical behavior of a
three species food chain system with “foot-limited” growth of
prey population with toxicant numerically to help the
interpretation of our mathematical findings. In order to
investigate accuracy of the HPM solution with finite number of
terms, the system of differential equation were solved
numerically for various values of L, M, N, P, A, B and D and
all other given parameters by using MATLAB software. The
figures illustrate the models for the given sets of parameters
and the graphs have been plotted by using MATLAB software.
The MATLAB program is also given in Appendix B.

V. RESULTS AND DISCUSSION

Equations (9)-(15) represent the analytical expressions of
seven state populations for all values of parameters. To
compare our mathematical finding with numerical solution we
are considering the following two sets of parameters referred
from [14].

rg =5.00; r; =11.0; ky=14.2; k; =3.0; c3=0.02;
[24] :131, bl :10231, ﬂl :0.4;ﬂ11 :101,,52 :06,

(1) By =115 a;=322; a,=09913; a3;=2.865;

ay =4.21; 67 =5.82; 01 =2.0; 5, =1.9890; 55 =2.9;

Qo =1.988; d;=0.35; dy, =0.5; c=5.58;
rp =5.66; 1, =11.0; ky=16.2; k; =3.0; c=4.25;
c3=1.02; oy=2.12; by =1.231; ,=12; p;; =1.1;

(ii) B, =1.6; porp =1.15;a1=3.22;a, =2.13;a5 =2.865;
ay =4.21; 8y=17.52; 6;=2.5; 6,=3.99; 3=1.3;
Qo =2.988; d;=1.45; d,=1.49;

In the following figures, we present the series of normalized
population profile for a prey, intermediate predator, top
predator population, toxin in the environment, toxin in the
prey, toxin in the intermediate predator and toxin in the top
predator for various values of parameters [14]. All series
solutions satisfy the initial conditions. We used the first set of
parameter to draw Figures (1)-(3). From these figures, it is
inferred that the maximum and minimum values of prey,
intermediate predator and top predator affected by the
increasing values of parameters. When the dimensionless time
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t increases, all the populations are increase. We used the
second set of parameter to draw Figures (4)-(6). From these
figures, it is inferred that when the dimensionless time ¢
increases, the prey population x, the intermediate predator
population y, toxin in the environment 7, toxin in prey U and
toxin in intermediate predator V' are increase and top predator
population z and toxin in fop predator /¥ remain same.

From Figure (7), it is inferred that the values of the intrinsic
growth rate of prey ry increases, the prey population x also
increases. From Figures (8) and (9), it is inferred that the
values of the conversion coefficient §; and the death rates of

intermediate predator d; increase; the intermediate predator
population y also increases. From Figure (10), it is inferred
that the values of the death rate of top predator population d,
increases, the top predator population z decreases. From
Figure (11), it is inferred that the values of the rate of
introduction of toxicant into the environment Q, increases, the
toxin in the environment 7 decreases. From Figure (12), it is
inferred that the values of the rate of toxicants in the
population J; increases, the toxin in prey populations U is
decreases. From Figure (13), it is inferred that the values of the
rate of toxicants in the population J, increases, the toxin in
intermediate predator population V' decreases. From Figure
(14), it is inferred that the values of the rate of toxicants in the
population &5 increases, the toxin in top predator population W

decreases.
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Fig.(1) Profiles of the populations of the prey x, intermediate
predator y and top predator z were computed using equations
(9)-(11).  Populations versus time ¢t for the values of
parameters L = M =N= P=4A=B=D= 0.0001 with the first set
of %irbameters.
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Fig. (2)

Fig.(2) Profiles of the populations of the toxicant in the
environment 7, toxicant in the prey U, toxicant in the
intermediate predator V' and toxicant in the top predator W
were computed using equations (12)-(15). Populations versus
time ¢ for the values of parameters L = M =N=P=4=B=D=
0.0001 with the first set of parameters.
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Fig.(3) Profiles of the populations of all seven state variables
were computed using equations (9)-(15). Populations versus
time ¢ for the values of parameters L= M =N=P=4=B=D=
0.0001 with the first set of parameters.
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Fig.(4) Profiles of the populations of the prey x, intermediate
predator y and top predator z were computed using equations
(9)-(11).  Populations versus time ¢ for the values of
parameters L = M =N=P=4=B=D= 0.0001 with the second
set of parameters.
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Fig.(5) Profiles of the populations of the toxicant in the
environment 7, toxicant in the prey U, toxicant in the
intermediate predator 7 and toxicant in the top predator W
were computed using equations (12)-(15). Populations versus
time t for the values of parameters L = M =N=P=A=B=D=

0.0001 with the second set of parameters.
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Fig.(6) Profiles of the populations of all seven state variables
were computed using equations (9)-(15). Populations versus
time ¢ for the values of parameters L = M =N=P=A=B=D=
0.0001 with the second set of parameters.

35

Prey population x ()




Engineering World g5
g OpenAc%eschuma\-’ k| ISSN: 2692-5079

Fig.(7) Profiles of the normalized prey populations were Fig.(10) Profiles of the normalized top predator populations
computed using Eqn. (9) versus dimensionless time ¢ for were computed using equation (11) versus dimensionless time

various values of the intrinsic growth rate of prey 7 . t for various values of the death rate of top predator population
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Fig.(8) Profiles of the normalized intermediate predator Time ()

populations were computed using Eqn. (10) versus Fig.(11)
dimensionless time ¢ for various values of the conversion
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Fig.(9) Profiles of the normalized intermediate predator
populations were computed using Eqn. (10) versus 0, y 3 : ) : . x s 5 10
dimensionless time ¢ for various values of the Time (1)
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Fig.(12) Profiles of the normalized toxicant in prey
1+ 1 populations were computed using equation (13) versus
dimensionless time ¢ for various values of the rate of toxicants
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Fig.(13) Profiles of the normalized toxicant in intermediate
predator populations were computed using equation (14)
versus dimensionless time t for various values of the rate of
toxicants in the population J, .
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Fig.(14) Profiles of the normalized toxicant in top predator
populations were computed using equation (15) versus
dimensionless time ¢ for various values of the rate of toxicants
in the population d5 .

VI. CONCLUSION

There is a goal that we aimed in this work. That is to employ
the hopeful homotopy perturbation method to solve non-linear
equations arising in the mathematical model of effect of
toxicant in a three species food chain system with “food
limited” growth of prey population problem. From this we
achieved good results in predicting the solutions. All the
analytical results are compared with the numerical solutions. A
good agreement with the available numerical results is
notified. The analytical result is a powerful tool for analyzing
the model. Also the analytical result derived in this paper is
useful for a better understanding and optimization of the
biological system.
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APPENDIX A

Approximate analytical solutions of the system of Eqns. (9)-
(15) using Homotopy perturbation method [19, 20]. To find
the solutions of equations (1)-(7) with the initial condition (8),
we first constructed a Homotopy as follows,

2 2
dx dx xry x°nU
1-p|—- + pl——x1y +xnU + -
[ P{dt x”o} p[dt X1y + X1 . ko
+x2r0k1T _x2rlk1UT xzrozc _xzrorlcU
k02 k02 kO kO (Al)
+x2r020k1T 7x2r0rlcUk1T 7x3rozc +x3rocrlU
ko® ko® ko® ko®
2lex3roc 2x3rocrlUk1T
_ 3 + 3 +a1xy]=0
ko ko
dy 1, @
1 - —+d + p[—+dy - piax
[ p{dt | plo-+diy = frawy (A2)
+ayyz+ By +b1y*1=0
dz ] dz
1- —+dyz |+ p[—+dyz— Prayryz
[ p{dt 22 | p[dt 22 = paayy (A3)
+ By Wz +c¢3221=0
dT dT
1 - — =0T | + — =0T
b= { dt 0 } P 0 (A-4)
- Qg +a1xT1=0
dUu dUu
[I—p{z+51U}+p[E—§1U—a1xT+a1a3Uxﬂ =0 (A-S)

[l—p{dd—lt/+52V}+p[il—lt/+52V—a1a3ny+a2a4Vyﬂ =0 (A-6)

[1-p ., S0 |+ p[d—W +8W —ayauVyz]=0 (A7)
dt dt
with the initial approximations are as follows,

xg=L,yg=M,zy=N,Ty =P

5

Ug = AVy = BWo = D When =0 (A-8)
X=xq+ px; +p2x2 o (A-9)
V=Yg Py tpiyyt (A-10)
z=2z¢y+pz +p222+ ...... (A-11)
T=Ty+pT +p°Ty +..... (A-12)
U=Uqy+pU,+p?Usy+... (A-13)
V=Vy+pVy+p*Vs+.. (A-14)
W =Wy +pW,+p*Wy +..... (A-15)

Substituting Eqns. (A-9) - (A-15) into Eqns. (A-1) - (A-7) and

comparing the coefficients of like powers
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(A-32)
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63 —dy —dy -6,
x(1) = lim x(1) = x¢ + x| + eree (A-44)
p—1
y()=lim Yy) = yo + Vi + e (A-45)
p—1
z(t) = lim z(1) = z¢ + 2] + e (A-46)
p—1
T(t)=1lim T@ =Ty +T} +...... (A-47)
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p—1
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p—1
W)= lim W@ =Wy +W; + ... (A-50)

p—1

After putting Eqns. (A-30) and (A-31) into Eqns. (A-44), (A-
32) and (A-33) into Eqns. (A-45), (A-34) and (A-35) into
Eqns. (A-46), (A-36) and (A-37) into Eqns. (A-47), (A-38)
and (A-39) into Eqns. (A-48), (A-40) and (A-41) into Eqns.
(A-49), (A-42) and (A-43) into Eqns. (A-50). We can obtain
the final results which can be described in Eqns. (9-15).

APPENDIX B

MATLAB Program to find the numerical solution of the Eqns.
(- (®)

function viji2

options= odeset('RelTol',1e-6,'Stats','on");

%initial conditions

Xo =1[0.0001;0.0001;0.0001;0.0001;0.0001;0.0001;0.0001];
tspan = [0,20];

tic

[t,X] = ode45(@TestFunction,tspan,Xo,options);

toc

figure
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hold on

plot(t, X(:,1), 'red")

plot(t, X(:,2), 'black’)

plot(t, X(:,3), 'green")

plot(t, X(:,4), 'rose")

plot(t, X(:,5), 'yellow")

plot(t, X(:,6), 'black")

plot(t, X(:,7), 'm")

legend('x1','x2",'x3",'x4",'x5",'x6','x7")

ylabel('x - Population')

xlabel('t - Time")

return

function [dx_dt]= TestFunction(~,x)

r0=5.66; rl1=11.0; k0=16.2; k1=3.0; c¢=4.25; c3=1.02;
alphal=2.12; bl1=1.231; betal=1.2; betal1=1.1; beta2=1.6;
beta22=1.15; al=3.22; a2=2.13; a3=2.865; a4=421;
delta0=7.52; deltal=2.5; delta2=3.99; delta3=1.3; Q0=2.988;
d1=1.45; d2=1.49;
dx_dt(1)=(x(1)*0-(r1x(S))H(KO0-(kT*x(4))-x(1))/((KO-
(k1*x(H))+(x0*c*x(1))))-(al *x(1)*x(2));
dx_dt(2)=(betal*al*x(1)*x(2))-(a2*x(2)*x(3))-(betal 1 * x(6)*
x(2)) ~(d1*x(2))-(b1*(x(2)/"2);
dx_dt(3)=(beta2*a2*x(2)*x(3))-(beta22*x(7)*x(3))-(d2*x(3))-
(c3*(x(3))"2);

dx_dt(4) = Q0-( delta0*x(4))-(alphal *x(1)*x(4));
dx_dt(5)=(alphal*x(1)*x(4))-(deltal *x(5))-
(a3*x(5)*al*x(1)*x(2));

dx_dt(6) =(a3*x(5)*al*x(1)*x(2))-(delta2*x(6))-
(ad*x(6)*a2*x(2)*x(3));

dx_dt(7) =(ad*x(6)*a2*x(2)*x(3))-(delta3*x(7));

dx_dt=dx dt}

return
APPENDIX C
NOMENCLATURE
SYMBOL MEANING
X prey population of density
y intermediate predator population of
density
z top predator population of
density
T toxicant concentration
in the environment
U toxicant concentration
in the prey population
vV toxicant concentration
in the intermediate
predator population
w Toxicant concentration
in the top predator population
K(T) carrying capacity of prey
d, death rates of intermediate
predator
d, death rates of top predator
r(U) specific growth rate of
prey population
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By and 3,

conversion coefficients

S3(U) and toxicant transfer function

B4(U)

Qo toxicant rate of introduction into the
environment

60,91,02,03 rate of toxicants in the

environment as well
as in the populations

Bi1 and Sy

death rates of predators
due to organismal
toxicant concentration

ko natural carrying capacity
k rate of decrease carrying capacity
1o intrinsic growth rate of prey
A growth rate of prey population
a) depletion rate of toxicant in

the environment
c,ay,ay,a3,a, | Positive constants
B U) aU
Bs(V) agV
r(U) ry—nU
K(T) ko -k, T
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